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Thermodynamic scaling functions in the critical region of type-II superconductors
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A recently proposed nonperturbative method for evaluation of the thermodynamic scaling func-
tions in the nominal critical region of quasi-two-dimensional type-II superconductors is generalized
and extended to arbitrary type-II systems. It is found that, in general, layered superconductors do
not exhibit single-parameter scaling except in two opposite limits corresponding to two-dimensional

(2D) and (an)isotropic 3D systems. Explicit, closed-form expressions for the scaling functions are
constructed in these two limits. The results are found to be in good agreement with experiments
and Monte Carlo simulations. The limits on the applicability of the Landau level description of
Suctuations are also discussed.

Fluctuating behavior near H, 2(T) in type-II super-
conductors has recently been the subject of an intense
experimental and theoretical ' interest. In this region
the problem of Buctuations can be investigated within
a framework of the Ginzburg-Landau (GL) free-energy
functional, with the order parameter confined to the low-

est Landau level (LLL) for Cooper pairs. This GL-LLL
theory exhibits characteristic dimensional reduction
and associated scaling properties, leading to expressions
for various thermodynamic quantities, such as magneti-
zation and heat capacity, which are functions only of a
particular combination of temperature T and magnetic
field H. ' Such single-parameter scaling depends only
on the efFective dimensionality of Quctuations and its two-
and three-dimensional versions have been observed in nu-

merous experiments.
In this regard, the basic theoretical task is to deter-

mine the thermodynamic scaling functions, in particu-
lar the free energy f(z), where z is the scaling vari-
able (z = const[T —T, (H)]/(TH) ~ in 2D while z =
const[T —T, (H)]/(TH) ~ in 3D). f(z) has been eval-
uated in the past by a large order perturbative expan-
sion, valid far above H,2(T) (z )) 1). The Pade and
Borel-Pade approximants are then employed to recon-
struct the low-temperature behavior of f(x), far below
H,2(T) (z (( —1).is This procedure is often augmented
by the condition requiring that the Abrikosov's mean-
field result for f (x) be obtained in the T i 0 limit.

Recently, a rather difFerent approach to the problem
has been proposed by Tesanovic et al. The gist of their
nonperturbative method is as follows: The physics of the
GL-LLL theory naturally splits into two very difFerent
energy scales. The first of these is the familiar BCS con-
densation energy, associated with the overall growth of
the square of the order parameter. The second energy
scale is associated with the motion of vortices (z;} in
the plane perpendicular to H. DifFerent configurations of
(z;} are weighted by the generalized Abrikosov param-
eter P~((z;}), evaluated for arbitrary positions of vor-
tices. This configuration interaction among (z;}is rather

weak, an example being the well-known small difFerence
between PA for a triangular and a square lattice. There-
fore, the second energy scale is only a few percent of the
first one, their respective contribution to f(z) approxi-
mately divided 2—98% of the total. This 98—2% rule is
then exploited by Tesanovic et al. to construct an ana-
lytic, closed-form, parameter Bee expression for f(z) in
quasi-two-dimensional (2D) superconductors. They have
shown that (i) f(z) can be represented entirely in terms
of the thermal averages of the square of the order pa-
rameter and the lateral interaction PA((z;}); (ii) the ex-
plicit x dependence arising &om the former can be found
exactly, in effect solving 98'%%up of the problem. Such a
physically transparent result appears more attractive for
various practical applications, where better accuracy is

rarely needed or possible, than the impenetrable numer-
ics of high-order perturbation expansion. On the other
hand, one could argue that, as a matter of principle, by
going to higher and higher orders in perturbation theory
one can ultimately attain accuracy better than 2'%%uo. As

suggested recently, however, the low-T behavior of the
GL-LLL theory cannot be reached by the perturbative
expansion. An implication is that this 2'%%uo "barrier, "
associated with lateral correlations, cannot be broken by
any perturbative procedure, as is discussed in some detail
below. In light of this ceiling on the accuracy of stan-
dard resummation procedures, 3 devising a simple but
comprehensive description of the free energy, which can
interpolate with reasonable accuracy between the per-
turbative limit and the mean-field results below H,2(T),
gains additional significance.

In this paper we generalize the nonperturbative
method of Ref. 14 to an arbitrary type-II system. To this
end, we consider the case of layered superconductors with
a variable interlayer coupling. We construct the thermo-
dynamic functions for this case and show that in general
there is no single-parameter scaling. Only in two oppo-
site limits, the strong and the weak interlayer coupling,
is there such a scaling, corresponding to (an)isotropic 3D
and quasi-2D systems, respectively. In these two limits,
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closed-form expressions for thermodynamic scaling func-
tions can be obtained. We find the criterion which de-
termines the eH'ective dimensionality of scaling functions.
We then compare our results for a 3D system with ex-
perimental data of Welp et at. and find good agreement.
Finally, we discuss the general limits on the applicabil-
ity of the GL-LLL description of the critical behavior in
type-II superconductors.

In strongly type-II superconductors (~ && 1) one can
neglect the Buctuations in the magnetic field and the par-
tition function of a general layered system can be written
as

Z = 179„(r)exp ——) f dr(a~@ (r)~
Rp n

where n is the layer index; d is of the order of the inter-
layer separation; a = cx(T) [1 —H/H, q(T)]; xx.(T), x1, and

P are the GL coefficients; xx(T) = xx'(T —T,o); and the
functional integral is to be taken over the subspace 'Ro

spanned by the LLL. The field is perpendicular to the zy
plane defined by the layers.

We choose to work in the symmetric gauge, where
there is a simple connection between the linear and the
nonlinear representations for 4„(r), namely @„(r)
2 „=0~-.~-.(r) = ~-II;„(z —z*.)exp(-lzl'/4)"
where p „(r) are the LLL eigenfunctions in the symmet-
ric gauge, N is the area of the system in units of 2vrS,
z = (+ + i,y)/E is a complex coordinate in the xy plane,
and 8 is the magnetic length corresponding to charge 2e:
E = gc/2eH. xs The free-energy functional in (1) can be
rewritten as follows:

F[4'„(r)]= 2nl'Nd ) a[@.„)'+xl[iI „+x —0„(
n

(2)

The bar denotes a spatial average in the zy plane.
The quartic term can now be expressed as

I@ I'f.' = l~'-I'&~( {'z.)) {f') = &~({z'.))I@'-I'
where )9~({z;„j)—: f4/ {f2) is the generalized

