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Neel temperature for quasi-two-dimensional dipolar antiferromagnets
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We calculate the Neel temperature T~ for two-dimensional isotropic dipolar Heisenberg anti-

ferromagnets via linear spin-wave theory and a high-temperature expansion, by employing the

method of Callen. The theoretical predictions for TN for KqMnF4, RbqMnF4, RbqMnC14, and

(CHSNHs)sMnC14 are in good agreement with the measured values.

Recently it has been shown that long-range order is

possible in two-dimensional isotropic Heisenberg antifer-

romagnets due to the anisotropy of the dipole-dipole in-

teraction. The occurrence of a finite energy gap goes
in hand with a nonvanishing order parameter and a fi-

nite Neel temperature. In the present paper a quantita-
tive improvement of the theory is achieved by means of
Callen's extension of the Tyablikov decoupling scheme. 2

In Ref. 1 we have used linear spin-wave theory based
on the Holstein-PrimakoÃ transformation to evaluate the
magnon dispersion relation. The evaluation of the Neel

temperature by means of the temperature-independent
dispersion relation leads to an overestimate of TN. In re-

ality the magnon frequency softens with increasing tem-

perature and thus the actual transition temperature is

lower. This feature is accounted for by an extension
of the Tyablikov decoupling scheme due to Callen. 2 In
essence the dependence on the magnitude of the spin S is

replaced by cr, the temperature-dependent order param-
eter. Even at T = 0 the zero point fluctuations lead to a
reduction of o. as compared to S. The resulting transition
temperature is lowered in comparison to the estimate of
Ref. 1 such that a satisfactory agreement between theory
and experiment is achieved.

The Hamiltonian of a dipolar antiferromagnet reads

s ) ) (Jli 6l3 + Alt, ) Sl 'Sl'
lgl' aP

with spins S~ at lattice sites x~. The first term in brack-
ets is the exchange interaction J~~ and the second the
usual dipole-dipole interaction. We consider a square
lattice in the xy plane with lattice constant a and the
spins orientated alternatingly along the z axis. The out-
of-plane orientation is the classical ground state for the
isotropic dipolar antiferromagnet with a nearest-neighbor
exchange energy

I Jl much larger than the dipole energy. ~

Let us introduce the retarded double-time Green func-
I

tions according to Callen, 2

G'(R, —R„t)= —iO(t)([S~+(t), e'"S;(0)])
= ((s'I '"so ))

~ (Rk —Ro ') = —'e(t) ([Sk (t) e' ' So (O)])

=((s I
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which obey the following Fourier transformed equations
of motion: '4

(s„'le'"*s;)).= e, + (([s„',II]le"*s;))

((s le'"so ))- = (([s„- mlle'"so ))

with the equal time commutator

(3a)

(3b)

o = ([s s l).

((s's'le'" s. )) ~ (s')((s'le'" s. )) (4)

As a consequence of translational symmetry the mean

spin value is independent of the lattice site for each sub-

lattice: (S&' ) = —(S&') = o where lq 6 Lq (l2 E L2) refers

to sublattice 1 (2). Using this approximation we obtain
from Eqs. (3a) and (3b) a set of four equations for the
Green functions G, G +, , G2, and G + . The evalu-

ation of the order parameter and the magnon dispersion
relation requires only two of them:

t-",'(~) —= 2%'(~) + &'+,.(~)]

g(&) + /(&)~ + g(&)~2 + ~3
=Op ~2 ~2 ~2 62

with

Here Ro is a lattice point of sublattice 1 and RI, is a
general lattice vector. The higher order Green functions
generated by the commutator in Eqs. (3a) and (3b) are
approximated by the Tyablikov decoupling scheme

—An(A +, —B +,) + —A~+~, (A —B ) + (C + C +,)(A~+A~+~, ) + (C —C +,)(B~+~, —B~),

1

2
—(Aq + Aa+~, ).
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Here q denotes the wave vector of the chemical Brillouin
zone and qp ——"—(1, 1, 0). In the magnetic Brillouin zone
which is half the chemical there exist two distinct spin-
wave branches with frequencies e; (i = 1, 2) which read

the external magnetic 6eld is set to zero. But there is
a difference even at absolute zero temperature, because
the ground state of the antiferromagnet is not the Neel
state of fully aligned spins; i.e. 0(T.= 0) ( S as will be
seen later. Note that the magnon frequency scales with
the order parameter o", i.e. , the whole spectrum softens
with increasing temperatures and vanishes at the phase
transition.

