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We use a large-N renormalization-group (RG) method to study a model of interacting boson system

with a quenched random potential. In the absence of impurities, the pure boson system has a critical

point that describes the superfluid —Mott-insulator (SF—MI) transition. The SF-MI transition of d-

dimensional bosons belongs to the (d +1)-dimensional XY model universality class. In this paper, we

study the dirty-boson critical points in the neighborhood of this pure SF-MI critical point. In general,

the on-site random potential in the original lattice model gives two types of randomness in the effective-

field-theoretic action. One is the randomness in the effective on-site repulsion m (x) and the other is the

randomness of the chemical potential u (x). It turns out that d =2 is the critical dimension for both

types of disorder but the roles of these two types of disorder are reversed as d =2 is crossed. Applying
e=d —2 expansion, we found coupled RG equations for both kinds of randomness which reveal several

nontrivial critical points. A11 the weak random fixed points we found have three or more relevant direc-

tions. We conclude that the direct SF-MI transition is unlikely to occur near two dimensions.

I. INTRODUCTION

The problem of repulsively interacting bosons in a ran-
dom potential has been the subject of intense research re-
cently. ' ' This so-called dirty-boson problem contains
the essential difficulty of understanding interplay between
interaction effect and randomness. One of the reasons
why this problem is very challenging is that there is no
sensible noninteracting limit for disordered bosons. That
is, the zero interaction limit is pathological in the sense
that the bosons will condense into the lowest localized
state around a small region. For the metal-insulator tran-
sition of electrons, which has been understood better, dis-
order alone or interaction alone can induce localization
of electrons and drive the electrons to the Anderson-
insulator or the Mott-insulator (MI} state. " The inter-

play between these two effects has been studied during
the last decade but there are still open problems. "

The dirty-boson problem has direct experimental reali-
zation of He in Vycor glass and in other porous
media. ' ' This disordered interacting boson problem
may be used to understand the superconductor-insulator
transition in the disordered thin films' and short
coherence-length superconductors. ' Recently Wen and
Wu' showed that the superBuid-Mott insulator transi-
tion of bosons with the Chem-Simons gauge field can de-
scribe the transition between quantum Hall (QH) states in
the absence of disorder. Therefore, the dirty-boson prob-
lem with the Chem-Simons gauge field is intimately relat-
ed to the quantum Hall transitions in the presence of ran-
dom impurities. The QH —MI transition for the pure sys-
tem is also studied by Chen, Fisher, and Wu' in which
they studied fermions with Chem-Simons gauge field.

Following Fisher and co-workers, ' we can write the
Hamiltonian of the interacting lattice bosons in a random
on-site potential as

H =Ho+Hi,

IIo = —g (
—Jo+ls+5p;)8';+ —,

' V g 8;(it; —I ),

Ht = QJ,J(b;—tbI+H. c. ),
l,J

where 8'; =b;~b; and b;~ is the boson creation operator at
the site i. p is the average chemical potential that fixes
the boson density and 5pt is the random on-site potential
with zero average. J; is the hopping matrix element and

Jo =g J; . In order to study the critical phenomena of
the system, it is convenient to find the effective-theory.
We will summarize the approach of Fisher and co-
workers. ' First the of-site hoping term in H, is decou-
pled by introducing the Hubbard-Stratanovich field 4;,
then the resulting action can be expanded in terms of 4;.
Since 4; is linearly related to (b; ) for small (b; ), the
field 4, can be identified as a superfluid (SF) order param-
eter. It was shown that the effective-field-theoretic ac-
tion is given by

d~k dcoS= f (k +co )lV(k, co)l
(2n } 2m

+g (w+w;)l%;(r)l

+y f dr(u+u, )e,'(r)a,e, (1)

(2)

where w;, u; are random functions of i with zero average.
It is established that SF-MI transitions of the pure

system has two universality classes, the commensurate
case and the incommensurate case. In the commensurate
case, the superfluid density commensurates with a period-
ic potential. In this case, SF—MI transition is described
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by a tricritical point which belongs to the universality
class of (d +1)-dimensional XY model with the dynami-
cal exponent z =1. In the incommensurate case, the
SF—MI transition happens on a line in the w —u plane.
It is argued that the generic SF—MI transition should be
the latter case (with z=2 at the transition) rather than
the former case.

