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Two-dimensional Fermi plasma in a magnetic field

D. C. Bardos and N. E. Frankel
School of Physics, University of Melbourne, Parkville, Victoria 3052, Australia

(Received 24 June 1993}

%'e investigate the dielectric response of a planar Fermi plasma in the presence of a constant external
magnetic field. The conductivity tensor is derived in the random-phase approximation taking into ac-
count the effects of the spin of the electron. This proper inclusion of spin makes a significant difference
to the results compared with all previous studies, which ignored the intrinsic spin of the electron. In
studying the dispersion relations for the electrodynamic modes of the plasma in an external magnetic
field, it is necessary to observe that the longitudinal and transverse modes are coupled. These coupled
modes are investigated in some detail.

I. INTRODUCTION

The study of two-dimensional and other lower dimen-
sional many-body systems has developed into a field of its
own. These studies have been given new impetus by re-
cent experimental evidence of the role played by planar
structures within bulk samples displaying high-T, super-
conductivity. One of the earliest two-dimensional quan-
tum many-body systems to receive concerted attention
was the two-dimensional electron gas (2DEG). Studies
into the 2DEG, which have by now accumulated a vast
literature, ' were motivated by the development of semi-
conductor crystals and associated technology. At
sufticiently high applied electric fields, charges accumu-
lating at semiconductor inversion layers were found to
behave as if they were restricted to two dimensions, and
could be modeled by the 2DEG. This ready access to ex-
perimental realizations made the 2DEG an ideal many-
body system for theoretical investigation.

The theory of the 2DEG has now become a tool em-
ployed by experimentalists for probing semiconductor
structure. Random-phase approximation (RPA) plasmon
calculations for layered 2DEG structures have been used,
for example, to interpret Raman-scattering data and
hence determine the electronic structure of modulation-
doped GaAs/Al„Ga, „crystals (see Fasol, Richards,
and Ploog ). Previous calculations of the dielectric
response of the Fermi plasma, ' ' while employing Fer-
mi statistics for the plasma constituents, have not incor-
porated the electrodynamic effects of spin into their cal-
culations. In this paper a full study of the Fermi plasma
conductivity is made without neglecting these effects. We
believe that this is the first time spin effects have been in-
cluded in conductivity calculations for either the plasma
layer or the bulk (i.e., three-dimensional) plasma. The
proper inclusion of spin will be seen to make significant
differences to the results. The formalism should also be
applied to the three-dimensional plasma; however, this
paper deals solely with the two-dimensional plasma.

In Sec. II the conductivity tensor for the planar Fermi
plasma is derived in the self-consistent random-phase ap-
proximation, using techniques introduced by Harris. In

Sec. III the tensor is evaluated for a uniform external
magnetic field. The zero-temperature conducti. vity tensor
is discussed, and evaluated for high magnetic fields in
terms of Kummer hypergeometric functions. In Sec. IV,
the results of Sec. III and the dispersion relation for plas-
ma layers, written in terms of conductivity com-
ponents, ' are combined to yield the dispersion relation
for the modes of the planar T=0 Fermi plasma. These
modes are then investigated in detail for the case of a
strong applied magnetic field.

II. CONDUCTIVITY DERIVATION

A= Ao+ A& I=CO+

where Ao and +Dare the external potentials, and A, and

4, are small perturbations due to the response of the
plasma. The second quantized Hamiltonian for a spin —,

'

charged Fermi field restricted to two dimensions in the
presence of an electromagnetic field is written

H= fd r4'&4, (2)

where the single-particle Hamiltonian gf is that of the
Schrodinger-Pauli equation

2

p ——A +el — tr (VX A), (3)
e eA

c 2pc2p

where p is the Fermion mass and a. is the Pauli spin
operator. The Schrodinger-Pauli current operator is also
required:

J(r, t) = [4 V4 —( V%' )%' j
— 'p O' A

2pE pc

+ VX(4 crt) .
2p

(4)

We now sketch the derivation of the conductivity ten-
sor 0. for the two-dimensional Fermi plasma in the RPA.
The formal development is similar to the approach of
Harris. It is assumed that the response of the system is
such that the perturbations to the external fields are small
enough to be treated linearly. We write
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In the above, 4 is the second quantized Fermi field opera-
tor;

p, S

where b, (t) is the fermion annihilation operator for the
state p, s. The wave functions g, (r) are the fermion
eigenstates of the unperturbed Hamiltonian:

2
1 e eA&0= p ——Ao +e40 — o"(VX Ao) .