Now we turn to the evaluation of 0. For arbitrary spin
S the spin expectation value is given by the well-known
relation

+16[Cq+q. (Aq+q. —Bq+q. ) —Cq (Aq —Bq)]
x [Cq (Aq+qo + Bq+qo) Cq+qo (Aq + Bq)]

In Eq. (6) the coefficients

Aq =or(2Jq, —Jq —Jq+q, ) + o(2A", —A * —A"~+ ),
(7a)

(7b)

(7c)
Bq = 0 (Jq+q, —Jq) + cr(A"~+, —A *),
cq =io.A*"

have been introduced. This result, Eq. (6), coincides
with the magnon frequencies derived by the Holstein-
Primakoff transformation when 0. is replaced by S and

I

(S') = S(S+1)—((S')') —(S S').
For S = 1/2 the order parameter can be calculated di-
rectly via the Green functions of Eqs. (2a) and (2b) with
6 = 0 and 00 ——20. For higher spin quantum numbers
the above formula is not so helpful. Then a convenient
starting point is the generalized thermal average

by means of which a self-consistent system of equa-
tions can be derived by the method of Callen. The
above thermal average can be represented by the spectral
theorem '

OO

(e OS S+) = lim —— d(u n((u) —) (G'((u+ ib') —G'(ur —i8))
q

= 8b(n —1/2), (10)

where Eq. (5) has been used in the last step and N de-
notes the total number of spins. Here we have introduced
the Bose occupation number

( 1) (n + 1/2)2s+1 + (n 1/2)2s+1

(n + 1/2)2s+1 (n 1/2)2s+1

(12)

n(ru) = (e' —1)

and

A(1) + C(1)„„
N - 2ee (e +e2)

q

A(1) + C(1)e2 A(1) + C(1)62
'n(e, ) +, n(e2) .

2 (62

The right-hand side of Eq. (11) depends on 0 only via the
occupation numbers n(e;). For spin S = 1/2 and vanish-
ing parameter b the thermal average [Eq. (9)] represents
the number of spin-wave excitations, which reduce the
staggered magnetization &om the totally ordered Neel
state, not only for finite but also for zero temperature.

For arbitrary spin one has to express 0. in terms of n
which can be achieved by the method of Callen with the
result '

Equations (ll) and (12) constitute a self-consistent sys-
tem of equations for n and the spin expectation value
O.

Let us now discuss the dispersion relation for T = 0.
In this limit Eq. (11) reduces to.—A(') + C(')~, ~,

where the right-hand side is independent of o. Let us
denote the spin expectation value at zero temperature
by op ——rr(T = 0) which is found by inserting Eq. (13)
into (12). Knowing harp one obtains, for the staggered
magnetization N(0) at T = 0,

N(0) = gp~Nop (14)

One can convince oneself that Eq. (14) for large S
coincides with the expression derived by the Holstein-
Primakoff transformation (see also Ref. 5). This must
be so because the latter is an expansion in 1/S. In addi-
tion we derive an energy gap (q = 0) from Eq. (6)

Ep = eg(T = 0) = e2(T = 0) = 20p A", —Aq, (Jq, —Jp) —(Ap —A~ ), (15)
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with

HAPP g gent0 — 0 0 qo qo qo'

k T
Na ~ (eie2) 2 (16)

To keep track of the cr dependence we have introduced the
o-independent quantities A(i) = A(i)/as and e' = E /0''.
According to Eq. (16) n increases indefinitely with 0 -+ 0
and thus the second relation between a and n, Eq. (12),
becomes2

S(S+1) 1

3 n'

Combining Eqs. (16) and (17) we obtain an explicit ex-
pression for the Neel temperature:

S(S+ 1)
TN ——

3k
F (18)

with

For purely isotropic antiferromagnets the coefficient F di-
verges, excluding long-range order at finite temperature
in two dimensions in accord with the Hohenberg-Mermin-
Wagner theorem.

In the presence of the dipolar interaction there is an
energy gap and T~ becomes finite. If the dipolar inter-
action is weak in comparison with the exchange energy
(gps) /a «

~
J~ and if the argument of the summation

is approximated by its small g limit, one obtains

This is of the same form as the result from the Holstein-
PrimakoK transformation Eo Ref. 1 except for the pref-
actor which is smaller by the ratio oo/S.

