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We investigate the dielectric response of a planar Bose plasma in the presence of a constant external
magnetic field. The conductivity tensor is derived in the self-consistent random-phase approximation.
The tensor components are evaluated at zero temperature, leading to explicit dispersion relations for the
electrodynamic modes of the plasma. For plasma layers, longitudinal and transverse modes are in gen-
eral coupled. These coupled modes are investigated in detail.

I. INTRODUCTION

Lower dimensional many-body systems have attracted
a great deal of recent interest, particularly in the context
of high-T, superconductivity,1 which remains one of the
major unsolved problems of contemporary physics. The
charged Bose gas (CBG) played a central role in the de-
velopment of a satisfactory theory of conventional super-
conductivity. In a series of seminal papers, Schafroth?
demonstrated the ability of the three-dimensional CBG to
display the Meissner effect. This work was later extended
to the two-dimensional CBG by May,* who found that
although the two-dimensional CBG did not display a
“perfect” Meissner effect, at sufficiently low temperature
the system developed an extremely large diamagnetism
which amounted to an “imperfect” Meissner effect. May
later extended this work to d dimensions.* An excellent
historical account of these developments can be found in
Blatt.>

Current experimental research into high-7, supercon-
ductivity indicates that two-dimensional regions within
bulk superconducting structures are responsible for the
effect. While the two-dimensional CBG may serve as a
model for superconductivity, it also constitutes a funda-
mental many-body problem and is of major interest in
this context.

Research into the dielectric properties of two-
dimensional quantum plasmas was initiated in a 1967 pa-
per by Stern® on the dielectric response of the two-
dimensional Fermi plasma with zero external magnetic
field. Chiu and Quinn’ extended this work to include a
constant external magnetic field. Fetter considered a hy-
drodynamic model of the planar electron gas, 8 which was
then generalized to a multiple-layer system, advanced as
a model for graphite.® This early work has led to an ex-
plosion of interest in lower dimensional many-body sys-
tems, which are by now literally a field of their own. ' !!
The two-dimensional Bose plasma has been studied by
Hines and Frankel’? in the zero-magnetic-field case.
Plasmon dispersion, charge screening, and thermodynam-
ic functions near T =0 were investigated.

In the present paper, the case of a nonzero external
magnetic field is considered. In Sec. II the conductivity
tensor is derived in the self-consistent random-phase ap-
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proximation (RPA), using techniques introduced by
Harris.!® In Sec. III the tensor is evaluated for a uniform
external magnetic field. At zero temperature, the tensor
components can be expressed in terms of Kummer func-
tions. In Sec. IV the results of Sec. III are combined with
the dispersion relation for plasma layers, written in terms
of the conductivity components,”!* yielding the explicit
dispersion relation for the modes of the planar T =0 Bose
plasma. These modes are then studied in detail analyti-
cally and numerically in the high- and low-field limits.

II. CONDUCTIVITY DERIVATION

We now sketch the derivation of the conductivity ten-
sor & in the RPA for the two-dimensional boson plasma.
The formal development is similar to the approach of
Harris.'® It is assumed that the response of the system is
such that the perturbations to the external fields are small
enough to be treated linearly. We write

A=A,+ A, P=0,+D,, (1)

where A, and @ are the external potentials, and A, and
@, are small perturbations due to the response of the
plasma. The second quantized Hamiltonian for a spin-
zero charged Bose field restricted to two dimensions in
the presence of an electromagnetic field is written

A= [d V'#¥ @
where
2
H=L |p—CA| +ed 3)
2u P ’

and y is the boson mass. The current operator is also re-
quired:

2
Ie0= e —(vEH@ - 9 PA . @
2ui uc

In the above, ¥ is the second quantized Bose field opera-
tor:

T=3 b, (Y, (r), (5)
P
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where b,(¢) is the boson annihilation operator for the
state p. The wave functions ¢,(r) are the boson eigen-
states of the unperturbed Hamiltonian
Fo=(1/2u)p—(e/c) Ag]*+e®, An ensemble averag-
ing procedure is employed, similar to that previously
used in relativistic conductivity'* and polarization'® cal-
J

ie? s F(p')—F(p)
pL’# 5y 0o—(E,—E,)/fitin

7(q,k,0)=

ik=q)|p) -

In the above, F(p) denotes the equilibrium distribution
function for the noninteracting Bose gas. The usual two-
dimensional matrix elements are employed:

(plOlpYe= [d*r 10y, . (8)

The tensor (7) is valid for all temperatures and applied
electromagnetic fields, the effects of which enter through
the distribution functions and matrix elements, respec-
tively. This tensor differs from that of Harris,!> where
the vector potential term in the current operator (4) was
neglected. The conductivity tensor for the three-
dimensional plasma can be obtained from the above re-
sult, with the substitution of L* for L? and appropriate
interpretation of the matrix elements.

III. TENSOR EVALUATION

We now evaluate the two-dimensional conductivity
tensor in the case of a constant external magnetic field
perpendicular to the plane. The stationary eigenstates of
the Hamiltonian, denoted

¢p(r)5¢n,kx’ ¢p’(r)':_¢m,k’ ’ ©

are the Landau wave functions

<Pl|e'—iq'r

<p|e1krlp > +;_<p|e1kr

1~&|.
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culations, leading to an expression for the Fourier
transformed current in terms of the electric field E,

J(q,0)= 3 ¢(q,k,0)-Ek,0), (6)
K

from which the conductivity tensor may be obtained:

#i e
P=5a7 Ao lp>
kk
P_—Ao |P> F J
(7)
[
¢n,kxENn¢n ’
ik x —(q2 )2
gu=e" BT 1y +30)] (10)
, (174
"oVl | T

where H,(x) are the Hermite polynomials, and we have
used the definitions

po,
2 —
qB— ﬁ ’
o0,=1¢B (11)
uc
_ fick,
yO_ eB

The corresponding eigenvalues are
E,=E,; =(n+3)a, . (12)

