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Josephson effect in low-capacitance superconductor —normal-metal —superconductor
spstems
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The transport properties of a small superconductor —normal-metal —superconducting tunnel junc-
tion can be controlled by a gate electrode coupled capacitively to the central island. We evaluate the
critical 3osephson current I through such a system as a function of the gate voltage Vg taking into
account parity effects in the superconductors. The dependence I,(Vs) shows resonant singularities
and has a qualitatively difFerent character for 4 ( Ez and 4 ) Ez, 6 being the superconducting
gap and E& = e /2C being the charging energy. Due to the sweeping of the gate voltage, the system
can be driven to states which are metastable with respect to a change of the number of electrons
on the central island. Since the lifetime of the metastable states can be macroscopically large, one
can observe a remarkable bistability of the 3osephson current. A weak magnetic field supresses
the interference of the electrons propagating through the central electrode, and, consequently, the
magnitude of the critical current.

I. INTRODUCTION

Parity effects predicted recently for small tunnel junc-
tion systems are attracting the attention of a growing
number of theoreticians and experimentalists. This
interest is focused on the basic nature of the supercon-
ducting ground state. The experiments have unam-
biguously demonstrated that the ground-state energy of
a superconducting island depends on the parity of the
number of electrons in it, and this even-odd difference in
energy is just the superconducting gap A.

Another point of interest concerns the electron trans-
port in the presence of both parity and charging effects.
In this context, small NSN (Refs. 1 and 3) and SSS (Ref.
2) systems have been considered. The transport reflects
the properties of the ground state that depend on the
ratio between A and the Coulomb energy Ec = e2/2C
(here C is the capacitance of the central electrode). For

Ec the number of electrons on the central elec-
trode in the ground state is always even and all the char-
acteristics are 2e-periodic functions of the offset charge
Qo ——CgVg (expressed in terms of the gate voltage Vg
and the capacitance Cg between the central and the gate
electrode). In contrast, for 4 ( Ec the electron num-
ber can be even or odd depending on the value of Qo.
As a result, even-odd transitions show up in the trans-
port characteristics of the system. For E/Ec (( 1 the
characteristics tend to be quasi-e-periodic.

In the NSN system tunneling of one electron through
both junctions and tunneling of two electrons through
each junction ' were investigated. The latter process is
analogous to the well-known Andreev reHection. If 6 &
Ec;, this manifests itself in 2e-periodic peaks of the dc
conductance measured as a function of Qo.s These peaks
have been observed in a recent experiment. A resonant
behavior of the superconducting critical current I as a

function of Qo has been predicted in Ref. 2 for a small
SSS system.

In this paper we investigate the inHuence of the
even-odd effects on the nondissipative electron transport
through a small SNS system, Fig. 1(a). This system
has two important features distinguishing it from those
considered previously.

First, there should be no observable even-odd effect
in equilibrium, since there is no small superconducting
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FIG. 1. (a) The SNS system under consideration. (b) A

Cooper pair transfer, formed by four virtual single-electron
tunneling processes. The terms in Eq. (10) can be obtained
as permutations of the steps 1, . . . , 4.
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island. On the other hand, the parity of number of elec-
trons on the normal island equilibrates very slowly at
low temperatures (see Sec. V for details). By means of
the gate voltage, the system can be driven to the state
which is metastable with respect to the parity change.
The Josephson current in this case will differ from its
equilibrium value, showing a remarkable bistability. One
can observe two different types of critical-current —gate-
voltage characteristics. If the sweeping rate is larger than
the equilibration rate, a 2e-periodic dependence will be
observed. In the opposite case, one-electron processes
will restore the e-periodic dependence.

Second, the Josephson current can be thought of as a
transfer of pairs of mutually coherent electrons through
the central normal electrode. This makes important the
interference between two electrons propagating in the
normal metal. A relatively weak magnetic Geld destroys
the interference and suppresses the Josephson current.