Abrikosov parameter for the nth layer and f~({z; j)—:
f (dzdz*/2~N) exp( —p]z~ /4) Q; ]z —z;„]". The corre-
lations axnong {z; ) in the nth layer enter only through
P~ since the quadratic terms exhibit the exact macro-
scopic degeneracy of the LLL. As argued above, these
correlations are weak with only collapsed or exploded
{z; ) leading to significant changes in P~. A reflection
of the presence of P~({z; )) in (2) will be the depen-
dence of the &ee energy on the thermodynamic average
(P~). It is the variation of this average value through
the critical region which will be treated approximately
in the present approach. (P~) must be chosen to inter-
polate smoothly between its high-T [far above H, (Tz)]
limit, (P~) = 2, and the low T[far below H, (Tz)]-value

for the Abrikosov lattice, P~ = 1.159. This is necessary
in order to properly join the perturbation theory results
in the high-T limit with the low-T mean-field behavior.
The variation of (P~) between these two lixnits is slow

(actually, the relevant variation is that of U = 1/g(P~),
which is even slower) and can be accounted for in a rel-
atively straightforward manner as long as one is content
with the 98% level of accuracy. Consequently, our most
important task can be defined as expressing the ther-
modynamic functions in the critical region as accurately
and completely as possible in terms of this slowly varying
function U(H, T), namely expressing the free energy in
the form F(H, T) = F[H, T, U(H, T)]. If this is done, it
efFectively means that we have solved the rapidly chang-
ing part of the thermodynamics contained in the explicit
T and H dependence, all our ignorance now residing in
the several percent &action of slowly varying U(H, T).
As we will show below, this can be accomplished vir-
tually exactly in quasi-2D systems and to a very good
approximation in 3D.

We will proceed toward this goal in the following way:
By employing the nonlinear representation of 4(r) in-
troduced above we will use the 1/N expansion, where
N is the total number of states in the LLL manifold,
to perform the integral over the overall amplitude of
the order parameter in the partition function. In this
way we recover the crossover to the low-T saddle point
which controls the thermodynamics in the critical region
and which is beyond reach of perturbative expansions.
This step leads to the desired expression for the free en-
ergy in which the rapid (H, T) dependence is accounted
for. We will then suggest an interpolation formula for
(P~) to approximate the slow part of the (H, T) depen-
dence. We should refIect here on an important aspect
of the physics described by (1) which makes the 98—2'%%uo

procedure meaningful. Let us generalize our discussion
to a layered system in 2+ D~~ dimensions, by adding
weak Josephson coupling between the layers in D~~ di-
rections "along" the field. For D~~ ) 2 this model has
a phase transition to a superconducting state generated
entirely by the longitudinal (along the field) correlations.
The rapid variation of various thermodynamic quanti-
ties through the nominal critical region in 2D and 3D
(D~~ = 0, 1) arises therefore as a remnant of this true
superconducting transition present for D~~ ) 2. This is
the part of the problem which we solve exactly. The re-
maining 2%%uo arises from the effect of lateral correlations.
When such correlations are treated exactly they will now
produce a phase transition in 2D and 3D, but only far
below the nominal critical region, once the thermody-
namic functions have saturated to their low-T values.
The study of this transition is beyond the scope of this
paper since we are here interested only in the "smooth"
part of the thermodynamic and clearly cannot deal with
any nonanalytic behavior. We should mention here that
this transition arises solely through those weak lateral
correlations contained in the "2'%%uo" part of P~({z,)). The
transition is commonly referred to in the literature as the
"vortex melting" phase transition separating the "vortex
liquid" &om the "vortex solid" phase. Actually, the low-
temperature phase of the GL-LLL theory is really better
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X exp
27rI.2Nd

I
~lc'I'f'+

2
IC'I'f'

I

It is useful here to rescale IC I
~ I@I / and to in-

troduce a new variable, U, by inserting an additional in-

tegral, 1 = f dUh( —,,&,
—U), in the partition function

(f4)1/2

(3). In this way we obtain

described as a form of a charge density wave, in which the
density of Cooper pairs becomes spatially modulated.
This description is more in line with reality: Slightly be-
low the transition (z;) still move all over the xy plane
and have infinite root-mean-square displacements. It is
only the density of zeros and consequently (I@(r)I2) that
is weakly modulated.

Our philosophy explained, there is now one question re-
maining to be addressed before we proceed with explicit
calculations: How well does the 98—2% method actually
work in practice? One way of finding out is to compare
thermodynamic functions derived by using this rule to
the experimentally determined ones. At least in the case
of quasi-2D systems the results obtained appear to be in
very good agreement with experimentally observed mag-
netization and specific heat scaling functions. ' Fur-
thermore, there are now several Monte Carlo studies of
the 2D case available which enable direct compari-
son of the 98—2% results with the numerically exact so-
lution of the GL-LLL theory (1). Since such comparison
does not involve uncertainties inherent to experiments it
is particularly valuable in assessing the usefulness of the
98—2% procedure. We now continue along the lines dis-
cussed in Ref. 14 and derive the exact expression for the
free energy of the 2D GI -LLL theory having the required
form F[H, T, U(H, T)]. In a 2D system rI is set to zero
and we drop the layer index. Using the nonlinear repre-
sentation of @(r), the GL-LLL partition function (1) can
be expressed as

dzqdz

'e i(j

degenerate. There are, however, at least two very impor-
tant differences: First, the quartic term is not degener-
ate on the LLL manifold, as evidenced by the presence
of the additional variable, U, in the partition function.
Second, we are not using the 1/N expansion in an ordi-
nary sense, to systematically evaluate corrections to the
leading, saddle-point, results. Actually, we are only in-
terested in the leading order results, since that is all that
matters in the thermodynamic limit. Therefore, the in-
tegration over 4 and U can be performed by picking up
the saddle-point contribution, i.e., by retaining only the
values of 4 and U which maximize the integrand. These
values then determine the thermodynamic averages of C

and U, as well as the free energy and in turn all other

thermodynamic functions. The key feature for our pur-
poses is that this saddle-point integration over 4 can be
performed exactly and therefore the free energy can be
expressed in terms of U only, plus the explicit T and
H dependence. [This point also follows directly from the
"dense vortex plasma" (DVP) representation of the parti-
tion function (1) for an individual layer introduced in Ref.
17.] The free energy is then written in the scaling form

F(T, H) = dgoTH f (At), where t = [T —T, (H)]/(TH) 2

is the conventional scaling variable, Po is the supercon-
ducting Hux quantum, and A is a constant specified be-
low. The scaling function for the free energy is

f(gU)= ——g U + —gU/g U +2
2 2

+ sinh '(gU/~2) —s(U), (5)

N N

«~(»(~)l —= f '~~j (&')
~ 1i(j

xb —U
(
( (f4)1/2 )

where g = o /2+/ d/2PT—:At, A = o('(Pod/2P) /, and

s(U) is defined as

Z = d@d@* CC' dU

X exp
2mI. %d

N N
dz, dz*

* (f')
z

~ Ii(j
t'

x6I —U
((f4)1/2 )

(4)