To proceed with the evaluation of the conductivity ten-
sor, the following matrix elements are required (see Ap-
pendix A for details of derivation):

(ple’q"‘lp')=6 - —(fi/po, )[(1/4)(qx2+qy2)+tsgn(e)[qy . (1/2)qqu];,,F (@),
, ; —(#i/ue_){(1/4)(g2+¢2)—isgn(e) g k_—(1/2)
<P Ie iq p___q___A]IP> 8 Kk . H-(DCI 9x T4y lsgnE[qy x qqu”Ml(q)
(13)
i ! 1 iq- e - q'q’
(ple@p )L+ ——(plear [p—< A ||p')- [T-91L
ple’d*|p P (pl p—_Allp ) s
—8 B e—(ﬁ/yw )1(1/4)(q;2+qy2)+1sgn(e)[qy . (1/2)q,qy]}M2(q,) ’
x x—q,

where sgn(e)=*1 is the sign of the charge, and
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M.(a)= sgn(e)/ Tpw [Vn " TIF (@) +Vn +1" T IFX(q)]— Hig,"F X (g)
n x/%[vnﬂ"“ﬂ:( )=Vr" T F ()]~ Hig,"Fala) |

(14)
q'2 — —
1—=7 |sen(e)V/ o [Vim "F, _ () +Vm +1"F,, ,,(g")]
q
qqu
! 1
M, (¢ )="F, (g') L+ — ,
2\q q q,2 po " _
1—— iv/ Thuo [V'm +1"F,, . (¢')—V'm "F, _(q")]
lq o o o
2-sgn(e)y/ Mo [Vim "F,, _\(¢)+Vm +1"F,, , 1(q")]
where we have used the definition
172 (n—m)/2
2"m! #i _ _ %
+i n—mpn—m 2+ 2 , <
ol B (gcsgn(e)tig, ' "LL™" | 5 0= (gi+a)) |, m <n
ng —_
m(q) ot 2[5 (o (15)
. . m—ny m=—n 2+ 2 < .
2Mm | po, Ligy —gxsgn(e)] " 2ywc(qx o n=m

In the above, L, (g) are the associated Laguerre polynomials. '® Substitution of these matrix elements into Eq. (7) yields
the result

. ie F(m)—F(n)
,q,0)= ' . M !
O(qq m) I.LLZﬁ n’zm a)‘(En—Em)/ﬁ-Hn kx’kx_qxsqx’qx 1(Q)M2(¢1)
kg k)
w g ~H/mo I (1/4)ag J+q)+q +q, ) +isgnlel(q) —q, )k, —(1/2)(q.q;—q,9,)]]
’— 2 ’ ’ U ’
L EF(n y L ﬁ(qzy qy) e-(ﬁ/mmc)[(l/‘t)(qy—qy)usgn(e)kx(qy—qyﬂ {I—ﬂ%”
ﬂ () n x29x HO !
(16)
where L,(g) denotes L2(g). Next we perform the summations over k, and k., leading to the result
7(q,q',0)=5(q,0)8 ¢ , (17)
which is to be expected due to the rotational symmetry of the system, with
ie’w, —(#/2p0, Mg+ F(m)—F(n) ie?
F(qo)=—-" £ty —M,(¢)M,(g)+ £ |1-4 (18)
20 2 o—(E,—E,)/fitin "7 pheo q°

In Eq. (18) we have used the result L,(0)=1, and the number density p=N /L? has been introduced.

For simplicity and consistency with previous work,”"'* we now take g, =0, and consequently g =|q| can be used in-
terchangeably with g,,.

We now evaluate the four tensor components at zero temperature. The zero-temperature boson distribution function
is

F(n)=Ng‘18n’o, 19
where g is the usual Landau degeneracy factor:
po,L?
2mh

Introducing the distribution function (19) and the energy eigenvalues from (12), we find

g:
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i02n —(a2/2a2)«» jo2
Flgo)="SLe Mg L |y dD |
uti uo q
(21)
172 . 172
sgn(e)figy [% J nolpr g (BT ntips sgn(e)figy
{(': 2 1 ,uw\/i !
. @—ho,tin w1 172 " 172 4 l"Fo
ifig | | = S Rl ol IR N e & q
(VA sgn(e)fig 12 41 172
B n n
——"‘—‘Sgn e— cL 1p* - 5 OFn—1+ 0Fn+1
> 1 v n uw 2 2
" otno.tin iﬁq_ﬂ 1F:—ﬁ_qu: iOF,,
V2 2 q

We now evaluate the four components of the conductivity tensor. We employ the special cases!® of the Laguerre po-
lynomial:

L (x)=a+1—x,
L§(x)=1, (22)

in order to evaluate the functions occurring in Eq. (21). The resulting components are

o (a.0)= ipe’w, o\ (g%/2q3)" 1 _ 1
w' fig? < (n—1! |no.tetin neo.—ew—in |’
o, (g0)= ipe’w; e—(qz/zqg) = (q2/2¢3)" ! e g2 2 1 _ 1 ipe?
= 2uw’ s, (n—1) 293 no.‘to+in neo,—o—in po
_ pe’sgn(e)w? —(g22¢3) 2 (g%/2q3)" g2 1 1
o, (gow)=———"e n— —
- fig’w noy (=1 2q3 no.totin neo,—w—in
=—0,(q0). 23)

The components displayed above can be expressed in terms of the Kummer hypergeometric functions. This will be car-
ried out in Sec. IV.