2p c ac

An ensemble-averaging procedure is employed, similar to
that previously used in relativistic conductivity' and po-
larization' calculations, leading to an expression for the
Fourier-transformed current in terms of the electric field
E:

J(q, co)= g o.(q, k, co) E(k, co),
k

from which the conductivity tensor may be obtained:

ie + F(p', s') —F(p, s)
. co (Ep—, Ep. , —)/Pi+i ri

$7$

(p's'Ie '~'
p

——q
——Ao Isp)

2 c
s

+-,'(&p's'Ie 'q'pXitrIsp)+&psIe'q'pXto Is'p')') '

T

X (ps Ie'"'Is'p') + ( psIe'"'icJ XkIs'p') + (psIe'"' p
——Ao Is'p') I z-

2Pco PN c

+ QF(p, s)(psIe'" q"Isp) I (8)

In the above, F(p, s) denotes the equilibrium distribution
function for the noninteracting Fermi gas. The usual
two-dimensional matrix elements are employed:

(p, sIOIp', s')= J d rgpsOQ ~, . (9)

The tensor (8) is valid for all temperatures and applied
electromagnetic fields, the effects of which enter through
the distribution functions and matrix elements, respec-
tively. The conductivity tensor for the three-dimensional
plasma can be obtained from the above result with the
substitution of L for L, and appropriate interpretation
of the matrix elements. The conductivity tensor (8)
differs from previous results ' ' due to the correct in-
corporation of spin terms in the current (4) and Hamil-
tonian (3) operators.

III. TENSOR EVALUATION

We now evaluate the conductivity tensor (8) for the
case of a uniform magnetic field perpendicular to the
plane. In order to calculate the matrix elements appear-
ing in this expression, we require the stationary eigen-
states of the single-particle Hamiltonian:

ikx —
& /2)( + )

1V„= 1

+2"n!L

n =0, 1,2. . .

' 1/4

are the usual Landau wave functions and normalizations,
with the notation

Pc

IeI8
N

pc
Ack„

e83'p =

(12)

Note that the values of k„[=(2m/L)Xinteger] are re-
stricted to the range

Pp, s —=Wnk, s =+n4'n, Xs
pcs L pcs L

2A' "
2A

&k„& (13)

where y, is the Pauli spinor (s = I,s = —1 denotes spin
up, spin down), and

in order to ensure that the center of gyration lies within
the box of length L. The energy is degenerate in k, with
eigen values
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ps ns

n +—,
' — s Ace, ,

sgn(e)
(14)

where sgn(e)=+1 is the sign of the charge. The matrix
elements necessary for evaluating the conductivity may
be calculated using methods similar to those of found in
the Bose case, ' with some additional complication due
to the spin operators. The results are

—(rs/is~ )](1/4)(q +q )+isgn(e)[q k (1/ )q„qy ] ] nF (
i
)fi(psle' 'ls'p') =~ ~k', k —q„

fg e t i —(11/yea )] ( 1/4)(q +q ) i sg—n(e)[q k„—( 1 /2)q„q ] j

x' x x

I I r

&psle' 'Is'p'), , + (pie'q" p ——A lp') I
q PCO C q'

—(S/pro )((1/4)(q +q )+isgn(e)[q k„—(1/2)q„q ]j
k', k —

q

—(A/ co )I(1/4)( + )—i $ n(e)[ k —(1/2) ]I(p' sl e'q'pXio lsp) +(psel' q'pXicrls'p')*=5k,
k

e ' " ' ' " " ' M3(q)s5. .
x x x

—(A'/pro, )I(1/4)(q„+q )+i sgn(e)[q k —(1/2)q„q ]I
k„,k„ —

q„

where the functions M)(q), M2(q') and "F (q) have been defined in Eqs. (14) and (15) of the preceding paper, "and the
following further definitions have been employed:

' 1/2
Apco

[&n " 'F*(q)+&m "F,(q)

—'(/n +1"+'F'(q)—&m +1"F'+, (q) jM3(q}=
—i fiq„"F' (q)

i "F (q')—q'
M4(q ) '"F

( ')mq qx

Using these matrix elements, the conductivity tensor becomes

ie + F(m, s') F(n,s)—
cr q, q';co =

pL 21)1 „co (E„, E,, )
—I%+i—ri

k, kx x
s, s'

M, (q)+ —M3(q) M2(q')+ — M4(q')
s s

—(1/q )I(2q +q +q )/4+i sgn(e)[k (q —
q )+(q /2)(q —

q )]I

+ g F(n, s)L„
PL nkx, s

(qy
—

qy
)'

2qB qi2

Xe
—(1/q )I(1/4)(q —

q ) + 'sgn(e)(q —
q )k

v (17)

where we have made explicit the independence of the distribution function F(p, s} from k„. This independence results
from the k degeneracy of the eigenstates g„k, due to the spatial uniformity of the magnetic field. The sums over k'

and s' collapse, while the k, sum yields

—i ( g (e)s/qn& )(q —q )k„L 1 e / —i(sgn(e)/q& )(q —
q )k„

e B y y x dx e =g—@co L/2' , q
x

where g denotes Landau degeneracy

pcs L



49 TWO-DIMENSIONAL FERMI PLASMA IN A MAGNETIC FIELD

and the restriction on the allowed range of values for k, has been used. Thus the tensor may be written in the form
(consistent with the plasma's rotational symmetry)

o(q, q', co) =o (q, co)5

ie ~c —(q /2q&) F(m, s) —F(n, s)
co —(E„, E—, )/Pi+i ri

(20)