If we now (formally) perform the integration over (z;)
in Eq. (4) the partition function will be expressed en-
tirely as an integral over the complex variable 4 and the
real variable U. In the thermodynamic limit, which is
equivalent to the limit N —+ oo, the integration over 4
and U can be done following the method of steepest de-
scents. A careful reader will recognize here some resem-
blance to the familiar vector 1/K expansion. After all,
the quadratic terms in the GL-LLL theory are exactly

apart from unimportant prefactors. The important ef-
fects of lateral correlations are contained in s(U). f(g)
depends on g both explicitly and implicitly, through U
(remember that U = 1/g(Pg), where (. . ) denotes the
thermodynamic average). Thus, we have succeeded in
deriving the desired form for the free energy. The ex-
plicit dependence on g is the rapidly changing part of
the thermodynamics which we have extracted exactly by
performing the integral over 4. The change in U through
the critical region is far slower and represents a conve-
nient place to hide our ignorance, as discussed earlier. U
as a function of g is determined from the condition that
the free energy be at its minimum: Bf/BU = 0. From (5)
all other thermodynamic scaling functions can be evalu-
ated by taking appropriate derivatives. The two most
important ones are magnetization and specific heat:

(, )~A
gHT
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x U + (Qg2U2+2 —gU)
dU

8g

(8)

0. 8

0. 6

where H,'2 ——~dH, 2/dT[ at T = T,p These expressions
are the same as the ones obtained in Ref. 14 except
for the last term in (8) containing [dU/dg~ which was
neglected as a small correction. Note that [dU/dg[ was
eliminated &om the expression for M(H, T) by using the
condition that the &ee energy be at its minimum. We
should further observe that the expression for M(H, T)
is exact while the one for C(H, T) displays only the most
relevant contributions [the full expression is easily ob-
tained directly from f (g)].

In the above equations s(U) (6) is unknown and thus
we cannot determine U(g) which is needed in expressions
for M(H, T) and C(H, T). This comes as no surprise
since finding s(U) is equivalent to solving the thermody-
namics of the DVP many-body problem exactly. But, it
is here that we can turn the problem around. As pro-
posed by Tesanovic et al. , while we do not know s(U),
we know enough about U(g) to solve the 98%%uo part of
the problem. First, in the perturbative regime (g )) ~2)
U + 1/~2 = 0.707. In the opposite, non-perturbative
limit (g « —i/2), U, by definition (6), must approach its
value for a triangular lattice, i.e., U ~ 1/i/1. 159 = 0.928.
Thus, U changes relatively little between these two limits.
This change should be monotonic and most of it should
take place over the interval g C [

—~2, ~2] characterizing
the nominal width of the critical region. Furthermore,
the interactions in the DVP start growing for g & —i/2,
forcing U toward 0.928. (Discussion of difFerent regimes
of the DVP can be found in Ref. 17.) This suggests the
following simple interpolation formula:

U(g) = 0.818 —0.110 x tanh
t'g+ ~21

22) (9)

The above expression should be a good approximation
to the "smooth" part of U. It also, indirectly, provides
an approximate form of s(U), which can now be recon-
structed by starting &om Eq. (9) and working back-
wards from the 8f/BU = 0 condition. When (9) is com-
bined with Eqs. (5)—(8), it gives an analytic, closed-form,
parameter-&ee description of the thermodynamic scaling
functions for quasi-2D systems.

It was already demonstrated in Ref. 14 that Eq.
(7) agrees well with the measured magnetization of
BizSrzCa2CusOip. In particular, Eq. (7) provides a
theoretical explanation for the experimentally observed
crossing point, i.e., the temperature T' at which magne-
tization is efFectively independent of the field. Here we
make use of some recent Monte Carlo numerical simula-
tions to test the 98—2'%%uo expression for the specific heat
(8). Specific heat, being the second derivative of the &ee
energy, is a more stringent test of the method. In Fig. 1
we compare the analytic expression for C(H, T) (8) and
(9) with the Monte Carlo result of Ref. 20. (Similar

0. 4

0. 2

00 i I

FIG. 1. The line with small dots represents the specific heat
of the 2D GL-LLL model obtained in the numerical Monte
Carlo simulation of Ref. 20 and normalized to the mean-field
value, b,C. Full black circles are evaluated from Eqs. (8) and
(9).

results for specific heat have also been obtained in the
Monte Carlo simulations of Ref. 21.) The agreement
is very good demonstrating that the 98—2% procedure
lives up to its name. Clearly, the agreement can be fur-
ther improved by including some fitting parameters in the
interpolation formula (9) or by devising a more accurate
analytic expression for U(g). Moreover, one could simply
use U(g) determined in a Monte Carlo simulation instead
of the approximate form (9) as an input to Eqs. (5)—(8),
resulting in virtually exact thermodynamics. An efBcient
way of doing this would be to combine the Monte Carlo
data for M(H, T) and Eq. (7) to extract U(g), which
can then be used in the specific heat and other thermo-
dynamic functions. While such improvements would be
useful they should still all lead to similar results at the
98'%%uo level as long as they are in agreement with the gen-
eral properties of U(g) outlined above Eq. (9). This is
the basic message of the 98—2'%%uo method: Once we have
succeeded in deriving I'(H, T, U) (5) the problem is as
good as solved for most practical applications. It would
take a determined effort to construct a physically plausi-
ble interpolation formula for U(g) which makes the ther-
modynamic functions deviate &om the exact solution by
more than a few percent.

It is appropriate at this point to comment on the re-
lationship of our 98—2'%%uo method to other procedures for
evaluation of thermodynamic functions, most of which
are based on high-order perturbative expansions. The
perturbation theory, of course, makes no distinction be-
tween the explicit and the implicit (through U) g de-
pendence manifested in our key results, Eqs. (5)—(8).
One simply obtains f(g) to a given order in 1/g2, in the
perturbative limit g )) ~2. Various procedures utiliz-
ing Pade approximants are then employed to obtain f (g)
over the full range of g. The principal efFort is therefore
needlessly expended on obtaining the rapid variation of
thermodynamic functions, the part of the problem that
can be treated exactly. What is an interesting issue here
is whether the perturbation theory can do a better job
of treating the remaining lateral correlations, i.e., of cal-
culating s(U) (6). Just by looking at Eq. (6), whose
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menacing appearance suggests that s(U) is likely beyond
reach of any perturbative scheme, one is tempted to give
a negative answer. Let us nevertheless consider a rela-
tively simple point concerning the limiting low-T result
for U(g), or (P~), as obtained from a typical perturbative
procedure. ~s The exact result is (PA) ~ 1.159. There
is nothing in the perturbative procedure outlined above
which forces (P~) to have this value in the low Tli-mit.
(This statement is supported by the results of Brezin et
al. ,

~ who argued that (P~) does not approach the cor-
rect low-T value even at arbitrary high orders in the per-
turbation theory. ) In fact, depending on how high one
goes in the perturbative expansion and which particular
approximants one uses, (P~) takes a series of different
values within several percent of 1.159. For example,
the 11th-order expansion used by Hikami et al. gives