IV. DISPERSION RELATIONS

We discuss the modes of electrodynamic oscillation for the planar boson plasma, using results from Sec. III. It can

be shown” '* that these oscillations are governed by the dispersion relation
. Be* | |. ) -
w""(q’w)_—Zmo io,(g,0)+ 2B to,,(q,0)0,,(q,0)=0, 24)

where, as in Sec. III, we have chosen the direction of propagation to be in the y direction, i.e., g, =0. In general, the
conductivity tensor has both real and imaginary parts, and the solutions w(q) of the above dispersion relation are like-
wise complex:

o=w,+iy . (25)

The imaginary part ¥ of w(q) is known as the damping constant. We now make an approximation, similar to that em-
ployed by Harris, !* the so-called weak damping approximation, in which it is assumed that the damping constant is
small. In the case of the three-dimensional plasmas studied by Harris, it was also assumed that the imaginary part of
the longitudinal dielectric response function is small. These assumptions allowed the dispersion relation to be separate-
ly solved for the real and imaginary parts of w.

For the two-dimensional plasma studied here, it is necessary to assume that the quantities Re[o,,(q,0,)],
Re[o,,(q,0,)], Im[o,,(q,0,)], and Im[o,,(q,w,)] are small in order to solve the more complicated dispersion relation
(24) separately for w, and y. These assumptions will be shown to be valid for all physical cases investigated here. If
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products of small quantities are neglected, we are left with the following equation for the frequency of oscillation w,:

B,.c?
2w

wr
_Im[ayy(q,w, )]+ TB,
In what follows we will always assume, without loss of generality, that w, > 0.

If we assume that w, is not a multiple of the cyclotron frequency ., then we can immediately take the n— 0 limit in
Eq. (23), yielding the following results for the conductivity components:

—Im[o,,(q,0,)]— +Re[o,,(q,0,)]Re[0 . (q,0,)]=0 . (26)

r

Re[oyy(q,co,)]=0 R

_ pelo, o) S (¢*/293)"

Im[o,,(q,0,)]= 1 — 1

#ig? < (n—1)! |ne.te, no.—o, |’
Re[Uxx(q,(t),)]:O »
2 peol —(g2ng2) = (q%/2g5)" ! 2 1 1 27
Im[on(q,w,)]=l’£—+—;e 7% u n— qz — ,
Ho,  2uo; noy (=1 295 no,to, no,—o,
2 2 2y 20
pe‘sgnlelo; —(42/242) & (q°/2qp) 2 1 1
Re[oyx(q’wr)]'—__—z—c q9°/29p B' _q : _
fig‘w, ney (n—=1) 2g} no.tew, no.—o,
:_Re[axy(q’wr)] ’
Im[oyx(q,a),)]ZO
=Im[o,,(g,0,)] ,
where we have the restriction
o,Fno,, n=12.... (28)

We now express these components in terms of Kummer hypergeometric functions ®(1,1+x, —z), which are defined'®
as

®(1,14x,~z)=xe ¢ 3 —1 29)
n=on!ntx
From this definition, the following related formulas, which we require, can be derived:
s 2l 1—a(1,14x,—2)]
s n—1'n+x ’ ’ ’
i z"  n—z
— =e”[(z +x)(1,14x,—2)—x] 30
nél(n—-l)!n%—x e[(z +x)D( x,—z)—x] (30)
s 2 =2l X G e, L, —2)—x]
=, (n =1 n+x z
At this point we introduce scaled variables for the frequency and wave number squared:
o, 2
x=—, z=-"2- (31)
@ 2g3

The components in Eq. (27) may now be expressed in terms of Kummer functions:

2 ey — ) — —
Im{o,,(go,)]= pe” P(1,1—x,—2z)—P(1,1+x,—2)

27ig3 z ’
2 —v\2 ey — ) — 2 _
Imlo.(g.,)]= £ [iJr(z X (L 1=x, =2~ (2 +x PR 1 x, =) ] 32
uw, | x x‘z
2 —
Re[0,,(g,,)]=LESBME) 12X gy 44y o)+ 22 (1,1 —x,—2)— =
27gp xz xz z

=—Relo,,(q,0,)] .
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Incorporating the above expression into the dispersion relation (24), and converting to scaled variables, the dispersion

relation becomes

(z +x)*0(1,14+x,—2)—(z —x)’®(1,1—x,—2z) 4 _Vz—yx’

x%z x Ax
2
x O(1,1+x,—2)—P(1,1 —x, —2) _*__)L x z+x <I>(1,1+x,—z)+x—ZQ(l,l—x,—z)—g -0,
z AViz—yx? zx zx z
xF#n, (33)
—

where we have introduced a dimensionless density pa-
rameter

A= (34)
V2gppc?
and a dimensionless magnetic-field strength parameter
=22 (35)
2uc?

This form of the dispersion relation is appropriate for an-
alytic and numerical plasmon studies at finite magnetic
fields. It is apparent that when g is small and the fre-
quency is sufficiently close to a multiple of the cyclotron
frequency (i.e., x ~n;n =1,2...), the Landau summa-
tions occurring in the conductivity components (27) are
dominated by the term corresponding to the resonance,
in addition to the n =1 term which is nonzero as g —0.
The solutions x,(z) of the dispersion relation in these re-
gions may lie extremely close to the integers, but the cy-
clotron resonances themselves are forbidden frequencies
because the conductivity components occurring in the
left-hand side of the dispersion relation are obviously
infinite as x —n. These modes are the quantum analogs
of the so-called “Bernstein modes” or “Bernstein reso-
nances” which were investigated for three-dimensional
classical plasmas by Bernstein,!” following the work of
Gross, ' who noted that certain frequency bands, spaced
at intervals roughly equal to the Larmor frequency, did
not support plasma oscillations in magnetized plasmas.
Bernstein!” showed that modes lying close to the resonant
frequencies modes are undamped. Later, the Bernstein
modes were studied in detail for classical plasmas by
Dougherty and Monaghan, ! Shkarofsky and Johnston,
and others. Dougherty and Watson?! review theoretical
and experimental investigation of these modes in the con-
text of ionospheric physics. In the case of quantum Fer-
mi plasmas, these modes were investigated in three di-
mensions by Horing,?? and in two dimensions by Horing
and Yildiz?} and Chiu and Quinn.” This work will be dis-
cussed in detail elsewhere,?* where we make appropriate
comparison with results for the Fermi plasma.