The paper is organized as follows. In Sec. II we de-
velop a general formalism for the supercurrent in the
presence of charging effects. In Sec. III the interference
of two propagating electrons is considered in the absence
of magnetic Geld and in a weak magnetic Geld. In Sec.
IV, we evaluate the supercurrent as a function of the gate
voltage neglecting the parity equilibration processes. We
discuss the effect of these processes in Sec. V. The con-
clusions are drawn in Sec. VI.

and e; = gb, 2+ Q (i = l, r) .The operators b corre-
spond to the electron states on the middle electrode.

The tunnel Hamiltonian Hg is given by

HT = ) (T, bt a, +H.c.)
l,m, cr

+ ) (T„f lct b„+H.c.),

and Hg stands for the charging energy of the system,

(q —Qp)'
Kg —— (6)

E, = 2I(@-+2IHT' 'I&-&I (7)

Here Q is the operator of the charge on the middle island,
Qp = Cg Vg is the charge induced by the gate electrode,
and C is a total capacitance of the island.

In the absence of electron tunneling, the states lg„)
with different number n/2 of Cooper pairs on the super-
conducting electrodes are degenerate (here n is an even
integer). The electron tunneling lifts this degeneracy,
and an energy band of width 2Ep appears. The critical
current is related to this Josephson coupling energy by
I, = 2eE~/h. In lowest nonvanishing order in HT we

find (see, e.g. , Ref. 8),

II. METHOD with

We study the Josephson effect in a SNS system and
calculate the critical current at zero transport voltage
and temperature. We describe the system by the Hamil-
tonian

H = H,)+ HT + Hq .

The term H, ~ describes the superconducting electrodes
and the middle island,

e&
= ) I (~ tn + ) v'Yr~n~vcr + ) E'en rno4ao' ( )

m, cr

o,~~
——u~a~~ —v~a «,

+
(8)

(4)

Here the operators o.~ and p„result from the Bogoliubov
transformation (see, e.g. , Ref. 7) of the electron opera-
tors a~ and c for the left and right electrodes, e.g. ,

HT = HT . HT . HT . HT. (8)
Ep —Hp Ep —Hp Ep —Hp

Here Ep is the energy of degenerate states Ig„), and Hp ——

H, ~ + Hq is the unperturbed Hamiltonian.
The matrix element (8) describes the transfer of one

Cooper pair from the left superconducting electrode to
the right one. Figure 1(b) shows four virtual steps of
this process. Independently of the sequence of the steps,

(1) (1) (2) (2)the combination T& T E„T „T„„oftunnel matrix ele-
ments and the combination utv~u, v„of superconducting
coherence factors arise. The energy denominators corre-
spond to the energies of the virtual intermediate states
and hence do depend on the sequence of virtual steps.

The possible sequences can be divided into three
groups depending on whether only the electron excita-
tions, only the hole excitations, or both occur in the vir-
tual intermediate states. This gives rise to the factors
[1—f(&-)i[1—f(&-)j f(&-)fM-) o [1—f(&-,-)jf(&-,-)
respectively. We therefore write (7) in the form

1 1 1) ~ ten tn na~ n —v & & & —~
g g( ) g g g(2 ) g b( )[ f(&~)1[ &(&n)l

l,m, n, v

+23 other terms

The combination of energy denominators written explicitly above corresponds to the ordering 1234 of the virtual steps
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in the notations of Fig. 1(b). The quantity f(Q) = (Q~Hq~)Q) —(O~Hg~0) is the difference in charging energy (6)
between the virtual and the initial states.

In order to replace the summation over the states by integrations over the energy we have to calculate the mean
value of the combination of tunnel matrix elements on the corresponding energy surfaces. This can be done by
introducing the function F((), (2, (, (') given by

l,m, n, r

With this definition Eq. (9) is transformed into

(10)

III. INTERFERENCE
OF TUNNELING ELECTRONS (14)

In this section we estimate the averages of matrix el-
ements (10) using the standard quasiclassical approach
in the formulation described in Ref. 10. We rewrite Eq.
(10) in the coordinate representation and relate contri-
butions from the tunneling and propagation of electrons
in the superconductors to the conductances of the tun-
nel junctions. As a result we obtain that for ~(~ && Ez
the function F depends primarily on the energy di6er-
ence Tuu = (—(' of two electron excitations in the central
(normal) electrode;

r1,2gl (r1 )g2 (r2)

x [P (r), rz) + P (r~, r2)]. (12)