One natural question is that how disorder affects these
two different SF—MI transitions. The destruction of
superfluid in the presence of disorder brought the con-
cept of the Bose-glass (BG) phase ' in which bosons are
localized by disorder. In seminal papers, Fisher and co-
workers' suggest a scaling theory of SF—BG transition.
They argued that superfluid-insulator transition should
occur through the Bose-glass phase and the generic tran-
sition should be described by the action (2) with u + u, %0
which does not have space-time isotropy. In the scaling
theory, they postulated that the compressibility is totally
due to the phonon mode and one of the main results of
this assumption is that the dynamical exponent z =d.
The simulation of the quantum rotor model and some
renormalization-group calculation partially supported
this picture although a recent quantum Monte-Carlo cal-
culation contradicts to these results. The earlier work of
Ma, Halperin, and Lee (MHL) was reexamined and the
importance of the term that is linear in co is emphasized.
However, it was also argued that MHL theory may apply
to the possible direct SF—MI transitions in the commens-
urate case (particle-hole symmetric case).

We can see that the dirty-boson effective action has the
strict particle-hole symmetry if u +u; =0. It was also ar-
gued that the general commensurate case corresponds to
the weaker particle-hole symmetric case, i.e., u =0 but
u;%0. Are the transitions of particle-hole symmetric and
asymmetric cases in the same universality class? Origi-
nally Fisher and co-workers' preferred that even arbi-
trarily weak disorder will induce the Bose-glass phase for
both of the incommensurate and commensurate cases
[Fig. 1(a)]. However, numerical calculations in Ref. 8
have not revealed the intervening Bose-glass phase in the
commensurate case, although the superfluid-insulator
transition indeed occurs through the Bose-glass phase in
the incommensurate case [Fig. 1(b)]. Singh and Rokhsar'
performed a real-space renormalization-group (RG)
analysis for the commensurate case and they found the
direct transitions from SF to MI when the disorder is
sufficiently weak; the Bose glass is found beyond a thresh-
old [Figs. 1(a) or 1(b) depending on the impurity
strength]. Zhang and Ma considered hard-core bosons
with disorder. In this real-space renormalization-group
analysis of a quantum spin- —,

' XY model with transverse
random field (the hard-core boson model is mapped to
this model), they concluded that commensurate and in-
commensurate cases are in the same universality class
and the SF—insulator transition occurs always from the
Bose-glass phase [Fig. 1(a)]. The conventional
renormalization-group calculation by Weichman and
Kim, in which they used double dimensional expansion
around d =4, partially supported the original picture'
for the general dirty-boson problem although some tech-
nical problems exist.

In this paper, we are going to study a large-N generali-
zation of the original action. By doing 1/X expansion,
we can treat the interaction nonperturbatively in the cou-
pling constant. Both types of disorder are assumed to be
weak and we do the perturbation in the strength of two
types of disorder. The large-X generalized action of the
original dirty-boson model in the Eucledian space is given
by

S= co+U k +8 k~
(2m )

+ I d xdr (u+u(x))P;B,P;

+w(x)P;(t;+ (P;P;)

where i =1,. . . ,% and E =1 corresponds to the original
model. u(x) and w(x) are Gaussian random functions of
x with zero mean and their variances are given by
(u(x)u(y)) =UO5 (x —y) and (w(x)w(y)) = Wo5 (x

(b)

(c)
FIG. 1. Three possible phase diagrams for the dirty-boson

system described by Eqs. (2) and (3). Our RG results favor the

case (a). The boson density commensurates with the lattice in

the MI phase and on the dotted line. In (a) there is no direct
SF—MI transition. In {b) direct SF—MI transition is described

by a tricritical point. Both of the BG and the MI phases are in-

sulators, but the former is gapless and the latter has a finite gap.
The commensurate dirty-boson model is defined on the dotted
line and its extension in the MI phase.
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—y), respectively, where ( . . ) means the random aver-
age.

When u+u(x)=w+w(x)=0, (3) describes the mul-
ticritical point of SF—MI transition of the pure boson
system. Near d =2, both of u and m terms are strongly
relevant. In this paper, we will take u =w =0 and study
the RG flow of Up Wp and v, . The Physical meaning of
setting u =0 is the following. We tune the chemical po-
tential p to make the average boson density always com-
mensurate with the lattice. Thus, we will call (3) with
u =0 the commensurate dirty-boson theory.