These resonances arise in more conspicuous fashion in
quantum plasmas due to Landau quantization than in the
classical case, where their presence is revealed by Bessel
function expansions of the response functions. !’

Returning to the two-dimensional Bose plasma, an ana-
lytic investigation of the solutions x, was undertaken by

Hines,?”® who solved for the small quantity x2—n2

neglecting all terms with n >1 in the Landau summa-
tions except the resonance term. The details of these re-
sults are incorrect, however, because (as has already been
noted) the tensor employed by Hines® and, earlier,
Harris!? is incomplete due to the neglect of certain terms
in the current operator (4). Later in this section we em-
ploy numerical solutions of Eq. (33) to study the three
lowest Bernstein modes.

Of particular interest for numerical investigation is the
possibility of solutions to the dispersion relation (33) ly-
ing below the cyclotron frequency. The existence of such
solutions is investigated below, analytically and numeri-
cally, for large B in the small-g region. These modes,
which can extend into the ¢ —O0 region, are qualitatively
different from the higher Bernstein modes, which must
terminate at the light cone at finite wave numbers.

The dispersion relation (24) was derived under the
weak damping approximation. From expressions for the
conductivity components (27), in particular the results
Re[o,, ]=Re[o,,]=Im[o,,]=Im[o, ]=0, it is clear
that the conditions for the validity of this approximation
are satisfied. Further, it is easily shown, given the above
results, that the damping constant y is zero. Thus all
solutions to the dispersion relation (24) represent un-
damped plasma modes. We note that similar results were
found by Horing?? in the case of magnetized Fermi plas-
mas. This result is not surprising in the Bose case, where
in the B —0 limit we must recover the undamped princi-
pal plasma mode. In the Fermi case, however, the B =0
plasma mode is damped. Careful investigation of the
B —0 limit, involving so-called “phase mixing” evalua-
tion?? (essentially passing Landau sums to integrals), is re-
quired to show the reduction of an infinite number of un-
damped modes into a single damped mode.

A. Small-B limit

We now consider the small-B limit of the dispersion re-
lation (26). Although the restriction x%n associated
with the above dispersion relation does not affect its utili-
ty for finite B (since the resonances are forbidden frequen-
cies), the situation is not as simple in the small-B limit,
where x becomes large and the spacing between the Lan-
dau levels becomes vanishingly small. We use the identi-
ties appearing in Eq. (30) and the conductivity com-
ponents (23) to rewrite the dispersion relation while post-
poning the n— 0 limit:
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lim O(1,1+x +in, —2)—P(1,1—x —in,—2z) L X x
n—0 4 A \/Z _XX2
% (z+x +in) @, 1+x +in, —2)—(z—x —in)*®(1,1—x —in,—2z) 4 Vz—yx?
x2z x Ax

zZX

2
— |22 o1 1 x +im, —2)— 2 (1, 1x —in,—z)— 2 ’ ]zo .
z

In order to find the B—0 limit we require a large z,
large x expansion of the Kummer functions appearing in
(36). Making use of the following little known results (see
Appendix B for details):

limx ~'®(1,14+x +in, —z)

7—0
__ 1 z . z 3z2 +
(x+2)  (x+2° (x+2* (x+2)° ’
(37
where |x +2z|70, and
}]iz’r%)x “lp(1,1—x —in,—z)
322
:(x1-2)+(x-z-z)3+(xiz)4+(x—z)5+ e
(38)

where |x —z|#0, we evaluate the dispersion relation (33)
for large z and large x, subject to the conditions above,
which represent the singularities of the small-B disper-
sion relation. For the expansion to be useful requires
|x +z|>>1 and |x —z|>>1. Since we have assumed
x >0 and z >0, it is sufficient to investigate the latter.
We would not expect this condition to be violated be-
cause the relation x =z corresponds to w =g /2 which is a
lower bound for the zero B dispersion relation.'* The
consistency of this condition with the dispersion relations
obtained using the above expansions is discussed later in
this section for the various regions of interest.

As expected, we find that the cross terms o, and o,
vanish in the B—0 limit, and the dispersion relation
decouples into longitudinal and transverse branches:

1 + 1
Vi-ot §/4-0

(p+Vgi—a?)

=0, (39)

(36)

-

where we have introduced scaled variables more ap-
propriate for the B —0 limit:

%
qz'—l ,
uc
s=1 (40)
e
5= 27r_ﬁ£e2

e}
The longitudinal branch is easily solved for the plasmon

modes:

=2

1+L4a-g?
p

o(g)=

—4 =2
9 P
4 + 5 (41)

This result for the zero B longitudinal modes was ob-
tained by Hines, 25 and is in agreement with the results of
Hines and Frankel,'? but only in the nonretarded region
where B~q. The dispersion relation (41), on the other
hand, is valid for all values of g.

The transverse branch clearly has no real solutions.
The absence of transverse modes is a feature of the ex-
treme physical constraint of the system (i.e., its aniso-
tropic geometry).