X M, (q)+ —M~(q) Mz(q)+ — M4(q) + I—
2 2 pN pN q

where the number density p=(N/L ) has been intro-
duced. This expression for the conductivity tensor is val-
id for all magnetic-field strengths and temperatures, and
differs substantially from tensors derived by previous au-
thors. In particular, many terms in this expression (all
those proportional to s) are due to the inclusion of spin
operators in the current and Hamiltonian operators used
to derive the tensor. These terms were neglected by pre-
vious authors either through the use of incomplete opera-
tors in RPA treatments (e.g., Harris and Chiu and
Quinn ) or through expressly longitudinal treatments us-

ing the Green's-function approach (e.g., Horing and Yil-
diz, and Glasser' ).

N —g (2nf —1)

2g

n =0,f

nf%0

with the restriction

0&g'~1

N= g F(n, s)
n, k„,s

=g QF(n, s)
n, s

yields the occupation fraction

(23)

(24)

(25)

Zero-temperature conductivity components

E„) Ef &E„ (21)

where nf is the highest occupied Landau level. The
T =0 distribution function is

1, (n, s) E I( ~nnf 1, l), (n (nf —1, —1)—I
F(n, s)= g', (n, s)G I(n& —1, —1),(n&, 1)I

0, (n, s)C [(n )nf, 1),(n nf, —1)),
(22)

which reflects the energy degeneracy of apposing spin-
states in adjacent Landau levels (i.e., E„i=E„, i).
The factor g' is the accupation fraction for the highest
occupied energy levels. These levels possess a full com-
plement of degenerate states, but obviously not all such
states can be filled except at particular magnetic-field
strengths where the number of fermions is an odd multi-
ple of the Landau degeneracy g. If the total number of
fermions is N, then the requirement

%e now investigate the components of the tensor at
zero temperature, with particular attention to the spin
terms. %e take q =0 for consistency with previous pa-
pers ' and for expediency when the components are ap-
plied to the dispersion relation in Sec. IV. For the
remainder of the paper, we take sgn(e) =1.

In contrast to the three-dimensional case, there is no
continuum of energy levels for each Landau level. As a
consequence, the Fermi energy Ef is defined by the in-
equality

to ensure consistency with the definition of nf.
We now investigate expression (20) for the conductivity

tensor, using the zero-temperature distribution func-
tion (22}. We first consider terms proportional either to
M, (q)(s/2)(A'/@co)M~(q) or (s/2)M3(q)M2(q). Only the
two highest Landau levels nf and nf 1 can con—tribute to
these terms. For each lower level, the opposing spin
states cancel each other due to the appearance of the spin
label s in these terms. The contribution of the upper lev-
els depends on g', which oscillates as a function of the
magnetic-field strength 8. If the field is such that g'=1,
the opposing spin states in level nf —1 cancel completely,
so the only contribution is from the (nf, 1}states. If the
8 field then increases, the occupation fraction g' will de-
crease, leading to incomplete cancellation in the nf —1

level, and decreasing contribution from the (nf, 1 ) states.
Further increase of the field strength results in g' return-
ing to 1, while nf decreases by 1. So without evaluating
these terms in detail, it is clear that their sum will oscil-
late as a function of the field as the dominant contribu-
tion shifts back and forth between the nf and nf —1 Lan-
dau levels.

For small magnetic fields, the number of filled levels is
large, and the degeneracy factor small. Consequently the
"ripples on the Fermi sea" described above are of negligi-
ble magnitude, and indeed these contributions vanish en-
tirely as 8~0. Thus, in the small Geld case, the only
contribution to the tensor from the spin terms must be
from the 4 (A'/pc@)M3(q)M4(q) term. Inspecting the
definitions of M3 and M4 it is clear that when q =0, only
the o.„component of the tensor contains contributions
from the spin terms as 8~0. This observation is con-
sistent with the zero-field results for the conductivity
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components. '

For large field strengths, where the number of Landau
levels is small and the degeneracy factor large, the "rip-
ples" become larger in magnitude, untiI a critical field

strength 8, is reached, above which only the spin-up
states are occupied (i.e., all fermions are in the lowest
Landau level, with spin-up). At the critical field strength,
the Landau degeneracy g must equal the number of fer-
mions, yielding the value

2mkcp
(26)

This can be expressed in terms of our scaled parameters
as

1
&c=2 P ~

Qq
(27)

where a, is the fine-structure constant. We now evaluate
the tensor in the region B )B„which has the advantage
of simplifying the calculations, while also highlighting
the electrodynamic spin effects which we are interested
in. In this high-8 field region, the statistical differences
between the Fermi and Bose plasmas have in effect been
suppressed. Thus in order to assess the effect of the spin
terms in the B )B, region, we need only compare the re-
sults for the Fermi plasma with the corresponding results
for the Bose plasma. '