Our RG calculations are done at the critical point and
with the renormalized mass term w=0 in the course of
the renormalization. Since the effect of the P term is cal-
culated exactly at each order of 1/N, the coupling con-
stant gp is not renormalized. Following Ref. 19 and us-

ing dimensional regularization, we move an infrared scale

p in the renormalized theory with fixed bare parameters
to obtain the RG flow of the renormalized parameters.
Introducing dimensionless measures of disorder,
U=(U/v )p and IV=(W„/go)p, we performed
e=d —2 expansion. The resulting renormalization-group
equation up to (1/N) order is found to be

dl
=eW+aUW+bW

= —eU+bWU —aU
dl

d(lnv} bU+ W—
di

where a = I/2m. , b =128/n. , c =64/rt and l is the loga-
rithmic measure of the RG flow. This is the central re-
sult of this paper.

Looking at a~0 case, we can immediately see that
there is only the pure fixed point which is given by
U =0, W*=O. At this trivial fixed point, Uis irrelevant
and W is relevant so that the RG flow goes to the strong
randomness regime where our RG breaks down. Howev-
er, for e(0, there are three fixed points. All of them
have at least one relevant direction in the U —W plane.
Thus, including u and w, these fixed points in the original
theory (3) have at least three relevant directions. There-
fore, in both cases, the direct SF-MI transition in the
W —U plane is unlikely to occur due to the absence of the
weak random fixed point with two or less relevant direc-
tions. The superfluid —insulator transition is always
governed by a strong random fixed point which cannot be
reached by weak randomness expansion. More details of
the RG flow will be discussed later.

The organization of this paper is as follows. In Sec. II,
we consider a restricted model in which u(x)=0 and
show the basic formalism we used. Here, we also exam-
ine some possible effects of long-range interactions. The
RG calculation for the generic commensurate dirty-
boson problem up to ( 1/N ) order is presented and the
RG equation is calculated in Sec. III. We also discuss the
results. In Sec. IV, the 1/N correction due to P interac-
tion is considered. In Sec. V, we summarize and con-
clude this paper.

II. RENORMALIZATION-GROUP ANALYSIS
FOR THE STRONG PARTICLE-HOLE

SYMMETRIC MODEL

In this section, we consider a rather restricted model in
which we set u(x}=0. This corresponds to the strong
particle-hole symmetric case in the sense that more gen-
eral model requires the particle-hole symmetry only in
the average sense, i.e., (u(x)) =0 and allows the local
breaking of the symmetry at each site. We would like to
consider more general long-range interactions

f d xd yP (x)V(x y)—P (y) with V(x) ergo/ixi " and

V(q) =go/q (0 A, (1/2). The A, =O case corresponds to
the usual short-range interaction. However, it should be
mentioned that these are not the true long-range interac-
tions of bosons because the true one should be
V(x —x')p(x)p(x') and p(x) =i(P Bog

—
Bog (I)). But the

long-range interaction between densities will induce the
long-range interaction in the P term.

In order to perform the RG calculation in the critical
theory, we need to introduce an arbitrary infrared mass
parameter p. ' We will use the dimensional regulariza-
tion method to calculate relevant divergent diagrams.
The renormalization of the theory is given by the renor-
malization of two-point I' ' and four-point I ' ' vertices.
We will take the inverse of the full propagator as a two-
point vertex and the two-boson scattering amplitude as a
four-point vertex function. The relation between the bare
theory and the renormalized theory is given by

where I b„', and I' ' represent the bare and the renormal-
ized vertices, respectively. We found that appropriate re-
normalization condition for I' ' can be chosen as

I-(2)
BN q =ILI,,hm Oco= avp

q=p, hm Oco=avp

2

(6)

Ci d 3
3

Vp

1 I [(3—d)/2]I [(d —1)/2]
(4 )(d+ I)/2 I (d —1)

(8)

The renormalization condition for the scattering ampli-
tude will be discussed later. Also, following standard
procedure, we require the independence of the bare
theory with respect to p,

d
P d ~A baredp

where A is the mass parameter of the bare theory.
Let us start with the evaluation of the self-energy to

the (1/N) order. The (1/N) order self-energy diagram
is given by Fig. 2(a). The polarization bubble II,(q, co =0)
in Fig. 2(b) is calculated as

dk dv 1 1
Iii(q, rv=O) =

(2m. ) 2~ v +vok v +vo(k —q)
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(a)