We now examine the coupled plasmon modes satisfy-
ing (33) for small B fields. The frequency is expanded for
small B as follows:

e’#*B?
X

le|#B

23

B=cy+c, +c, (42)

Substituting the expansion into (33), and once again em-
ploying the large argument expansion (37) for the Kum-
mer functions, the dispersion relation is reduced to the
form

— — 1 1 _ _ e|#iB
P+V'g*—cd) — t 3 > | T 1f1(@p,co) +¢181(F,p,¢0)] lelAB lz 3
pV T —ch T /4—ch e
_ _ e*#*B* e|’#°B?
+1f,(q,p,cq,c1)+¢,28,(q,p,cq,¢1)] e +0 | L%g =0. (43)

Solving for the coefficients, the equation for ¢, is of course precisely the B =0 dispersion relation (39), with the solution
appearing in Eq. (41). The remaining coefficients are of the form
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f](qrﬁ,c())
T e @peg)
£114,p5¢o
_ _ (44)
=_f2(q’P’COrcl)
gZ(q’ﬁ’co’cl) ’
with
24 _¢ g
c R
g’ [305&2—%3+ (f +—q4——-¥-6—+4pc(2)\/¢'jz—c% ]
f1(@,p,co)= T 3 )
2 —qZ—c(z) Vg —cl
- (45)
CHhad —6 =8
co |2c8—3c2g?+27%— ‘f _%+%€+25(‘72_c‘2’)3/2]
81(g,p,¢9)= » 7
L o3| @—cp

We have omitted details of the functions f,(7,p,cq,c;)
and g,(g,p,cy,c,) for the sake of brevity, due to their
cumbersome algebraic form. The full expressions are
readily obtained using the method above, at the expense
of some tedious calculation. It is easily shown that the
wave number and density structure of the leading
magnetic-field correction to the plasmon frequency (i.e.,
c¢,) is determined only by the longitudinal part of the
dispersion relation. The next term (i.e., ¢, ) is determined
by the entire coupled dispersion relation. Thus the
plasmons are no longer totally longitudinal at order B?
and above. In interpreting expansion (42) we stress that
the magnetic-field strength is assumed to be small with
respect to the density and wave-number parameters.
Thus although the coefficients ¢; and c, are exact for all
g and p, their application at small values of these parame-
ters is valid only for correspondingly small magnetic
fields. In the following, we use expansions of the func-
tions f,(q,p,cy) and g,(q,p,cy) for small §. The form of
the resulting expansions for @ clearly reflects the above-
mentioned requirements. In addition, the self-
consistency of the dispersion relations with the asymptot-
ic expansions (37) used to derive them is examined in the
various regions.

1. Small-g limit; § <<1,p>>q.

Expanding the above coefficients for small g leads to
the result

|1 _3 -5
5= |g——57°+0(g")
2p_2q q
-3 222p2
+ 3L roqgs) | |LdPB || A8 (46)
2 uc u'c

This expansion is good provided § and g /p are small. In
addition, the requirement |x —z| >>1 yields the condition

q> le,j? (47)

uee

for consistency of this solution with the small-B expan-
sion. The leading (light cone) term indicates that in this
region retardation effects due to the anisotropy of the sys-
tem are dominating the physics. This leading term is the
same as that obtained by Stern® for the electron gas.

2. Small-g limit; § <<1,p <<q.

As @ increases toward p, the previous small-g expan-
sion becomes invalid. For g >>p the following small-g,
small-p /g expansion is obtained:

172

—4 =3 =3
o= qﬁ+g4——1§£+£_-+0(47ﬁ3,¢755)
8g
222n2
iy @pr+ oo ] |1 o | BTy
uc u'e

where y(g,p) denotes leading term in the small-g, small-
p/q expansion of ¢,. Provided [§ <(45)'/?], the gp term
in (48) dominates, leading to the asymptotic form

a~Vpg (49)

for the plasmon modes. The form (49) is in agreement
with the results of Stern,® who first derived the analogous
result for the planar Fermi plasma at T =0. The leading
magnetic-field correction to the plasmon dispersion rela-
tion for this region is

172
_ _\ le|#B 3|7 le|#B
(q,p)——=— — - (50)
Yig,p 2 4 |p w2
This result is consistent with the small-B expansion when
222p2
pg > ¢ ﬁ4 l: (51)
u'e

If g increases still further [g > (4p)'/3), the §* term in
(48) will dominate, yielding the dispersion relation

)
~_9
@ > (52)
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This result contrasts with the @~v,q dependence ob-
served by Stern® and Fetter® in the corresponding region
for the Fermi plasma, where v, is the Fermi velocity.
The leading magnetic-field correction term in this region
is

_ _ lel#iB _ g’lel#iB

v(q,p (53)

e} 2pute’

In this region, the dispersion relation is consistent with
the small-B expansion for

le|#B
PR

f} >> (54)
q

B. Large B

We now investigate the plasma oscillations for large,
laboratory scale (as opposed to astrophysical) field
strengths. We use the dispersion relation (33) as a start-
ing point for analytical and numerical investigation. The
cyclotron resonances in the magnetized plasma funda-
mentally alter the nature of the dispersion relation in
comparison with the unmagnetized plasma. In the un-
magnetized case a single, continuous plasmon mode
occurs, while in the magnetized plasma an infinite num-
ber of separate modes occur, each of which is restricted
to a finite range of frequencies, scales by w,.

The plasmon dispersion relation (33) does not have
purely longitudinal nor purely transverse solutions. We
show that the proximity of the plasmon mode to the light
cone, as measured by B=V g?—w?/c?, determines the
physical nature of the plasmons. For solutions very close
to the light cone, B approaches zero. In the scaled vari-
ables of Eq. (33), this means that V'z —yx? is very small.
For the purposes of this discussion we rewrite (33) in the
shorthand form

Viz —yx’ Xx 2
“ T [P Wi T
where the tensor t has components

2uw,

tyy=—Im[axx] —5

e

2uw,

ty=—Im[o,, ]“%—e—z— , (56)
uw,

t,=Relo, ]J——— .

- [ yx]ﬁezsgn(e)

These components are written in terms of Kummer func-
tions [see Egs. (32)] and contain poles at x =1,2,3, .. ..
The dispersion relation Eq. (55) can be viewed as the
product of “transverse” and ‘longitudinal” branches
with the addition of a coupling term (i.e., —tyzx ). In what
follows, frequent reference is made to solutions of longi-
tudinal and transverse “branches” of the dispersion rela-
tion. When such solutions are substituted into the fully
coupled dispersion relation, the left-hand side of Eq. (55)
is reduced to the coupling term —tyzx. The magnitude of
this term then determines the physical relevance of the
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“longitudinal” or “transverse” solutions.