(P&) = 1.159 + 0.03, which appears as a particularly
good result considering the said uncertainty. Actually,
it is not. The above error bars of +0.03 arise naturally
within the perturbative procedure. But, it is impossi-
ble for (P~) to have a value less than 1.159 within the
Hilbert space of the GL-LLL theory. Furthermore, this
uncertainty of ~2%%uo is the whole story. This is the full
"dispersion" of lateral correlations. For (P~) = 1.159
one has a perfect triangular lattice of (z;) whereas for

(Pz) = 1.19 one is already in the liquid state. ~s 22 This
2'%%uo uncertainty is conjectured to be inherent to any

perturbative procedure. It is due to an impossibility of
enforcing the LLL constraint at any finite order in the
perturbation theory. Therefore, the perturbative meth-
ods cannot be used to accurately account for the efI'ects of
lateral correlations which are essentially tied to this con-
straint. In contrast, the nonperturbative method of Ref.
17 used throughout this paper naturally enforces the LLL
constraint. For example, it is obvious from the definition
of s(U) (6) that U ~ 1/v 1.159 in the low Tlimit. The-
interpolation formula for U(g) (9) simply incorporates
this fact. We should finally observe that the high-order
perturbative expansion, if augmented (entirely by hand)
by the external condition requiring (PA) -+ 1.159 in the
low Tlimit, wil-l also provide a good description (albeit
unnecessarily complicated and entirely numerical) of the
98'%%uo of the thermodynamics.

The above detailed discussion of the 2D case gives us
confidence in the accuracy of our procedure and we will
now proceed to use it with impunity in the study of gen-
eral layered systems. It is important to recognize that
there is no reason to expect the 98—2% procedure to be
any more or less justified in layered or 3D systems than
it is in 2D. The lateral correlations in all cases should
account only for several percent of the answer. Just how
good the approximation will be can only be answered a
posteriori, by comparison to experiments and numerical
simulations. All we can say in advance is that in layered
systems with weak interlayer coupling we expect the 98—
2 '%%uo method to work as well as in 2D.

We now turn to the case of a general layered system.
The variables in (1) are rescaled as follows: r —+ +2vrI2r,
4'„~ (2vrPd2P/T) ~~44„. Introducing new dimension-
less coupling constants g = n/2vrPd/2PT and gz

q/2mI. d/2PT we obtain

It is clear from the above expression that there is no
single-parameter scaling in this general case. Various
thermodynamic quantities depend on two difI'erent cou-
pling constants, g and g„. Only if g„ is very small or very
large will a single-parameter scaling be restored corre-
sponding to 2D and 3D cases, respectively. Whether one
should use the quasi-2D or the 3D scaling forms or sim-

ply use general expressions obtained from (10) depends
on material parameters as well as on where one is in the
0-T phase diagram. It would be useful to have a crite-
rion which can tell us what is the efI'ective dimensionality
of the scaling functions. Such a criterion can be formu-
lated in the following way: We make the replacement
IC'„I4 ~ (P~)(I4' I2) directly in the free-energy func-
tional (10). In this way the lateral correlations have been
completely eliminated from the problem, and, naturally,
the resulting model describes different physics than the
original GL-LLL theory. The interesting point, however,
is that the quartic interaction term is now also degenerate
on the LLL manifold. Therefore, we have obtained a 1D
layered version of the O(2N) vector model, which can be
solved exactly by the 1/N expansion. Observe that this
vector model gives the same results as the Hartree-Fock
approximation but with (P~) set to its true thermody-
namic value instead of (P~) = 2. We will now make
an assumption that the longitudinal correlations of this
vector model represent a good approximation to the lon-

gitudinal correlations of the GL-LLL theory in the critical
region. Note that this assumption will not be true far be-
low the nominal critical region, near and below the phase
transition of the GL-LLL theory. Since the vector model
can be solved exactly we will use the dimensionality cri-
terion for this model as a good substitute for the same
criterion in the GL-LLL theory.

After the above replacement has been made we rescale
4„by ~U and obtain the resulting 1D layered O(2N)
vector model

We expand the order parameter as 4 (r)
exp(ikn)y (r)b A, where p (r) is a normal-

m, k

ized LLL function and N~ is the number of layers in the
system. The free-energy functional of our vector model
is then expressed as follows:

—= ) ([gU+ 2(III') +2g„Usin (k/2)jib l, l )
m, k

(12)
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From here we find

&Ib-~l'& =
gU+ 2(I2Ifl2) + 2g„Usin (k/2)

The self-consistency equation reads

to be applicable we must have g„U & gU + (I@I2)/2, as
explained above. The &ee-energy functional is obtained
&om (1) by taking the limit of strong interlayer coupling,

g„~ oo, expanding sin (k/2) and keeping only the lead-

ing k term. The partition function can be written as

&l~l') =
22TgU+ 2(lilfl ) +2g„Usin (k/2)

1
(14)

Z = tygt(r, () exp —— dr f d({d~gr(r, O~. T

+p I
8( 4'(r, () I

+ -pl 4(r, () I ) (16)

gU+-,' C ' gU+-,' 4' +2g„U

This can be rewritten as

(I@l')' gU+ gU+ + 2g U = 1
)

This is a quartic algebraic equation whose solution gives
(Iilfl2) as a function of g and g„. We can use (15) to de-
vise the criterion for efFective dimensionality of the GL-
LLL theory. In the limit g„~ 0, Eq. (15) becomes the
self-consistency condition of the OD O(2N) vector model.
Thus, provided gU + (I@I2)/2 )& 2g„U is satisfied, we

can use a quasi-2D version of the GL-LLL theory and
the corresponding 2D scaling functions. If, on the other
hand, gU + (I@I2)/2 ( 2g„U, an anisotropic homoge-
neous GL-LLL description becomes appropriate with the
3D single-parameter scaling. In all other cases we must
use the general model (10). The above dimensionality
criterion is easily recast into the more familiar form, com-
paring the effective superconducting correlation length,

{&(T,ff) = dt/gg U/(gU+ e(~tPP)/2), te the ieterleyer
separation, d. Note that (q remains finite throughout
the critical region, even below H,2(T).