Note that c2 and c3 diverge at d =2+2k, . Therefore, let
us try e=d —2 —2A, expansion in order to handle these
divergences. Also, for convenience, let us introduce di-
mensionless measures of the disorder
Wo=( Wouo/go)A + in the bare theory and
W=( Wu /go)p + in the renormalized theory. Add-
ing appropriate counter terms to cancel the 1/e diver-
gences from c2 and c3 and using the renormalization con-
ditions (5) and (6), we get the following equations:

C3Z=1+ W ln —,
ci p

vo=Z v 1 —W ln—2

ci p

(12)

(c)
FIG. 2. (a) Self-energy correction due to the w(x)-type disor-

der. The wavy line represents the interaction and the dashed
line with a cross X means the impurity average. W means

w(x)-type disorder. (b) The polarization bubble II&. (c) The re-
normalized interaction (thick line) due to the w(x)-type disor-
der.

W
-X-

Assuming 3+A, )d, the diagram in Fig. 2(c) can be ap-
proximated as

W
-X-

1
Wo

1+II&(q,co=0)(go/q )

'2 6
2(3+A.—d )

o 22qC80 (c)

Using this result, we can evaluate the self-energy as

Wvd k 1 o o
(k )p(3+g d)

(2m) co+u k c g

W v
(

4+28.—d+ ~ 2+2k, —d)

I (d/2 —2 —
A, )I (3+A, —d/2)I (d/2 —1)

I (d —3 —
A, )I (2+A, )

(10)

W
-X-

(e)

2—co 1

MJ
2+a,—d

g
2 2 q

+voq 1
0 0 2 2+2K, —d

g2 C2

X
I (d/2 —2 —A, )I (3+)(,—d/2)I (d/2 —2)

I (d —3 —)(, )I (1+A, )

where voq &)co is assumed. The bare two-point vertex
I b„', up to (1/N) order is

I' ' =co +u q X(q co)—
FIG. 3. (a), (b), (c), (d) are diagrams that contribute to the

four-point function up to 8' order. (e) The renormalized polar-
ization bubble IIl. The double line means the renormalized full

propagator. (f) The polarization bubble II2. (g) The vertex Vi.
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where c2 =ec2 and c3 =ec3. From p independence of the

bare parameters, we get
symbolically as

r„„=r,.„,+r,.„,+r,.„,+r,'.„,(4) — (4) (4) (4) (4)

C3
p (lnZ) = —W

aj C21

(13)

1

1+g (II,+II )

C2
p v =P(v) =—,

'

aP 2
C21

C3

c2
1

Wv .

Now we are going to renormalize the four-point func-
tion I' '. We will take the scattering amplitude of two
bosons ai q1=q4=q q2 q3 1 2 3 4
our I . First of all, let us calculate I b,'„ in the bare
theory. I b„', in the (1/N) order is the sum of I b„', &,

3(b), 3(c), and 3(d), respectively. Let us introduce a re-
normalized polarization bubble II1, a new polarization
bubble II2 and a vertex V, which are given by the dia-

grams in Figs. 3(e), 3(f), and 3(g). I b,'„can be calculated
I

X Wo+2V1
1

1+g II,
Wo . (14)

Evaluation of IIz(q, co=0) is a long task and the result is

The bubble II, which is renormalized by the self-energy
correction is given by

dk dv Z Z
II~ q, co=0 =

(2m} 2~ v +v k v +v (k —q)

C1

3

II (q, co=0)=

where

gael (2m)d (2m. ) 2~ vo(k —q) +v vok +v vo(k —p) +v vo(k —p —q) +v p '

W
d —3 2+2k.—d

q
VOgO C1

1 I (1/2 —
A, )e=

(4~) + r(d —3 —
A, )

1 —x(
x d/2 —2 —2

( 1 x )2
—z.—d/2

X1 X2X 2

1 1 —y)
X f dy, f dyzyz "(xz+yz(1 —xz))

X [x ) (1—x ) )(1—xz)yz —x )yzxz —2y )yzx )xz(1 —xz)

+yi(1 —yi)xz(i —xz)']' '" . (17)