Considering the expression (20) for the conductivity
tensor, we immediately take the limit g~O, with the con-
dition that co/mco„where m is an integer. Applying the
definitions (16) of Mi and M4 (see preceding paper' for
M„Mz), the zero-temperature temperature distribution
function (22) and the Kummer function formulas, ' we
can write the components of the conductivity tensor for
B )B, in terms of the Kummer functions:

IV. DISPERSION RELATIONS

We now use the results of previous sections to investi-
gate the modes of electrodynamic oscillation for the pla-
nar magnetized Fermi plasma, with particular attention
to the zero-temperature B )B, case. Plasma oscillations
must satisfy the dispersion relation '

io„(q,co)—pc
2&6)

io~ (q, co)+ CO

2mP

+o„(q,m)cr „(q,co) =0 . (29)

where we have used the notation x = co /co, and
z =q /2qz for the scaled frequency and wave number
squared. Comparing these results with the corresponding
Bose results, ' we note that the "longitudinal" corn-
ponent O.

yy
is unaffected by the spin terms, while o.

o. , and o. are significantly simpler than the corre-
sponding Bose components. We also note that for
B &B„cr~~(q,co„)=o,„(q,co„), which is not the case for
the Bose plasma. Examination of the structure of the
Bose and Fermi conductivity tensors reveals that the
difference between them, due to spin, is of order
z(=A'q /2@co, ), which is the natural wave-number pa-
rameter of the magnetized plasma. Thus any physical
properties of the system which depend on 0., or cr „at
wave numbers where first- or higher-order terms in z are
required will be materially affected by the correct in-
clusion of spin.

a &a, i pe 4(1, 1 —x, —z) —4(1,1+x,—z)

2pN Z

a &a, ipe2 4(1, 1 —x, —z) —C&(1, 1+x, —z)
o „„'(q,co„)=

2pN z
B)B

cr „'(q,co„)

pe 4(1, 1 —x, —z)+4(1,1+x,—z) 2

2pcoc Z Z

B)8,= —o „'(q,co„),

(28)

where the conductivity tensor and the plasmon frequency
co(q) may in general have both real and imaginary parts.
In order to decouple the dispersion relation into separate
equations for the real and imaginary parts of the plasmon
frequency, it is useful to employ the small damping ap-
proximation. The imaginary part of the solution co(q) to
the dispersion relation is called the damping constant,
denoted by y. If we assume that y, Re[o„„],Re[cr ],
Im[cr„], and Im[cr ] are small, then the real part co„of
the plasmon frequency is the solution of

—Im[o (q, co„)]+ +Re[o„(q,co„)]Re[cd „(q,co„)]=0 .
2m@,

From the form of the conductivity tensor (20) it is clear that Re[o. ]=Re[cr„]=Im[o„]=Im[o. ]=0 for any tem-
perature and magnetic field, provided x %integer. Consequently the weak damping approximation is appropriate, and
indeed it can be shown that the plasmons are undamped (i.e., y =0). In view of the complexity of the conductivity ten-
sor, it is clear that even at zero temperature, extensive numerical work is required in order to investigate the dispersion
relation over the full range of magnetic-field strengths, densities, and wave numbers. By way of an initial investigation,
we choose to concentrate on the 8 )8, case, which is particularly useful because it is analytically tractable and affords
an interesting comparison with the dispersion relation of the magnetized Bose plasma.
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Zero-temperature, B & B, dispersion relation

Substituting the zero-temperature conductivity components for 8 &8, and xWinteger displayed in Eq. (28) into the
dispersion relation (30) yields the following:

4(1,1+x,—z) —4(1, 1 —x, —z) V z —yx~
z ABC

4(1,1+x, —z) —4(1, 1 —x, —z) I x
~ &z —yx

4(1, 1 —x, —z)+4(1,1+x,—z) 2 =0, xnan,
z z

(31)

2@co,
t = —Im[o

yy ]
pe

2pco
t„„=—Im[o „„]

pe

ANt, =Re[o „]
P8

(32)

we now investigate solutions of the "transverse branch"

Vz —yx
XX (33)

near the light cone for the Fermi plasma. Neglecting all
but the first term in the Landau series for t„„yields

t „-2xe 1
(34)

1 —x

which is somewhat different from the corresponding Bose
result. ' Nevertheless, if we consider the nth Bernstein
mode (i.e., x -n ) and note that x -q/2y in the vicinity
of the light cone, then q -2ng. Now y « 1 for laborato-
ry scale field strengths, and consequently, if n is not ex-
tremely large, z «1. Thus terms of order z in t can be
neglected, yielding

where the scaled density A=np, e qa '/&2pca, nd scaled
field strength y=fico, /2pc have been introduced.