Let us first consider the case of a homogeneous,
(an-)isotropic superconductor, which is the other exam-
ple of the single-parameter scaling. For this description

x [4(()Ct'({,')] exp— « ~lc'({')I' f'(4)

+~I &e [@(/:)f (f:)]I' + —IC'({')I'f'({,')

where the functional integrals, P&, Bt, etc. , are all de-
fined on a set of discrete intervals of size A. Formally,
at the end of the calculation, the limit A -+ 0 is to be
taken in all final results. This limit, however, is not en-
tirely trivial and will be discussed shortly. It is conve-
nient to recast (17) in a dimensionless form by rescaling
z ~ ~2~ez, q ~ Aq, C ~ (2~e2A2P/T) '~'e:-

where n = n(T)[1 —H/H, 2(T)]; o((T), p, and P are
now the 3D versions of the GL coefficients; o.(T)
o('(T —T,D); ( is the coordinate along H and the func-
tional integral is again restricted to the subspace Ap
of the LLL. We will employ here the continuous ver-
sion of the nonlinear representation for 4(r, (), namely
@(r,() = C ({,') g,.[z —z;({,")]exp( —lzl /4). This form
enables us to take advantage of the LLL degeneracy,
through the 1/N expansion discussed previously. With
these new variables the partition function (16) becomes

Z = B4 BU 'VI' 17%' exp —N d —ln 4 +g 4 +gq 4 I'

+gcl~cc'(&) I'+ gc@*((')[~cc'K)]~({')+ (")+ 4U, Ic'(Ol' — [U(&) I'(0 ~(()]

'V4 BU 'VI' 'VR' exp —N d 4,U, I', W (18)

where g = a(T) /22Te A/2PT, gq = (p/A2) /2Tre A/2PT, and we have introduced s[U, I', W] as

expN d 8 U, I', W

17z;(() 1
exp d( — N ln f4(() + 2) l—n Iz;({,') —zz({,') I

'a t&j

l—U({,') h ~{, I I

—I'(C) b"'
t)/fe(()'

I-~(&) . ( 9)
)/f'(t) t)/f*(C)/
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In the limit N + oo (which is associated with the ther-
modynamic limit) the functional integration over 4((),
U((), I'((), and W(() can be carried out in the saddle-
point approximation by the method of steepest descents.
Only the configuration which minimizes f[O, U, I', W]
contributes to the partition function. Such configuration
is found by taking the functional derivatives of f with
respect to all of its arguments, setting the derivatives
equal to zero and solving the resulting system of func-
tional equations. Again, as in 2D, this is not possible in
general since we do not know the functional s[U, I', W].
However, the plausible ansatz for this solution is that
W(() = 0 and 4, U, and I' are uniform. After minimiz-
ing f[4, U, I', W = 0] with respect to C (which again can
be done since s does not depend on it) we obtain the free
energy F(H, T) = NL, f(g, U, I'), where

f(g, U, I') = ——G'U'+ GUy—G'U'+ 2
2 2

+ sinh '(GU/~2) —s(U, I') (2o)

and G:—g+gql'. f depends on g explicitly and implicitly,
through U and I . Also, note that the lnU term produced
by integration over 4 has been absorbed in s(U, I').

The rapid change in the thermodynamic quantities
taking place in the critical region is again due to the
change in C, which we were able to integrate out exactly.
The changes in U and I' are comparatively far slower and
we can account for them in some average way. The ques-
tion of U is straightforward, just like in the 2D case. How-

ever, when trying to construct the interpolation formula
for I', which describes the average bending of (z, (()),
one encounters an unpleasant snag: The exact &ee en-

ergy (20) is actually divergent in the A -+ 0 limit. This
is a standard ultraviolet divergence which has nothing to
do with type-II superconductors. It is a general prop-
erty of the GL-type functionals. The gradient terms are
simply unable to prevent highly nonuniform configura-
tions &om contributing to the partition function. While
such terms cost considerable energy, the entropy gained
is much higher causing the said divergence. Actually, in
the GL-LLL theory this divergence is milder than in the
zero-Geld GL theory in the same number of dimensions.
This is because the LLL constraint regularizes the the-
ory in the zy plane leaving only the gradients along H to
do the damage. [The divergence will arise from s(U, I')
which is unbounded for I' m oo.] Of course, this diver-
gence is only a mathematical nuisance since in condensed
matter physics there are no ultraviolet divergences: It
simply indicates that final results depend on some short
lengthscale which serves as a natural cutoff and which
should arise &om the full theory in which the nonlocality
is fully included instead of being treated by the gradient
expansion. We will discuss this point again shortly. For
now we observe that the shortest lengthscale in the prob-
lem is the interlayer separation and/or lattice spacing of
the underlying crystalline structure. Clearly, A cannot
be smaller than this lattice spacing. Still, the choice of A

requires some care and it contains physical information.
For example, setting A to equal the interlayer separation
is a wrong choice if one is interested in an effectively 3D

0+K
U(g) = 0.818 —0.110 x tanh (21)

where K and M can be used as fitting parameters, but,
for simplicity, we can still take K ~2 and M 2~2,
just like in 2D (note, however, that the coupling constant

g is different). We see that now U is actually a function
of G = g + gqI' and is thus defined through I'. This
choice of U(g) is dictated by the fact that lateral cor-
relations arise through the quartic term of the GL-LLL
theory and their strength should therefore be a function
of the size of ~4'~ which itself is given by G. I' starts
from (6/p) (in dimensionful form) far above H, 2(T)
and is ultimately driven to zero for T ~ 0. This change
is expected to be smooth and slow through the critical
region. In this paper, we adopt a simple choice for I',
based on our expectation that the longitudinal correla-
tions of the GL-LLL theory are not very different from
the those of the vector model (ll), as long as one is in
the neighborhood of the nominal critical region. In this
vector model (11) I' can be easily calculated:

Q —tan 'Q tan 'Q
gqI = i g+ g +

2 tan vrU2
(22)

system (of course, it is the right choice for a quasi-2D
system). If we do that we will include those configura-
tions in the partition function which are really a part
of the "normal" electronic background and which cannot
be described by the GL-like free-energy functional. In
fact, in problems of this kind the cutoff is typically cho-
sen to equal the BCS coherence length. Still, within the
GL-LLL theory even this choice is not appropriate. If
the BCS coherence length is used as a cutoff the result-
ing free energy will not have a single-parameter scaling.
This is the consequence of including in the entropy the
configurations whose energy is actually higher than the
cyclotron gap: Such configurations have been integrated
out in the GL-LLL theory. Therefore, the proper choice
for the cutoff in the GL-LLL theory must respect the fact
that we are restricting ourselves to only those configura-
tions of 4(r, () whose "kinetic" energy along the ( axis
is at most of the order of the cyclotron gap. With such a
choice, the free energy (20) will generically obey a single-
parameter scaling (G will be a function of g only) and will

represent a genuine LLL contribution, while the contribu-
tions to the free energy arising from higher LL's, together
with everything else, form a slowly varying background.
In essence, to within factors of order unity, this will lead
to A being equal to the true (not mean-field) supercon-
ducting correlation length perpendicular to the layers, (q.
Throughout the nominal critical region this correlation
length remains finite and can be quite short, even below
H,2(T). Only far below H,2(T), as one is approaching
the phase transition, can this correlation length become
very long. This regime, however, does not concern us in
this paper.