Here v is the density of electron states in the normal
metal and g, (r, ) are normalized conductances of the tun-
nel barriers per unit area, I d r,g, (r, ) = G, (G, are the
conductances of the junctions). The function P (r), r2) is
the Fourier transform of the quasiprobability P(rq, rz, t)
which describes the propagation of the Cooperon from
one junction to the other through the central electrode
and satisfies the equation,

2

hc

Here (I = 1/vV is the mean level spacing in the cen-
tral electrode. This does not depend on the geometrical
shape of the electrode. For larger system, the regular part
of the function I" becomes important and the result de-
pends on the geometry. For still larger L, L )) ghD/6,
the regular contribution compensates the b function al-
most exactly, and the supercurrent becomes exponen-
tially small. This is why we concentrate on the limiting
case of a small island.

I et us consider now the eKect of a magnetic 6eld. To be
closer to the experimental setup, we assume that the cen-
tral electrode is made of a thin metal 61m and the mag-
netic 6eld is applied perpendicularly to the 61m plane.

The quasiprobability P decays exponentially in time
and one can seek a solution of Eq. (13) in the form of
an expansion in eigenfunctions P (r) of the operator on
the left hand side. The necessary boundary condition is
that the normal derivative of P be zero at the edges of
the electrode. In a weak magnetic field 4 = BS « e p (S
is the area of the central electrode) the lowest eigenvalue
Ao can be estimated perturbatively in a magnetic 6eld
[unperturbed function Pp(r) is obviously a constant]. For
example, for a circular electrode with the radius R we
obtain

hD C2

@2

If there is no magnetic Beld, the solution of the de'u-
sion equation at large times t )) r~ = L /D is a constant
P = 1/V (here L and V are the size and the volume
of the central electrode). Therefore, the function F re-
duces to a b function at zero energy and a regular part.
If the energy 6/r~ exceeds the characteristic energy scale
max(E, Ec) in the expression (11) for the Josephson en-

ergy, the contribution to F from finite energies ( —(' g 0
can be neglected. As a result, we obtain for a small cen-
tral electrode, L « [hD/max(4, Ec)] ~,

This lowest eigenvalue is by a factor (4/4p) smaller
than the next one. For a small electrode, R ((
[hD/ max(A, Ec )] ~, effectively only this eigenvalue

contributes to the function F in the energy range of in-

terest, ~(
—('~ & max(A, Ec). As a result, the function

Fg, (') acquires the Lorentz shape

Note that the function F is substantially smeared at
Ap max(A, Ec) « D/R, which corresponds to rel-
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atively small values of the magnetic flux C « 4p [see
Eq. (15)]. However, the corresponding magnetic field

B (4p/R) gb/D may be as large as the critical field

H, 2 of the bulk superconductor.
To stress the importance of the interference, let us con-

sider a ring-shaped central electrode. The spectrum of
the eigenvalues A is now a periodic function of the 8ux
4 through the ring,

CD

Q'

D ( 4 i
, ~m ——

~

.R'
g 4p)

This means that all the characteristics of the system
will show a 4p periodicity. In particular, when the
Bux 4 is close to an integer number of Qux quanta,
P = min ~m —4/4p] && 1, the lowest eigenvalue A

PzD/R2 is much less than all the others. Therefore, an
expression for the function F has again the form (16)
with Ap replaced by A

So far we assumed that the phase breaking time 7~ is
infinitely long. It can be taken into account by adding
the term r iP to the left hand side of Eq. (13). For a
weak phase breaking 7~ )) L2/D an additional broad-
ening of the peak (16) arises, Ap ~ Ap + 7 i, even for

zero magnetic field. In the opposite case, r~ && L2/D,
the function F is suppressed by the exponential factor- exp[L/(»~) "1

IV. RESULTS

Qo/e

0

Qo/e

Inserting F((,(') into Eq. (11), we calculate the
3osephson coupling energy E~ as a function of the off-
set charge Qp. In the absence of magnetic field the b

function form (14) of F((,f') simplifies the calculations
considerably. One can say that the two electrons involved
in the tunneling have to pass through the same energy
level on the island. In particular, this means that the
contribution of processes which involve an electron and
a hole is negligible.