If the coupling term is large then these solutions do not
even approximately solve the full dispersion relation and
are physically meaningless. In such strongly coupled re-
gions the transverse and longitudinal components of the
electric field associated with the plasmons will both be
significant.

If the coupling term is very small then these solutions
are physically meaningful as approximations to the full
solutions of the coupled dispersion relation. In such
weakly coupled regions the plasmon electric field will be
almost longitudinal (or transverse), but will nevertheless
contain a small transverse (or longitudinal) component.

When V'z —yx? approaches zero, the “longitudinal”
branch cannot have solutions except where ¢, is large,
i.e., very near the singularities of the Kummer function.
In this region, however, the coupling term tyzx will also be
large, so solutions of the “longitudinal” branch would not
be expected to satisfy the full dispersion relation (55), and
would be physically meaningless. On the other hand, the
“transverse” branch

_Vz—yxx* _
p o }\'x

will have zeros when t,, is positive and not too near to
the singularities, where it might be anticipated that the
coupling term tyzx would be negligible. In regions where
this is the case, the solutions of the ‘“‘transverse” branch
closely approximate the solutions of the full coupled
dispersion relation and are therefore physically meaning-
ful. We now investigate such ‘“nearly transverse” modes
in detail.

We want to look for solutions near the light cone for a
range of x values including the first few Bernstein reso-
nances. For definiteness, let us consider the nth Bern-
stein mode, i.e., x ~n. For modes in the vicinity of the
light cone, we have x ~(g /2y), which means, in view of
the previous result, that §~2ny or less. Even for ex-
tremely large laboratory scale fields, the parameter Y is
still very small. For example, a magnetic-field strength of
107 G corresponds to Y=1.1X10"". So provided n is
not too large, g << 1 and therefore the parameter z (i.e.,
g>/4y) is very small. We can therefore neglect all but
the first term in the Landau series for t,,, provided x is
not too close to an integer n where n > 1, yielding

t 0 (57)

f 2,2 (=2’

XX x x 1_x2

(58)

Now neglecting all corrections of order z or higher in the
above, we write the transverse branch (57) as

2x Vz —xx? —
1—x2 Ax

0. (59)

We first note that this equation has no real solutions

when x > 1. With this in mind we rewrite (59) as a cubic

inx%

2
PSR AN
X X

z

x0+x* —==0. (60)
X

+x2 |14+ 2
X
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In the region below the light cone [i.e., x <g/2)] this cu-
bic has a positive real solution and a complex conjugate
pair of solutions. The real solution, although complicat-
ed, is easily evaluated numerically. In Fig. 1 we compare
this solution with a numerical solution of the full coupled
dispersion relation for a particular density (5=10"1°)
and magnetic field (y=5X10"").

Clearly the transverse branch provides an excellent ap-
proximation of the exact solution for plasmon frequencies
from zero up until very close to resonance (in the particu-
lar case studied, the approximation is good up to approxi-
mately x =0.9998). Above this frequency the solution of
the cubic, which must remain below x =1, departs drasti-
cally from the exact solution, which crosses over the reso-
nance at .. The departure of the exact solution from
the transverse branch near x =1 indicates that the
transverse-longitudinal coupling is very strong in this re-
gion, and must be included in the dispersion relation to
obtain the correct behavior (i.e., the crossover at x =1).
The onset of strong coupling coincides with the deviation
of the transverse branch from the light cone, which
occurs because as x approaches the singularity in z,, at
x =1, a corresponding increase in 8 must occur in order
to cancel this contribution. The existence of essentially
transverse plasmons over a large frequency range is an in-
teresting result which is due entirely to the external mag-
netic field, since it has been shown!* that no transverse
plasmons exist in the B =0 Bose plasma.

We now consider the possibility of approximately
transverse modes for x > 1. Since the contribution from
the first term in the Landau sum for ¢, is negative in this
region, and t,, >0 is required to solve the transverse
branch, the only possibility is that the plasmon frequency
must be close to one of the higher resonances. This is
consistent with the termination of the higher Bernstein
modes (i.e., n =2,3,...) at the light cone: as they ap-
proach the light cone in the small-g region, B—0 and
consequently the plasmons become increasingly trans-
verse. Near each resonance at x =n, ¢, can be approxi-

1.0001

0.9999

0.9998

0.9997

0.9996

0.9995 q
-6
1x10

2x10°° 3x10°° ax107®

FIG. 1. Comparison of a solution of the exact coupled
dispersion relation (upper curve) with a solution of the trans-
verse branch alone (lower curve). The almost vertical dashed
line is the light cone w=cq (or x =§ /2y in scaled variables).
The density and magnetic-field parameters are p=10"'" and
X=5X1077, respectively.
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mated by taking only the resonance term and the n =1
term in the Landau series (27):

2,2 _,|(=2?, z"! (n—z)?
+—e
x x 1—x2  (n—1) p2—x2

~ —

(61)

txx
For ¢, >0 the difference n2—x2 must be positive and ex-
tremely small (ie., of order z" ~!). Neglecting small
quantities in the above expression for ¢,,, the transverse
dispersion relation reduces to

2x +2n2 z" ! _Vz—yx?
1—x*  x (n—1n%—x?) Ao

To obtain the low-frequency cutoff for solutions, corre-
sponding to B=0, we put z=xx2 and set x =n in the
left-hand side of Eq. (62), where this is a very good ap-
proximation (i.e., everywhere except in the difference

n*—x?) leading to the result

(62)

_(nl_l)(XnZ)n—l 172

n3n—1)

min —

x, n il

(63)

The existence of a cutoff at the light cone for the n > 1
Bernstein modes {(in contrast to the » =1 mode which ex-
tends down to x =0) indicates that they will deviate
much more rapidly from the light cone. Indeed the vicin-
ity of x ~n is precisely where the coupling would be ex-
pected to be strong. We will see later that the n > 1 Bern-
stein modes lie above the resonances at larger wave num-
bers (i.e., they must cross over the resonances), so the
dispersion relations will rapidly diverge from the solu-
tions of the transverse branch, which cannot cross over
x =n.