The role of A clarified, we now specify U and I'. U
again changes from 1/~2 far above H,2(T) to 0.928 far
below H,2(T). We therefore again resort to our simple
interpolation formula
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where Q is a number corresponding to the cutoff in the
k space along the ( axis, in units of A. This number
should not be too different &om vr but otherwise can be
adjusted at will, reQecting the unfortunate and unavoid-
able dependence of thermodynamics on the ultraviolet
cutoff. A itself is given by

M(H, T), and the specific heat, C(H, T), have the fol-

lowing form:

1

(TH) ] (4P&4o) ~: g+ a2+

2vrI2 tan —' qA2 = 2p g+ g2+
2 T xU2 (23)

x GU —UQG2U2 + 2

(26)

The reader should be reminded here that A is, within
factors of order unity, equal to the superconducting cor-
relation length, (t. As stated previously, we are assum-
ing (t of the GL-LLL model to be well approximated
by the same quantity in the corresponding vector model.
Also note that the above expression for I' (22) involves
U which is itself specified through I' in Eq. (21). There-
fore, Eq. (21) is actually a rather complicated implicit
expression for U(g). Often, in view of the overall accu-
racy of the 98—2'%%uo method, such complications will be
unnecessary and one can simply set U 0.8 wherever it
appears on the right-hand side of (21). This gives us a
simple expression for U(g) which is then used in Eq. (22)
to determine I'(g). The expression for A in terms of g can
now be used to derive the relation between g and the con-
ventional 3D scaling variable, t—:[T —T, (H)]/(HT) ~:

1
Stan ' 2 3

=Bt, B=n'i

(24)

This relationship is not as simple as in 2D (where g oc t)
because the definition of g contains A which itself is a
function of g. As discussed earlier, the above expres-
sions are obtained in our basic approximation, which we
know is rather good in 2D and quasi-2D layered systems.
Obviously, in 3D there is an added uncertainty which en-
ters through correlations between I' and U contained in
s(U, I'), which we have in effect replaced by their average
when we used the vector model expression for I' (22).
However, since the most important integration over 4
was again carried out exactly and no rapid changes in I'
are expected in the nominal critical region, our procedure
should still be accurate to within several percent.

The &ee-energy functional in 3D is now written as

GU2

QG2U2+ 2
= —(1+ -gR) U

C P 1

T n'2 2

x [1+I(1+gR)]

+—GU' —UQG'U'+ 2
3

(27)

where
1

tan Ql ' Q —tan 'Q
xU2 ) 2tan 'Q

8

To keep the expression manageable, we have included
only the leading derivatives in the specific heat (the terms
containing dU/dg and the like have been omitted). We
have also expressed all of the thermodynamic functions in
terms of the single coupling constant g: The connection
between g and the conventional scaling variable t is given
by Eq. (24).

In Fig. 2 we compare the above theoretical result for
specific heat with recent measurements of Welp et al.
performed on the Y-Ba-Cu-0 system. The reader should
note that these authors use a somewhat different scaling
form for C(H, T) [they plot (C/T)H~~sT2~s versus the
scaling variable t] instead of the 3D form given above.
After adjusting for this difference the agreement between

f(g) = ——G U + —GUQG2U2+ 2
2 2

+ sinh (GU/V 2) —s'(U), (25)

Q —tan 'q tan
G =g+ —1 x g+ g2+

2tan 'Q

and U(g) is given in (21) [as in 2D, s'(U) can be de-
termined by working backwards from (21)]. All other
thermodynamic functions can now be determined by tak-
ing appropriate derivatives of f(g) The magnetizat. ion,

0 — i

FIG. 2. The open circles are the measured specifi. c heat
values of the 1-2-3 Y-Ba-Cu-0 system at 70 kG vs the 3D
scaling variable, t = [T —T,(H)'/(TH) ~, as shown in Fig.
4 of Welp et al. (Ref. 3). The line is obtained from our
Eq. (27). As indicated in the text, 3D scaling is satisfactory
near the peak but not farther above the peak testifying to the
layered nature of the system.
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theory and experiment appears to be rather good. One
should note, however, that Y-Ba-Cu-0 is a layered sys-
tem and, while it might behave as an anisotropic 3D su-
perconductor in the low-field region of the H-T phase
diagram, the 3D scaling will fail at higher fields. In fact,
if one considers all the data of Ref. 3 the agreement
with the 3D scaling forms cannot be characterized as very
good. This is why we have concentrated on the behavior
of C(H, T) near the peak, where the 3D scaling seems to
work better. Farther above the peak it appears that the
quasi-2D scaling becomes more accurate, reflecting the
layered structure of Y-Ba-Cu-O.

If the effective dimensionality is not three according to
the criterion derived from (15) but g„ is not very small ei-
ther, we have the general case in which there is no single-

f (g, g„, U, I') = ——G U + —GU QGz Uz +. 2

+ sinh (GU/v 2) —s(U, I'), (28)

which is exactly the same expression as (20) but now G =
g+g„I', g, and g„are defined above Eq. (10), and s(v, I')
is a discretized version of (19). As before, U(g, gz) and
I'(g, g„) are obtained by minimizing the above expression
with respect to U and I'. The magnetization and specific
heat are then given by

parameter scaling. We can find the expression for the free
energy by following the 3D derivation step by step and
simply using the discretized version of the ( dependence
in all the variables. In this way we obtain

( ' ) "~' "=Gv' —v&G v +2
gHT

(29)

(30)

where again M(H, T) is the exact form and only the lead-
ing terms are kept in the expression for C(H, T). We take
U(G) to be the same as in Eq. (21). Note that the last
term in (30) is the derivative of U(G) with respect to
G = g+ g„I'(g, g„) (of course, G itself is different than in
the 3D case). Finally, I'(g, g„) is specified the same way
as in 3D, by connection to the vector model. We have

(I~I')
U(G) (I @I')

where (~4~z) is the solution of Eq. (15). From (31) one
obtains I'(g, g„,U). The fact the I' and U are coupled can
be handled just like in the 3D case, by replacing U 0.8
on the right-hand side of Eq. (21), i.e. , by using G = g+
g„I'(g, g„, U = 0.8) in Eq. (21). [See discussion below Eq.
(23).] Since there is no single-parameter scaling the whole
procedure is now somewhat more complicated and it is
probably most efficient to implement numerically by first
solving the self-consistency equation (15), then obtaining
I'(g, g„) and U(g, g„) from (31) and (21), and finally the
free energy (28) and other thermodynamic functions (29)
and (30).