We discuss now the features of the dependence Eg(Qp).
The energy of the system with different numbers n of ex-
cess electrons on the island is plotted in Figs. 2(a,b) for
E~ & 6 and E~ ) 6, respectively. Since the energy
spectrum and all characteristics of the system are 2e-
periodic functions of Qp, we restrict our consideration to
the interval —e & Qp & e. We assume that the initial
state n = 0 is the ground state with even numbers of elec-
trons in the superconductors. The parabolas n = +1,+2
correspond to the minimal energy of the intermediate
states. At the points of intersection of these parabolas
with the parabola for n = 0, the energy denominators
(11) vanish (for zero electron energies) and E~ becomes
large. This happens at Qp ——+e for Ec & 4 [Fig. 2(a)]
and at Qp = +Qc, Qc = e(1/2 + b, /2Ec) ( e, for
Ec ) 4 [Fig. 2(b)].

First, we consider the case E~ ( 6 when the parity
of the electron number n in the ground state does not
change at any value of Qp. We find that the Josephson
energy diverges logarithmically for Qp ~ e,

FIG. 2. The ground-state energy E„(Qp)
= (ne~Hq~ne) + mod(n, 2)A as a function of the offset charge

Qp for difFerent numbers n of excess electrons on the normal
island: (a) Ec & 4, (b) 6 & Ec

8(2e)EJ ——Jp ln
2A

(18)

This corresponds to the lifting of the Coulomb blockade
for the processes in which a pair of electrons tunnels to
the island [e.g. , the process 1234 in Fig. 1(b)]. The
dependence Eg(Qp) calculated numerically in the whole
range of Qp is shown in Fig. 3(a).

It is instructive to compare the result (18) with the
classical result~3 for SNS systems in the absence of charg-
ing effects (Ec ~ 0). In the relevant limit L2 && DA the
classical result reads

Eg = 2Jp ln(6/T)

in our notation. The logarithmic divergence is regular-
ized now by the temperature T E'(2e). The difference
in the numerical factor accounts for the fact that in our
case only one of the two charging energies E(+2e) be-
comes small.

When a magnetic 6eld is applied, the b function in
F((,(') changes into a Lorentz function which allows the
involved electrons to have different energies. As a result,
the Josephson energy EJ(Qp) is no longer divergent at
the resonance points [see dashed lines in Fig. 3(a)]. Its
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tained by changing 6 + E(e) with Ap in Eq. (20).
For a sys em wiF t with the central electrode in shape of a

all magnetic field again suppresses t e osep-

is close to an integer number of Bux quanta, t e con-
structive interference of electrons [i.e. , a sharp peak (16)
of the function F] is restored. As a result, the Josep son
current as a function of the Aux shows sharp pea s at
C = nC'o.
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FIG. 3. Josephson couphng energy E&E as a function of the
A=0 0.3, 1offset c arge ~~p orff h ~~ for different magnetic 6elds Ap

a = o 95, b)(from top to bottom). (a) Ec & 4 (Ec/6 = . ), (
a & Zc (Zc/b. = 2).

In the preceding section, the system was treated as
f th were no quasiparticles in t e pe su erconducting

leads and no room to create one without spending gyn ener
Theoretically, this is valid at dilution re&igera or

temperatures, w ere eh th thermally activated processes
require astronomical times.

tra sferAnother possible mechanism for one-electron transfer
arises in e prth presence of normal inclusions in the super-

t '
1 A reasonable rate would arise on yconducting materia . rea

d the
'

if the distance between the tunnel junction and t e in-

herence length. According to recent experiments, is
possibility can be excluded.

value there can be found by replacing E(2e) in Eq. (18)
by the "magnetic energy" Ap.