Now we turn to the evaluation of the transition tem-
perature TN, i.e. consider the limit cr —+ 0. Since the
spin-wave energy [Eq. (6)] is proportional to 0 the Bose
occupation numbers can be replaced by their classical
limit:

kgT
n(e, ) -+

Ei

If this is inserted into Eq. (11) together with o -+ 0, one
obtains

TN (»)
ln @.0

which coincides with the analogous formula derived by
the Holstein-Primakoff transformation [Eq. (18) in
Ref. 1]. In the general case the above sum [Eq. (18)]
is evaluated with the full dispersion relation Eq. (6) and
by computing 100 x 100 points in the two-dimensional
(2D) Brillouin zone and determining the other points by
linear extrapolation. The dipole sums have been calcu-
lated via Ewald summation.

Now we apply our theory to real quasi-two-dimensional
antiferromagnets. Prominent examples of almost two-
dimensional antiferromagnets are the tetragonal anti-
ferromagnetic halides K2MnF4, Rb2MnF4, Rb2MnC14,
and (CHsNHs)2MnC14. In these quadratic layer struc-
tures the out-of-plane exchange interaction is negligi-
ble in comparison to the in-plane exchange interaction
(about 10 4),@ io whereas the dipole energy is larger by
an order of magnitude. This two-dimensional character
has been shown experimentally by the absence of any
dispersion along the z direction. For these halides the
ineasured exchange energy

~
J~, the lattice constant a, the

energy gap Eo", the spin-flop field H,'&" ', and the tran-
sition texnperature T~"~ (Refs. 10—12) are listed in Table
I. The spin-flop field H, f is the critical magnetic field at
which the antiferromagnetic Neel ground state changes to
the spin-flop ground state. It can be calculated by adding
to the Hamiltonian, Eq. (1), the Zeeman energy. is From
the full dispersion-relation the spin-flop field H,f is de-
fined by that field for which the magnon energy vanishes,

(20)
QPa

in close analogy to the formula obtained by the Holstein-
Primakoff method [Eq. (11) in Ref. 1]. The table also
contains the theoretical energy gaps Eo and Eo calcu-
lated via Eq. (15) and Eq. (9) of Ref. 1, the resulting
spin-flop fields H, &

and H, r via Eq. (20) and Eq. (11)
of Ref. 1, and the theoretical transition temperature T~
[Eq. (18)]. All these substances have spin S = 5/2,
which yields Rom Eqs. (13) and (12) 0'p = 2.30 for pure
isotropic antiferromagnets. This value is increased only
negligibly by the dipolar interaction as can be seen from
Table I.

TABLE I. Exchange energy ~J~, lattice constant a, energy gap Eo, spin-fiop field H, f, Neel
temperature T~, and zero temperature order parameter op.

KgMnF4
Rb2MnF4
RbqMnC14

(CHq NHq )qMnC14

8.5
7.4'

11.2
9.0'

4.17
4.20g

5.05
5.13'

(K) (A)

Eexpt

(K)

74
73'
7.5'

Ep
(K)

7.1
6.5
6.1
5.3

Ep
(K)

7.6
7.0
6.6
5.7

Hexpt
sf H,f H, g

Texpt
N

Tth
N Op

5.4' 5.3 5.6
4.8 5.1
4.5 4.9
3.9 4.3

42
38~
56
45

41 2.33
36 2.33
48 2.32
39 2.32

(T) (T) (T) (K) (K)

Reference 10.
Reference 15.' Reference 9.
Reference 11.

' Reference 16.
Reference 12.

~ Reference 17.
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E (3D) = E (2D)[1+ O(10 )], (21)

which justices the application of the two-dimensional
model. Note that the nearest-neighbor exchange energy
J is the only parameter entering in our theory. Experi-
mentally this parameter has been derived by Gtting the
measured spin-wave spectrum with a dispersion relation
which is difFerent of ours [Eq. (6)].

For the halides listed in Table I, the energy gap ob-
tained from Eq. (15) and the transition temperature

We fi.nd a good agreement with the measured Neel
temperature although our theory accounts only for the
dipolar interaction and no other anisotropy. Corrections
due to dipolar interactions between different planes are
negligible because of the large lattice constant in the z
direction; e.g. , the energy gap for K2Mn04 [Eq. (15)] is
altered by

are lower than the experimental values. The following
reasons may be responsible for that: (i) In the Holstein-
Primakoff approximation the softening of the magnons is
neglected entirely. This leads to an overestimate of T~.
In the Callen method the magnons soften in the entire
Brillouin zone; thus particularly near the phase transition
the softening is overestimated and leads to a T~ which is
somewhat too low. (ii) A small readjustment of J could
be necessary if our dispersion relation, Eq. (6), is used to
fit the data. (iii) A small additional anisotropy from the
crystal fi.eld might be present as suggested by Ref. 14.
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