We found that the A,AO and A, =O cases should be treated separately. First, for A, =0 case, it is found that the constant e
does not diverge as e~O so that it can be dropped in the final RG equations. Now, let us look at the case of LAO. The
strategy is that we investigate the most divergent contributions in various limits and add up all of the contributions.
Since the most divergent contribution comes from xz ~0 or yz ~0 limit in Eq. (17) and we want just this contribution,
we can set xz =0 or yz =0 inside the square brackets in Eq. (17}. We found that both ways give the same answer. Here
we will take xz =0 limit inside the square brackets and multiply by 2. Equation (17}becomes

xz —1/2(1 x )2
—1/2 dx xd/2 —2 —2, (1 x )2 3. d/2 d

— —
d d/2 —3

d+1/2 r(d 3 g) 0
& & &

0
2 2 2 yl yzy2

2 r(1/2 —
A, ) 2.—1/2

( 1 )d/2 —3/2

(4 } +'/ I (d —3 —
A, )(d/2 —1 —

A, )(d/2 —2) 0

X f dy (1 y )d/2 —2

where only the leading divergence is taken in the second equation. The evaluation of the remaining integrals is straight-
forward and the result is

2I ( 1/2 —
A, )r(d /2 —1/2) I (A, + 1/2)r(d /2 —1)

(4m. )
+' (d/2 —1 —

A, )(d/2 —2)I (d —3—
A, )r(d/2)I (A, +d/2)

2 2 I (1/2 —
A, )r(1/2+A, +e/2)r(A, +1/2)r( —1+A,+e/2)

e (4 )
+' I ( —1+)(,+e)r(1+A,+e/2)r(1+2K, +e/2)
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1

(4m )
d1

1

(4~)'"
2(A, —1) d —3 —

A,
d]k

d —4 d —2—I,

Vf (q] q3 q 'q2 O, co, =co3 =co,co2= 0) can be evaluated similarly as

8 pvp ddp 1 1 pvp 2+2K, — d1 cO d2
V =

2 (2 )d 2( )2+ 2 2 2+ 2 2(d 3 3) g2 2 2q2 c2

I (d/2 —1 —
A, /2)I (2 —d/2+k)I (d/2 —1) I (e/2)I (1—e/2)I (A, +e/2)

I (d —2 —
A, )I'(1+A, ) r(X+ e)I (1+k)

(21)

where voq &)co is assumed. Note that d2 =0 for the short-range interaction (A, =O).
Putting together all of these results, we can get the following I b, '„(q, =q4=q, q2=q3 0 co] f02 c03 c04 co),

~(4)
bare 8'p+2 V1

1

gP( II ]+ II2)

8'pv
2(3—d)Z —4

g2C2

1 8'0
gPII1

8v' d
2+2K, —d +2 2+2k, —d

g2 C3 Z2 q
g

2 C2

~2

vpq C1
(22)

The renormalization condition for I' ' is taken as

WV 2( 3 —d)I' '(q& =q4=p, q2=q3=0, limco, =co2=co3=co4=avp)= p '3
a~p gpC1

(23)

We introduce again W=( Wv /go )p
+ " and

Wv=(Wvvv/gv)A + . If appropriate counter terms
were added to cancel the 1/e divergences, the following
equation can be obtained:

2 d —2 —2jlL,

8'p = 8'Z
v

c2 and c3 are given by

C 2

C 3

2 I (2—e/2)I (A, +e/2)
(47/) r( —1+A.+e)r(2+A, )

'

2 e I (2—e/2—)I (
—1+A,+e/2)

(4~)«2 r( —1+X+e)r(1+X)

(27)

— e A -dt Ax 1+2$' 3ln ——2w
2
ln-

c1 P c1 P
' d —2 —2A,

Now, the RG equations for 0& A, & —,
' up to (1/N)v or-

der is

dR' 4= —P( W)=eW— 8'
c (4n) 1(2+A)

X 1+
2

V'3+ &2+2 —2d1 ln-e — A
(24)

dv 1 2= —p(v) =- v8',
dl c2 (4 )d/21 (2+/)

where the following coefficients are used:

(28)

where F=ee and Z, =ed, . Using the fact that the bare
parameters are fixed, as we change p, we get the follow-

ing equation for 8:

Let b be the reduction factor for the momentum scale
from p to p/b, then the RG equations for Wand v up to
(1/N ) order is

dS' = —P( W}=eW—
dl 2 C2 +C3 +2 2d1

(26)

dv

dl
= —P(v)= (c —c )vW,

p, W—:P(W)= —eW+ c +c +2 —2d& W
at c21

2 3
c1

(25}

C 3

2 1 —
A,

(4~)' ' I (2+A, )
'

2 1

(4~) I (1+A, )

1 3 ~C

C1

4 1

(4~) ~2 I (1+A, )

For the usual short-range interactions A, =O,

dW
p(W) W+ 128 W2,

dl

dv 64= —P(v)= — vW,
dl

where

(29)