This dispersion relation is formally less cumbersome
than the corresponding Bose dispersion relation" as a re-
sult of the simpler expressions for the conductivity com-
ponents in the Fermi case.

As discussed previously, ' the form of the two-
dimensional plasrnon dispersion relation is such that for
laboratory scale magnetic fields, the degree of
longitudinal-transverse coupling is controlled by the
proximity of the dispersion relation to the light cone.
Adopting the notation

culated using the full dispersion relation) is shown in Fig.
1. This coincides, in the region shown, almost exactly
with the solution of the transverse branch, which can be
expressed as a cubic' in x if terms of order z or higher
are neglected. The numerical results for the Fermi
plasmon spectrum displayed in Fig. 1 are different than
the corresponding Bose results due to the spin effects.
However, the differences, which are of order z, are too
small to be resolved graphically because z is extremely
small in the transverse region.

Approximately transverse oscillations can also occur at
frequencies above x = 1 if x is close enough to one of the
higher resonances. For x-n only the resonance term
and the first term in the Landau sum for t„need be re-
tained

t „=2xe
n —1

1 —x (n —1)!(n —x )
(36)

This has a simpler structure than the corresponding Bose
result however, they are the same to leading order in
small quantities (z and n x) —Thus,. as in the Bose
case, the n &1 Bernstein modes terminate at the light
cone slightly below x =n. The cutoff frequency for each
mode, denoted x„'",is given' by

2
- 1/2

x min
1

(n 1 )(Xn
(37)

n (n —1)!

which applies for both the Bose and Fermi quantum plas-
mas (neglecting extremely small differences due to the

2x
1 —x

(35)

which is identical to the Bose result to this order, and
leads to the same dispersion relation. ' We And nurneri-
cally that this dispersion relation is a very good approxi-
mation to the exact equation (31) in the region below
x =1, except in the immediate vicinity of the resonance.
Thus the magnetized plasma supports essentially trans-
verse oscillations (with a small longitudinal component)
for frequencies slightly less than co, and below. A typical
example of a plasmon dispersion curve in this region (cal-

—71x 10
—71.05x10

—71.1x10

FIG. 1. Large-B dispersion relation (smooth curve) in the
transverse region, shown with the light cone x =q/2g (dashed
line). Parameter values are y=5X10, p=10
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differences in o„,). The frequency range of each Bern-
stein mode below x =n, i.e., n —x„'",differs in the quan-
tum case discussed here from the result of Chiu and
Quinn for the semiclassical plasma. This is due to
different structure of the small wave-number expansions
of the semiclassical and quantum conductivity tensors.
The modes are essentially transverse very near the cutoff,
but rapidly deviate from the light cone and become
strongly coupled, cross over the resonance, and become
more longitudinal with increasing wave number.

We have shown previously' that the unmagnetized
two-dimensional Fermi plasma does not support trans-
verse plasmons. As an aside, we note that Gudmundsson,
Toyoda, and Takahashi' have discussed transverse
plasmons in zero-P plasma layers. However, their disper-
sion relation was derived in the limit of large layer thick-
ness and is therefore relevant to anisotropic bulk plasmas
rather than two-dimensional plasmas. In the zero thick-
ness limit under consideration here, no transverse
plasmons were found. '

Thus the existence of transverse modes in the magnet-
ized plasma is an interesting result. For x & 1 the trans-
verse solution is "pinned" very tightly to the light cone,
and remains so for a much larger range of frequencies
than the longitudinal mode near the light cone in the un-

magnetized plasma. Physically, the tendency of the unre-
stricted (i.e., three-dimensional) plasma to support plas-
ma oscillations at approximately the Larmor frequency at
large field strengths is in conAict with the retardation
effect due to the clamping of the two-dimensional plasma
in the z direction. This results in the "clinging" of the
dispersion curve more tightly to the light cone with in-

creasing field strength.
The deviation of the plasmon curve in Fig. 1 from the

light cone near x =1 signals the onset of a rapid increase
in the longitudinal component of the plasma oscillation,
which is negligible in Fig. 1 but becomes significant closer
to x =1. The strongly coupled region is shown in Fig. 2,
where a numerical solution of the full coupled dispersion

relation is displayed. The dispersion curve crosses over
the resonance and becomes increasingly longitudinal with
larger wave numbers. We have plotted the coupled
dispersion relation against the small wave-number nonre-
tarded solution x =1+(pq/4g ) of the longitudinal
branch. This was originally derived by Horing and Yil-
diz, and is identical to the n =1 Bose result' because
0

yy
is identical for the Bose and Fermi plasmas when

B )B,.
We note that in their study of dispersion in the semi-

classical electron plasma, Chiu and Quinn derived a
quadratic equation in the retardation factor P by neglect-
ing all but the first term in the Landau summations in the
coupled dispersion relation. This leads to an explicit
solution for /3 as a function of co, which can then be rear-

ranged as a solution for the wave number q as a function
of co. This solution is also appropriate for the quantum
plasmas since the approximation involves only the lead-

ing term in the small wave-number expansion of the con-
ductivity tensors. For x & 1 this solution approaches the
transverse solution discussed earlier, while for x & 1 the
solution becomes approximately longitudinal. Chiu and
Quinn did not, however, discuss the physical nature of
this solution in the various regions. Their graph (Fig. 1,
Chiu and Quinn ) of the solution incorrectly indicates
that the dispersion relation lies close to the light cone in

the region 1 &x &2. In fact the solution is far below the
light cone in that region.