Before we conclude it is useful to discuss one general
point: All our results have been derived within the GL-
LLL theory, which is assumed to describe the critical
behavior near H z(T). While this assumption is both in-
tuitively clear [the reader should be reminded that the
Abrikosov mean-field solution near H, (T)zlies entirely
in the LLL] and widely used with much quantitative suc-
cess, it naturally has its limitations and it is useful to
spell out explicitly what these are. We start by observ-
ing that in the GL-LLL theory we make two different
and independent assumptions. One is that a GL-type
free-energy functional can be used to describe Quctua-

tions. The other one is that it suffices to focus only on
the LLL configurations and that other LL manifolds can
be ignored. Let us now discuss the validity of these two
assumptions in order: GL first and the LLL second. We
will discuss a 2D system in the perpendicular field but our
discussion can be readily generalized to a 3D case. The
first assumption (GL) is actually somewhat of an illusion.
To appreciate this imagine that we start &om the origi-
nal microscopic problem of the electrons interacting via
some effective attractive interaction. We can write down

the formal functional integral expression for the partition
function of this system. Then, we can eliminate the elec-
tronic fields altogether in favor of the bosonic Hubbard-
Stratonovich field which describes Cooper pairs. This
is an exact transformation of the original problem and
it simply amounts to expressing the partition function,
which is the trace of the Boltzmann operator, in a differ-
ent basis. The integration over the electronic fields gen-
erates familiar log determinants in the exponent which
makes the resulting bosonic theory rather complicated.
However, if we now make the assumption that the overall
amplitude of the bosonic field is small we can expand the
log determinant and stop at the quartic terms. A rather
general description of the critical behavior in a 2D type-
II superconductor in a magnetic field is then provided by
the partition function of the form

Z = 'V4' r exp —— dr dr' 4* r Kq r, r' 4 r'

+— dr" dr'"4* r 4 r'

x K4(r, r', r", r"')4'" (r")4(r'")

(32)
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where K2 and K4 are some general nonlocal kernels re-
specting all the syxnmetries of the problem and contain-
ing all the effects of the external field (the fluctuations
in the magnetic field itself can be ignored for strongly
type-II systems). The explicit form of these kernels can
be derived from the original electronic propagators.
The only assumption used in (32) is that it is safe to ne-

glect terxns which are of higher order in 4 than quartic
and that the quantum Buctuations of @ can be ignored.
This should be justified in the critical region as long as
the Ginzburg Quctuation parameter, 8, is small. It is well
known that 8 is indeed very small for all interesting super-
conductors including the high-temperature superconduc-
tors (HTS) (although, of course, it is considerably larger
in HTS than in most conventional superconductors). It
is less known that 8 itself can actually be measured di-
rectly from the so-called crossing point T' (see Fig. 3)
in the magnetization. The relation between the two is
(T,o —T')/T' = 8, where T,o is the mean geld tra-nsition
temperature for H = 0. T,o itself can be obtained either
by fitting the measured xnagnetization to the expression
(7) or by some independent method like the Aslamazov-
Larkin fit to the zero-field Buctuation conductivity. The
largest 8 obtained in this way is found in the Bi(2:2:1:2)
system, 5 8 = 0.045, which is therefore expected to be
the strongest "fluctuator" among HTS. [For comparison,

8 = 0.027 in Bi(2:2:2:3)and 0.010 in 1-2-3.] This abil-
ity to measure 8 directly instead of relying on various
indirect measurements of coherence length and other pa-
rameters is quite significant. It tells us the following: If
we assume that the Quctuation behavior can be repre-
sented by some 44 theory then there is basically a sin-
gle parameter, 8, measuring the strength of Suctuations,
the width of the critical region, the size of the higher-
order terms dropped in the expansion of the log deter-
minant, and the significance of quantum Buctuations. If
we now find that 8 is indeed small this makes the whole
procedure self-consistent and justifies the approximations
made along the way. Consequently, the partition func-
tion (32) describes superconducting fluctuations at any
II and T, as long as one is near H,2(T) and not at very
low temperatures. (So that the quantum fluctuations can
be ignored —they can be easily included in the GL-LLL
theory, if needed. ) Of course, this does not mean that one
should use (32) religiously in all circumstances: For ex-
ample, the physics at ener y scales higher than the BCS
condensation energy ( 8T,o) is not well described by
(32). Rather, it implies that the reasoning which led to
(32) is likely to be valid and should serve as a starting
point for inclusion of higher-order effects and corrections.

We now observe that the eigenfunctions of K2 form
macroscopically degenerate LL manifolds for particles of
charge 2e. This is an exact result in a translationally in-
variant systemz4'2s'2r (the underlying crystalline lattice
or weak disorder do not xnake a practical difference for
our present purposes). Furthermore, interaction K4, be-
ing of range given by the magnetic length which is the
shortest relevant length in the problem, can be replaced
by some effective local interaction of strength P without
a loss in generality or accuracy. So, finally, we have

riruuuili/l/HM&/18,

FIG. 3. An artist's representation of the H-T phase dia-
gram. The nominal boundaries of the critical region around
H, 2(T) are denoted by dashed lines. The width of the critical
region is given by 8, where 8 (& 1 is the Ginzburg auctua-
tion parameter. The GL-LLL description is valid everywhere
near H,q(T), as long as one is above the "critical region"
of the next lowest LL, shown by the dashed lines surrounding
H, z (T) (1/3)H, 2(T). When critical regions of the LLL and
higher LL's start overlapping the simple GL-LLL approach
becomes inappropriate and we may have to include several
LL's in our description of fiuctuations. The low-6eld regime
of critical behavior is con6ned to the shaded area containing
the (H = 0, T = T,o) point and bounded from above by the
HT 0 ——(8/16)TH 2(0) line (see text). In this regime the LL
structure is destroyed by the quartic interaction term. The
arrow indicates the T = T' = (1 —8)T 0 line along which the
magnetization M(H, T) (6) is essentially independent of H,
(Refs. 14 and 28), as observed experimentally. The H~(T)
line is the "vortex melting" transition which takes place only
far below the nominal critical region.

where j is the LL index, 4'~ (r) belongs to the jth LL man-
ifold and cr~ (H, T) is the corresponding eigenvalue of K2.
While it has a GL-type appearance the partition function
(33) has a rather different physical meaning. For exam-
ple, note that 4'(r) is a bosonic quantum field obtained by
the transformation of the original microscopic problem.
It is not the Quctuating superconducting order paraxne-
ter that is featured in the true GL approach. In fact, no
assuxnptions have been xnade about the presence of any
phase transitions in (32) and, as already explained, the
rapid variation of thermodynamic quantities through the
nominal critical region is not associated with the prox-
ixnity of the superconducting transition —it is instead the
rexnnant of the transition that takes place in that re-
gion above the dimension four. No gradient expansions
of slowly varying quantities have been made. The fully
nonlocal kernels K2 and K4 have been derived &om the
microscopic model and n~ and P are thus not soine un-
known coefficients of the GL functional written solely on
the basis of symmetry. They can be explicitly evaluated
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within a given microscopic model of superconductivity.
The correct way to think of (33) is as a true microscopic
representation of the original electronic problem as long
as the conditions under which it has been derived are sat-
isfied. The labels "GL theory" for our starting point (1)
and "fluctuating order parameter" for the Cooper pair
quantum field 4'(r) are used in this paper for purely his-
torical reasons; they have been used by everyone else over
the years.