We now return to the plasmon mode which originates
below x =1, where it is essentially transverse, and crosses
over the resonance as the coupling becomes important.
This mode is investigated in the x > 1 region over a large
range of wave numbers. We compare the numerical solu-
tion of the full coupled dispersion relation with a similar
solution of the longitudinal branch alone. First, however,
we note that Hines?® has shown that if the effects of both
coupling and retardation are neglected, the longitudinal
branch yields solutions near the cyclotron resonances, of
the form

xz=n2+~24q—zz"”1 (64)
4y
to leading order in z, where n =1,2,3,... labels the
Bernstein resonances. These solutions are obtained im-
mediately from the longitudinal branch

Xx
t,, +—A—
yy )ﬂ/z —xx 2

by making the substitution V'z —yx2—z and retaining
only the resonance terms in the Landau series for z,, [see
Eq. (27)].

In Fig. 2 the continuation of the fully coupled solution
shown in Fig. 1 into the region above x =1 is plotted,
along with a solution of the longitudinal branch alone
(without neglecting retardation) and also the n =1 case of
the nonretarded solution given in Eq. (64).

(65)
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FIG. 2. Numerical solution of the fully coupled dispersion
relation (lower curve) is plotted against a numerical solution of
the longitudinal branch alone (center curve), and also the nonre-
tarded solution x2=1+(pg /4x?) (dashed line). The density and
field strength parameters are the same as those used in Fig. 1.

It is interesting to note that solutions to the longitudi-
nal branch do not exist below x =1, while solutions to
the transverse branch, discussed earlier, are restricted to
the region x <1. Clearly the effects of both retardation
and coupling must be included to produce the correct
plasmon behavior as a function of g. The fully coupled
solution differs substantially from the solutions of the
longitudinal branch alone over a range of wave numbers
which covers approximately an order of magnitude in g
from the crossover point.

As the wave number increases further, the solution of
the longitudinal branch closely approximates the exact
dispersion curve, indicating that the dispersion relation
becomes more longitudinal in nature. This is consistent
with the role played by the proximity of the light cone in
determining the strength of the transverse-longitudinal
coupling. As the plasmon mode moves further from the
light cone, B becomes large and, as a result of the struc-
ture of the dispersion relation, the longitudinal branch
becomes dominant. In Fig. 3 we plot numerical solutions

q

0.0002 0.0004 0.0006 0.0008 0.001

FIG. 3. Exact solutions of the dispersion relation plotted
against the leading order longitudinal nonretarded approxima-
tions (dashed curves) given in Eq. (64). The field strength pa-
rameter has the value X=5X10“8, which differs from those
used for Figs. 1 and 2. The density parameter is =107, as in
previous figures.
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of the complete dispersion relation (33) over a large
wave-number range for the first three Bernstein modes,
and compare the results with the approximate forms
given in Eq. (64).

The most striking feature of these results is the large
frequency gaps in which no mode propagation can occur.
This emphasizes the discrete nature of the plasmon
modes in the magnetized plasma, in contrast to the zero-
B case where no gaps occur in the spectrum. The nonre-
tarded solutions (64) of the longitudinal branch describe
the modes accurately while z is small (though large
enough to neglect coupling), but it is necessary to take a
large number of terms in the Landau summations in or-
der to adequately describe the structure of the dispersion
curves at higher wave numbers.

The dispersion relation has been studied here at zero
temperature. In previous finite-temperature studies of
the unmagnetized Bose plasma,'? it was shown that the
T =0 result is the correct leading term in the low-
temperature expansion, and that small finite temperature
corrections to the T =0 result occur only at high order in
the wave-number expansion. Furthermore the two-
dimensional charged Bose gas does not exhibit a finite
critical temperature (with or without an applied magnetic
field), so no condensation effects are being overlooked by
studying the plasma strictly at T =0. These considera-
tions lead us to conclude that our zero-temperature treat-
ment provides a reasonable first approximation of the
low-temperature Bose plasma, despite the fact that 7 =0
is a singular point in the Bose distribution function. A
complete study of the low-temperature expansion of the
plasmon modes, involving considerably greater
mathematical intricacy than the present study, would
nonetheless be an interesting generalization of this work.
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APPENDIX A: MATRIX ELEMENTS

Here we calculate the matrix elements (13) required to
evaluate the conductivity tensor (7) for nonzero magnetic
field. The calculation is similar to that employed by Hore
and Frankel?® in their study of three-dimensional Bose
plasmas.