We now investigate the dispersion relation for wave
numbers large enough that the plasmons are almost corn-

pletely longitudinal. In Fig. 3 we display the lowest three
Bernstein mode solutions to the full dispersion relation
(31) for y=10 and p= 10 ' . For an electron plasma
these parameters correspond to a magnetic-field strength
of 8. 8 X 10 G and an electron number density of
1.5 X 10'~ cm . The critical field strength [see Eq. (26)]
at this density is 6.0X10 G.

It is clear from Fig. 3 that the plasmon dispersion
curve for the magnetized plasma is composed of an
infinite number of distinct modes, each of which occupies
a frequency domain of size co, . In the case of the lowest

(or fundamental) mode, the dispersion curve extends for a
further co, down to zero frequency; however, it has al-

—6

0.00002 0. 00004 0.00006 0.00008 0.0001

FIG. 2. Large-8 dispersion (smooth line) in the strong-

coupling region, compared with the nonretarded longitudinal
approximation: x =1+(pq/4g ) (dashed line). As in Fig. 1,
the parameters are: y=5X10 ', p=10

FIG. 3. Solutions of the full dispersion relation (31) in the re-

gion where the plasmons are approximately longitudinal. The

field strength and density parameters are y =10, p = 10
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ready been shown that the 0 &x & 1 region is essentially a
transverse mode. In this field strength regime it is mean-
ingful to speak of a "principal plasmon mode, " valid for
all frequencies not too close to integers n & I; however,
this "principal mode" actually consists of segments from
each of the Bernstein modes. Although many terms in the
Landau series appearing in the conductivity tensor must
be retained to describe the higher Bernstein modes near
the resonances, the first term provides a useful approxi-
mation of the spectrum even in the higher frequency re-
gion, provided x is not close to an integer.

In Fig. 4 the three lowest Bernstein modes are plotted
for the same density, but the field strength has been in-
creased by a factor of 5. The qualitative structure of the
modes has changed drastically. Large gaps in the
plasmon frequency spectrum have appeared. The Bern-
stein mode associated with each resonance lies close to
the resonance at small q, and rises to a maximum fre-
quency as q increases before slowly falling back to the
resonance with increasing wave number. No plasmons
can propagate at frequencies between the maximum and
the next-highest resonance. At this field strength the no-
tion of a "principal mode" is no longer applicable be-
cause the discrete character of the Bernstein modes has
been asserted, destroying the simple connection between
the dispersion in different cyclotron frequency domains
which exists at lower field strengths. The results of Fig. 4
are directly comparable with those for the Bose plasma
(see the modes in Fig. 3 in the preceding paper, ' which
were calculated for the same field strength). We find that
the difference between the Bose and Fermi results is nu-
merically very small, despite the significant differences in
the respective conductivity tensors due to spin effects in
the Fermi plasma. This is because the dispersion relation
at the wave numbers displayed is dominated by the longi-
tudinal branch, which is identical for both cases.

Finally, in Fig. 5 the field strength has been increased
further still. Plasmons can propagate only at frequencies
in narrow bands above the cyclotron resonances. The ap-
plied magnetic field now totally dominates the physics of
collective modes in the plasma.

0.001

FIG. 4. Solutions of the full dispersion relation (31) in the ap-
proximately longitudinal region reveal large gaps in the
plasmon frequency spectrum at high field strengths. The field
strength here is y=5X10, a fivefold increase on Fig. 3. The
density remains the same: p = 10

2. 5

1.5

0.0005 0.001 0.0015

FIG. 5. Here the field strength has been increased from that
in Fig. 4 by a further factor of 4 (y=2X 10 '), resulting in cor-
respondingly larger gaps in the plasmon spectrum. The density
remains at p=10

V. DISCUSSION

In a previous study of the magnetized plasma layer,
Horing and Yildiz examined plasmon dispersion and
static screening properties. The plasmons were assumed
to be purely longitudinal (i.e., the coupling was neglected)
and retardation effects were ignored. In our study of the
quantum plasma layers, we have investigated wave-
number regions in which retardation and coupling cannot
be neglected (where the plasmons contain a strong trans-
verse component), and also the shorter wavelength re-
gimes where the longitudinal nonretarded treatment ap-
proximates the complete treatment to high accuracy. Be-
fore comparing our results with those of Horing and Yil-
diz for the latter "longitudinal region, " the validity of
neglecting retardation and coupling in the context of
realizable plasma layers is examined.