This brings us to the justification of the LLL part of the
GL-LLL theory. The above form of the partition function
makes the qualitative eKect of finite magnetic field partic-
ularly evident. The fluctuating complex field i'(r) (often
referred to as the zy order parameter when the amplitude
fluctuations are ignored) has been "compartmentalized"
into different LL manifolds. It is clear that (33) exhibits
two physically distinct regimes: If the "cyclotron gap"
between diferent LL manifolds is small compared to the
quartic interaction term, LL's will be strongly mixed and
all LL's will be required to describe fluctuation efFects.
This is the low-field regime: The integrity of LL s is de-
stroyed by the quartic term and there will be no sign
of the LL structure in the fluctuation spectrum. In this
regime one might try to describe the physics of fluctua-
tions by some "semiclassical" modification to the 0 = 0
case, with the zy form of the order parameter still rela-
tively intact, such as the &equently used London descrip-
tion. The situation is entirely di8'erent in the opposite
limit where the LL splitting is larger than the interaction
term. The xy order parameter is then completely "blown
up" by the magnetic Geld and the critical behavior will

bear a clear signature of the LL structure. A finite num-

ber of LL's will be suKcient to describe the fluctuations.
In practice this number will be rather small, probably
always less than three and always dominated by the LLL
(see Fig. 3). In this high-field regime the GL-LLL the-
ory becomes an accurate description of the critical be-
havior and there will be no connection to the low-Geld

regime. The quanti. tative criterion which distinguishes
between these two regimes can be arrived at by using
already familiar rescaling which in effect sets P ~ 1/2
and ~, i g, in Eq. (33), with g, = n, i/27rl2d/2PT
If we now introduce dimensionless quantities w = T/T, o

and h = H/H, 2(0), we obtain g~. = [7. —7~ (h)]/i/07. h, .

where 8 (& 1 is the Ginzburg fluctuation parameter. The
H,2(T) curve [ho(r)] follows from ~ = ~~ o(h), while
7 = 7~&0(Ii) leads to h~ (7 ) hp(r)/(2j + 1). The criti-
cal region around H, 2 (T), determined by go E [

—~2, i/2],
is depicted in Fig. 3. The width of this region in the H-
T phase diagram is determined by 0 and it narrows for
T near T o and near zero ( 0) and bulges in between

( ~0). To keep things simple we have ignored such sub-
tleties in Fig. 3. In this region the gap to higher LL s,
g&&0 oc 1/~8, is much larger than unity and the quartic
interaction will not be efFective in mixing higher LL's.
Consequently, higher LL's can be integrated out provid-
ing a part of the structureless background. Thus, we are
left with the renormalized GL-LLL theory. This picture
becomes inadequate, however, when the "critical regions"
of higher LL's (defined by g~ E [

—i/2, i/2]) start overlap-

ping with that of the LLL, which will occur above the

shaded area surrounding the T = T,o, H = 0 point (Fig.
3). In this regime additional LL's have to be included
in the description of fluctuations: First the j = 1 level,
then j = 2, and so on. While the study of fluctuations
with several LL's included deserves further attention it
is likely to yield results qualitatively and quantitatively
similar to the GL-LLL theory since the LLL contribution
is always dominant.

This incremental inclusion of LL's cannot go on for-
ever. As the field gets lower one finally crosses into
the shaded region of Fig. 3 where the quartic interac-
tion in (33) strongly mixes LL manifolds and renders the
LL description useless. Here, some low-Geld approach,
completely different &om the GL-LLL theory, must be
used, as discussed above. The boundary of this low-

Geld region can be obtained by comparing the "cyclotron
gap" between LL's with the size of the quartic interac-
tion term and setting the ratio of the two to unity. This
gives h = (0/16)w as the upper boundary of the shaded
area in Fig. 3. Such a boundary is naturally only a
crossover between two qualitatively diferent regimes but
the factor of 1/16 is real. For example, we could choose
to absorb it in the definition of 0 but then 1/16 would
resurface in the expression for T*. Since in all super-
conductors 0 is much less than unity (0 10 in HTS
and is only smaller in most other superconductors) the
shaded region is rather small and the GL-LLL descrip-
tion of critical behavior, fortified if necessary by a next
LL or two, will be valid almost everywhere. For exam-
ple, in Bi(2:2:1:2)the shaded region in Fig. 3 is confined
to fields ( 0.8 Tesla. Furthermore, the reader should
note that the GL-LLL theory will also be valid far be-
low the nominal critical region around H, 2(T) [say, near

HM(T) in Fig. 3] as long as one is outside the "critical
region" for the next LL, gi E [

—i/2, ~2], which in. prac-
tice means above (1/3)H, 2(T). Below this line we may
have to include the next LL. Again, however, as long as
one is above the shaded region, the LL description re-
mains in force. At Gelds far above the critical region
around H,2(T) the GL-LLL will also eventually break
down with trivial consequences: The contributions of all
LL's become of similar size but the fluctuation efFects in
this limit are vanishingly small. Finally, for T & T 0, the
LL description has a rather narrow region of validity as
is clear from the above discussion.

In passing, we should observe that, while attempting to
calculate the contribution of fluctuations to various phys-
ical quantities, the summations over all LL's frequently
lead to divergences. These are again those (trivial) ultra-
violet divergences, present in the zero-field case as well,
which we have already discussed in the context of the 3D
GL-LLL theory. These "divergent" contributions, when
correctly regularized, are simply part of the uninterest-
ing background. The challenge is to properly isolate the
rapidly changing part of the thermodynamics containing
the real low-energy physics. This is exactly what the
GL-LLL theory accomplishes in the critical region near
H,2(T).

In conclusion, we have constructed thermodynamic
scaling functions for the critical region near H,2(T). A

clear physical picture was used, taking advantage of the
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weakness of lateral correlations to solve the GL-LLL the-
ory at the 98%%uo level of nominal accuracy. The weakness
of these peculiar lateral correlations is a purely geometric
effect of the LLL and can be traced back to the constraint
that the external magnetic field places on the Quctuat-
ing order parameter. This 98—2% method was found
to be very accurate in quasi-2D systems, at the level
of a few percent, just as advertised. Consequently, the
problem of the "smooth" thermodynamics near H,z(T)
in layered systems with weak interlayer coupling, super-
conducting thin films and superconducting superlattices,
is basically solved for most practical purposes. Further
improvements might concentrate on including the effects
of higher LL's which should become important at lower
fields. Following the same method, we have also derived
the scaling functions for an (an-)isotropic 3D supercon-

ductor. The agreement with the available experimental
results is good but just how accurate the 98—2% method
is in 3D is diKcult to assess before more experiments on
purely 3D systems become available. Similarly, it would
be desirable to compare our results to numerical Monte
Carlo simulations, which have not been done yet for a 3D
superconductor near H,2(T). We expect, however, that
the 98—

2%%uo method will live up to its name in the 3D case
as well.
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