We now turn to the case E~ & 6 [Fig. 3(b)], where the
ground state changes at ~Qp~ = Q~. First we consider a
domain

I &o I
m~c in which there are no quasipartic e

~ ~excitations in e grout' ' th ound state. One finds a logarithmic
divergence of the energy Eg at Qp -+ Qc- O

Ec a+ e(e)
(20)EJ —2JpE ~ ln

C

The last equation is valid for (Qc —Qp)/Qci~(ln~ (( 1. A di-
verging con ri u ion a 't 'b t' arises not only form the consi ered

in airs e, 1234rocesses in which electrons tunnel in pairs [e.g. ,processes in
which twoln lg.F' . 1~b~~ b t also from the processes in wh

electrons tunne rom e e1 f th left to the right electrode one

y one ~eg 3& e., 1324~j The latter processes dominate for
~ «ZC.

One elec-For ]Qp] ) ~Q~] the ground state changes: One e ec-
tron tunnels to the island, leaving a quasiparticle ex-
citation in one of the superconducting electro es. The

ill be dis-di f r the stability of such a state wi e is-
sto E forcussed in the next section. The contributions o

Q & Qp & earethesameasforo& Qp & e-
which means that they remain fini e [ ig. ( )].

C & o t. ~Fi . 3&b~ .
As a result, the peak of Ez(Qp) at Qp = Qc ls asyII1-

tic field decreases the critical current
and eliminates the logarithmic singularity [Fig. ( )].
The value of Eg at the resonance point Qc can e ob-
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FIG. 4. The critical current I, as a functiounction of the offset
charge s, expec e in et d experiments with different sweeping
rates: a) r «~. ', (b) r &»„-'. Z~/x =2; I, =2e s/ .
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The genuine mechanisms for one-electron processes
have not been revealed experimentally yet. It is not clear,
for example, how many quasiparticles remain in a bulk
superconductor at low temperatures. This relates to the
question why the results of Refs. 15 and 6 look incon-
sistent. This is why we prefer not to review this subject
but rather introduce a typical time scale ~„ for the parity
relaxation process. According to Ref. 5, this time may
be of order of hours.

Hence, the result of an experimental measurement of
I (Qp) may depend on the sweeping rate I' = Qo/e. For
6 ) Eg a large sweeping rate I' )) w„excludes the
influence of the quasiparticles and thus leads to the ideal
2e-periodic picture shown in Fig. 3(a). For slow sweeping,
I' « w„, the changes of the ground state are determined
exclusively by the charging energy which means that the
resulting picture is e periodic [see Fig. 4(a)].

An interesting behavior can be expected for I' )) 7„
and 6 ( Ec. Assume that one increases Qo start-
ing from Qo ——0. The ground-state energy follows the
parabola n = 0 in Fig. 2(b) and the Josephson current I,
is the same as discussed in Sec. IV as long as Qp ( Qc
[compare Figs. 3(b) and 4(b)]. When the onset charge
Qp exceeds Qc, the ground state changes by creating
one excitation which, however, relaxes immediately on
the time scale of sweeping. Here, in contrast to the ideal
case shown in Fig. 2(b), the energy of the ground state
n = 1 is no longer shifted up by A. As a result, the
critical current I,(Qo) follows the solid line in Fig. 4(b)
and shows e-periodic behavior. Sweeping now Qo in the
opposite direction, one follows the dashed line and finds
no divergency at Qc. The divergency will be seen at
Qc, ——e —Q~. Hence, the critical current I, shows a
hysteresis.

VI. CONCLUSIONS

In conclusion, we have calculated the Josephson cur-
rent through a small SNS system at T = 0 taking into
account the charging energy. The current as a function
of the gate voltage shows a resonant structure. In a typ-
ical experiment the shape of I,(Qp) depends strongly on
the sweeping rate of Qa compared with the rates of one-
electron processes. This can be used to explore these
processes.

The value of the Josephson energy Eg = hI, /2e is of
the order of (5/4ez)2GqG2b (b being the average level
spacing in the normal island), which agrees with the
known result for large SNS systems in the limiting case
Ec -+ 0. This can be compared with E~ = (vrh/4e2)GA
for a conventional Josephson junction. Hence, EJ in the
SNS system is reduced not only by an additional fac-
tor (h/4e2)G but also by the factor h/b„which is of the
order of 10 for a typical experimental setup. The lat-
ter reduction is due to the interference of the electrons
in virtual states on the middle island. This interference
and, consequently, the critical current can be influenced
by the magnetic field.
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