We consider an electron layer of density p=10 ', i.e.,
p=1.5X10' cm . In the absence of an applied mag-
netic field, the wave-number region where retardation is
important is scaled by the density. In this case the
dispersion relation, obtained by Stern, crosses over from
the light cone co=q to co=+pq at approximately q =P.
In the present example, this means q =10 ', or a physi-
cal wave number of q-2. 6 cm '. Thus the plasmon
wavelength is in the centimeter range. By contrast,
plasmon experiments are carried out at wave numbers of
order 10 cm ', where retardation is obviously negligible.
In the case of a strong applied magnetic field, however,
the retardation region is scaled by the cyclotron frequen-
cy. The crossover from the light cone into the strongly
coupled region occurs around x =1, i.e., q-~, /c, or in
scaled variables q -2g. We now make use of numerical
results for a field strength of 4.4X 10 G (i.e.,
y=5X10 7). The results displayed for the Bose plas-
ma' are indistinguishable graphically from equivalent
Fermi results in the strong-coupling region, which are
not displayed for this particular field strength. This simi-
larity occurs because the parameter z is very sma11 at the
relevant wavelengths (i.e., in the strong-coupling region),
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with the result that corrections due to spin are extremely
small in this region. The plasmon mode crosses below
the cyclotron frequency (signaling the dominance of the
transverse branch) for q ( 1.4 X 10, corresponding to
wave numbers q (0.36 X 10 cm ', which are in the
range accessible to experiments, subject to the availability
of sufficiently strong fields. At slightly larger wave num-
bers (e.g. , q=2X10, i.e., q =0.52X10 cm '), the
plasmon frequency co is greater than cu„but the
difference ~—co, is roughly half that obtained by neglect-
ing coupling and retardation, indicating that in this re-
gion the plasmons have substantial transverse com-
ponents.

An interesting feature of the coupled dispersion rela-
tion (29) is the role played by retardation eff'ects in con-
trolling the importance of the transverse branch. As the
plasmon dispersion curve approaches the light cone the
plasmons become increasingly transverse, in contrast to
the unmagnetized plasma, where no transverse plasmons
occur either in the retardation region or at higher wave
numbers. In many previous studies "" of the magnet-
ized plasma layer, retardation and coupling have been
neglected, despite the early work of Chiu and Quinn in
which the full coupled dispersion relation, written in
terms of the conductivity tensor, was presented.

At larger wave numbers or weaker field strengths than
those discussed above, the plasmons become increasingly
longitudinal. By expanding the longitudinal polarizabili-
ty (i.e., g» ) for small values of the parameter
z =fiq /2pco, (i.e., a small wave-number expansion valid
for intermediate or high fields), Horing and Yildiz de-
rived the following dispersion relation:

2= 2+2~e pq
C (38)

p
In the above equation p is a simple number density only
when 8 & B,. When 8 &B„p exhibits de Haas —van Al-

phen oscillations. In our scaled notation the dispersion
relation (38) can be written as x =1+(pq/4y ) for
B )B,. This formula approximately describes the
dispersion curves in Fig. 3 except near the resonances at
integer values of x. Thus Eq. (38) can be regarded as an
approximation to the "principal mode" which is in fact
constructed from segments of the various Bernstein
modes.

The discussion refers to a crossover of the principal
mode and the n =2 Bernstein mode at x =2, where they
"strongly interact. " This is meaningless in the sense that
the principal mode is composed of the Bernstein modes
and cannot interact with them. The fundamental
plasmon mode (i.e., the n =1 Bernstein mode) cannot
cross over x =2.

At higher field strength (see Figs. 4 and 5), formula (38)
no longer provides a useful approximate description of
the modes in the higher frequency regions, because the
"principal mode" has broken up due to the stronger
inAuence of the cyclotron resonances. The fundamental
mode turns away drastically from (38) well below the res-
onance at x =2. Higher-order terms in the expansion are
required to reproduce this behavior. Similarly, many
terms in the Landau summations appearing in the disper-

sion relation must be retained to adequately describe the
higher Bernstein modes.

In the 8 —+0 limit, the dispersion relation (38) yields
the correct zero-B Stern result for the nonretarded re-
gion, as noted in Horing and Yildiz. " However, we ar-
gue below that the small-B corrections to the plasmon
frequency given by the formula (38), which are of order
8, are incorrect. Although we have not presented a
B~0 analysis for the Fermi plasma, we note that in the
Bose plasma the leading-order small-B corrections were
of order B. We would expect this to carry over to the
Fermi case because the leading-order magnetic-field
corrections in the Bose case depended only on the longi-
tudinal part of the dispersion relation, and consequently
would be unaffected by the spin terms in the Fermi con-
ductivity. The wave-number and density structure of the
magnetic-field corrections would be expected to be
different due to the large number of Landau levels occu-
pied, as dictated by the Fermi statistics; but we would not
expect the linear term present in the Bose expansion to
vanish in the Fermi case. In the Fermi case there will of
course be de Haas —van Alphen oscillatory terms, but
they will be exponentially small as B~0. The result of
Horing and Yildiz cannot be applied for small B, because
it is inconsistent with their use of A'q /2m', as the ex-
pansion parameter, which implies a small wave-number,
large-8 expansion. The expansion we have employed in
the Bose case is in the first instance a small-B expansion,
with full wave number and density dependence carried in
the coefficients. Small wave-number expansions of the
coefficients are carried out later. The expansion has been
shown to be self-consistent for the various regions dis-
cussed.