The wave functions ¢p(r)5¢n,kx and lllp:(l')El/Jm, k: are

defined in Eq. (10). We also use the symbols g5, @., and
Yo, which are defined in Eq. (11). The basic matrix ele-
ment to be considered is

(ple’®T|p’)=N,N, L1, , (A1)
with

I

L/2 ik —k!+q )x
T R
~L/2

q y Ty q yTy
ry__f ‘1ye B 0 e B 0
—

XH,[qs(y +0)1H,[qs(y +y5)1e™”,
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where H, and H,, are Hermite polynomials, and the
L — oo limit has been taken in the case of Iy. Now, due
to the imposition of periodic boundary conditions, we
have
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so that the evaluation of the integral I, is the core of the
problem. Integrals of this form do not appear in standard
tables, 1%27-2® but have been studied by Walters and
Harris® and Delsante and Frankel.*® Making use of re-

I,=L§, ,. g (A3)  sults from the latter, we find
J
172
2" | = | mWb" "L, "™(—2ab) m=n
—(g2 /2y +y¥ —(1/2)42 dp
Iy=e dp [J’Q Yo ] 12 , (A4)
2" || nla™ "L ""(—2ab) n<m
9B
where L," is the associated Laguerre polynomial, and we have defined
n
.
A=y, +yo—i—>,
Uk
dp | , .4
a‘—‘T J’o_J’o‘Hq_}; ) (A5)
B
U):] ’ . qy
b=—"-|yo—yoti—
2 a3
After some algebra, the above result for the matrix element is
(ple‘q"'lp')=8k, —(ﬁ/umc){(1/4)(q;2+q}:2)+isgn(e)[q;kx—(1/2)0;‘1;”,,Fm(q,) ’ (A6)

’kx T4x

where "F,,(q) has been defined in Eq. (15).
In order to construct the matrix elements appearing in Sec. III, the following type of matrix element is required in

addition to the above result:

- +—
(plear p—%A Ip')=(nkle ot |’ dx 3 € {Imky) . (A7)
i 9
For the x component, we require the result
#i @ , eBy , , eBy
- + - ’ = - ’
i ox c ¢’"'kx Akex & ¢ 1/,m’kx
eB  ,
= T(}’o +¥o W’m,k;
N, 1 N,
__m m e + m ¢ ik (AB)
2qg Ny 'm~ Lk 2g5 N, oy "mTLA
where we have employed the recursion relation!®
H,(x)=2xH, _(x)—2(n —1)H, _,(x) . (A9)
The y component can be rewritten using the result
3 172 (1) 172
— m m
a m,k;_qB [ —2_ ] 1l}m—l,k’:_— 2 ¢m+1,k; ’ (A10)
where, in addition to the recursion relation above, we have used'®
d
——H,(x)=2nH, _,(x) . (A11)

ox
Combining these results with the matrix element (A6), we have
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iq- e , —(Hi/pw ) [(1/8)(g2+g2)+isgn(ellq, k —(1/2)q,4, 1}
(ple:qr p—:A |p >:5k;’kx7qx Ho 9, +4q;)+isgnlelg, 95 9,
172
fimo — —
sgn(e) “| Vm"F, +Vm+1"F, ]
X 4 172 (A12)
@ —_— J—
i uzc [‘/m+1nFm+l—\/mn mvl]
f
APPENDIX B: ) _ Ll " 1
ASYMPTOTIC EXPANSION OF &(1,1+x, —z) (1, 1=x —in, —z)= —xe & nln—x—in’ (B6)
In Sec. IV we make use of asymptotic expansion for . . . .
large x and large z of the Kummer functions we use a slightly different integral representation,
d(1,1+x +in, —z) and ®(1,1—x —in, —z), where both 1 - o
x and z are real and positive. e —im ! fo dre linmxtml (B7)
These expansions do not appear in any of the standard n

references on confluent hypergeometrics. 272831 In. to obtain
terestingly, they are in fact special cases of a more gen- , e A ix)t —z(1—e 1)
eral result obtained by a technique of Ramanujan.*? Here ®(1,1=x —in, —z)=—ix f 0 dte mHETEITE 0
we give a more accessible derivation. Using the definition (B8)

of the Kummer function:!®

o Z" 1
O(1,1+x +in,—z)= z _, BI
( x +in, —z)=xe 2 T ntxtin (B1)

and the result

;:_Tl’,;:;:fow dte—(n+x +i1])l’ x>0 , (B2)
we obtain the integral representation
O(1, 1+x +in, —z)=x [ “dre~x T (BY)

It is readily apparent that this is an integral of the La-
place form.3? Using Watson’s lemma,* it is straightfor-
ward to recover the expansion

d(1,1+x +in, —2z)

__ x+tiy (x +in)z
(x +in+z)  (x+in+z)}
. 2
(x +t7])z4+ 3(x +m)zs+._. . (B4)
(x +in+z2)*  (x+in+z)

Now, provided |x +z| >0 (which has been assumed ini-
tially), we can obtain the 77— 0 limit of the above result:

lim®(1,1+x +in, —z)

71—0

X Xz Xz 3xz?

= + - +
(x+z)  (x+2° (x+2* (x+2)°
(B5)

This expansion is rapidly convergent for x,z >>1, but is
actually valid for x >>1, any z. Now for the expansion of
®(1,1 —x —in, —z), where by definition

Applying Watson’s lemma again yields the expansion

d(1,1—x —in,—z)

__x+tin (x +in)z
(x +in—z) (x+in—2z)}
. . 2
x iz | Sxtipz (B9)
(x +in—2z) (x +in—z)

Now we take the n— 0 limit, subject to the condition (not
assumed initially) [x —z| > 0, with the result

Iim®(1,1—x —in,—2z)
1—0

__x + Xz + Xz + 3xz PR

(x—z) (x—zP¥ (x—2)

(B10)

With our initial choice that x >0, the n—0 limit is
superfluous in the case of ®(1,1+x +i7,z), but neces-
sary in the case of ®(1,1—x —i7,z). As an alternative to
directly deriving each case independently, it can be
shown that the series given above for ®(1,1—x —i,z) is
an analytic continuation of ®(1,1+x,z). This can be
achieved by generalizing a theorem for analytic continua-
tion of Laplace-type integrals. 33 Under more general hy-
potheses than those employed by Nikiforov and
Uvarov,”” the theorem allows analytic continuation of
the series for ®(1,1+x,z) into the arg(x) < region, sub-
ject to the condition |x +2z|>0. The p—0 limit can then
be carried out as above. For the expansions to be useful,
we require |x +z|>>1 and |x —z|>>1, which are
satisfied for the physical regions investigated in Sec. IV.

33
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