In Horing, Orman, and Yildiz, expressions for the
conductivity components are given in an integral repre-
sentation, having been derived in the RPA using
Green's-function techniques. In a later paper, ' these ex-
pressions are evaluated explicitly for the high-field case
(where only the lowest Landau level is occupied) in terms
of incomplete gamma functions. Although the details of
the Green's-function procedure were not presented, we
note that the cross terms were given in terms of the
"longitudinal" component 0 as (using our notation)

20, = — (q e~)
& Bq

oyx

Applying this formula to our expression (28) for the o.
yy

component in the Fermi plasma with B )B„we find that
the result agrees with the o. component for the Bose
plasma. ' This is precisely our result for the Fermi plas-
ma if the spin terms are neglected. Thus we conclude
that the electromagnetic effects of spin were neglected in
the Green's-function treatment. ' This omission is par-
ticularly serious in the latter paper, ' where strong-field
(i.e., B )8, ) results are presented. In the final results of
that paper, in addition to the relation (39) above, a fur-
ther relation connecting the "transverse" component o.

with the "longitudinal" component o. is quoted
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tr = + 1+ +q (q try')
tpe 1 t) 2 t)

IMto x' t)q' t)(q')'
(40)

Application of this relation to our expression for oyy
yields the corresponding Bose result for o. „ indicating
again that spin has been neglected and that Eq. (40) is in-
correct in the Fermi case. When spin is correctly incor-
porated into the conductivity treatment, the relation (40)
above is replaced with the remarkably simple result

B&B B&B
0 xx &yy (41)

The inclusion of spin in the conductivity derivation, at
the expense of a somewhat more complicated formalism,
leads to significantly different conductivity components.
In the 8 )8, case for which the tensor has been explicit-
ly evaluated, a considerable simplification of the results
for o. , cr, and 0. is found. This leads to a less
cumbersome dispersion relation (31) than is obtained if
spin is neglected.

Despite the drastic effect on the structure of the disper-
sion relation, we find that the inclusion of spin does not
significantly affect the plasmon dispersion in the plasma
layer. This is a result of the nature of the spin correc-
tions to the conductivity tensor and the structure of the
coupled dispersion relation. The 0.„„,~y„, and 0.

+y com-
ponents contain terms due to spin, which are of order z,
while the "longitudinal" component cryy contains no spin
terms. In the low wave-number regions where transverse
effects are important in the dispersion relation, the pa-
rameter z is extremely small and, as a result, so also are
the spin corrections. At larger wavelengths where the
spin corrections to these components are significant, the
dispersion relation is dominated by the longitudinal
branch (involving o~~ ), and again the effect of spin on the
dispersion relation, though readily apparent numerically,

20 ay
4mi co cr„„+ 2g 2 (42)

This dispersion relation describes the so-called "extraor-
dinary waves, " which contain both longitudinal and
transverse components. Unlike the two-dimensional
case, however, there is no retardation effect and conse-
quently no reason to expect any restriction of transverse
effects to small wave numbers. This reflects the fact that
in the unmagnetized three-dimensional plasma, both
transverse and longitudinal plasmon modes are found, in
contrast to the unmagnetized two-dimensional plasma
where only longitudinal modes occur. Thus the investi-
gation of spin effects in bulk plasmas, requiring the evalu-
ation of Eq. (8) using three-dimensional matrix elements,
would be of considerable interest.

is very small. The structure of the conductivity tensor
for 8 (B„and the influence of the spin terms on the
dispersion relation in that region, where de Haas —van
Alphen oscillations occur, remain important topics for
further investigation. It is clear that extensive numerical
work is required to investigate the large range of field
strengths and densities of interest. For this purpose the
integral representation developed by Glasser, ' which
isolates the Bernstein singularities from temperature and
magnetic-field dependencies, could prove useful if applied
to the complete conductivity tensor displayed in Eq. (20).

As was noted in Sec. I, the formalism developed here
for the inclusion of spin in the conductivity tensor, sum-
marized by Eq. (8), should be applied in the bulk plasma
as well as the plasma layer investigated here. In the
three-dimensional case, plasmon modes propagating per-
pendicular to the applied magnetic field, with associated
electric fields also perpendicular to the 8 field, must satis-
fy the dispersion relation' '
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