(30)

where l =lnb is the logarithmic measure of the RG flow. c1=—, , c2=1/~, c3 = 1/w &
d1=1/w (31)
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were used. e =ee is the order of e for the short-range in-

teraction and is dropped in the RG equation.
The RG equations (28} for LAO tell us that the disor-

der is relevant for d )d, =2+2K,, irrelevant for d &d„
and marginally irrelevant for d =d, . For d, &d &3+A,,
the pure fixed point 8'=0 is unstable. However, there is
a stable fixed oint which is given by W'=e'/g, where

Q =4/c i (4n ) I (2+A, ). From P(v), we can read off the
dynainical exponent z =1+(1/ci )[2/(4n. ) ][1/I (2
+A, }]$".More specifically, z =1+@/2 at this stable
fixed point. For d & d„ the disorder is irrelevant and the

pure fixed point is stable. Therefore, we can expect the
direct superfluid-Mott-insulator transition for d d, .

Now let us look at the short-range interaction case
A, =O. From Eq. (30}, we can see that the disorder is
relevant for d ~2 and irrelevant for d &2. Therefore,
there is only the unstable pure fixed point and the RG
Bow goes to the strong disorder regime for d=2 and
slightly larger than two. For d (2, the pure fixed point
becomes stable. There is also an unstable fixed point
which is given by W'=~e~m/128. The dynamical ex-

ponent at the unstable fixed point is z = 1+
~ e~ /2.

III. RENORMALIZATION-GROUP ANALYSIS
FOR THE COMMENSURATE DIRTY-BOSON MODEL

N ow we are going to study the generic model (3) with
u =w=O. Here, we consider the usual short-range in-
teraction A, =O. The disorder characterized by u(x) in
Eq. (3} will be considered in addition to the iu(x)-type
disorder. This means that we have to consider more dia-
grams that are generated by this new disorder. The addi-
tional self-energy correction due to u(x)-type disorder is
given by the diagram in Fig. 4,

d "k
Xz(q, co) = —Uoco

(2n. )" co +uo(q —k)

FIG. 4. The self-energy correction due to the u(x)-type dis-
order. The dashed line with a cross X means the impurity aver-
age. U means the u(x)-type disorder.

Ci
p, (lnZ}= —W +2'4U,

~IM c i

8
p, u =P(u}=—,

' — 8'v+c4Uv .
~p ci c,

(34)

There can be 5 additional diagrams that contribute to
I b„',. Let us identify I'b„', 5, I b„', 6, I b ', 7, I b„', 8, and

rb 9 as the diagrams in Figs. 5(a), 5(b), 5(c), 5(d), and
5(e), respectively. First of all, let us evaluate the new ver-
tex Vi of Fig. 6(a)

V2
U2 d 1 1

(2n ) vo(q —p)z+coz v(p +chez

It is clear that we need to do an E=d —2 expansion in or-
der to handle the divergences. Let us introduce addition-
al dimensionless measures of the disorder
Uo=(UO/uv)A and U=(U/v )p, in the bare and
the renormalized theory. Adding appropriate counter
terms and using (5), (6), and (7), we can again obtain the
following equations for Z and U:

Up
4C 2~d —2

Up

(32) U 2 40
d d —4' +d d —6 CO

2 3& 2 4& 4
Vp Vp Vp

r(1 —d /2)
(4 )d/z

The new bare two-point vertex I'b, '„up to (1/N) order is
1 r(2 —d/2)I' (d/2 —1)d3=

(477) ~ r(d —2)

I b+&e co +uoq Xi(q, co) —X2(q, co)

8 pVp C3 Up
2

go C1 Vp Up

d —2 1 r(2 —d /2) r(d /2 —2)I'(d /2 —1)
d4 (4~)"" I (d —4)

(35)

+Upq 1
8 pVp C2

2

g
2 2 g (33) where voq &)co is assumed. The bubble II3 of Fig. 6(b) is

given by

dk dp dv z 1 1

(2~)d(2~)d2~v2(kq)2+v2v2k2+v2

where

l 1

uo(k —p) +v vo(k —p —q} +v
UO~d —3 d —2, Je
Vo

(36)
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1 I (5/2 —d) z' (1—z)'f=— d, dx dy dz
2 (4~) +' o o o [x(1—x)z+y(1 —y)(1 —z}j

9
(4) — (4)

"bare X "bare, i
i=1

'2 2
1

I+g, (11,+ rr, +11,}
'2

Wo+2(V]+ V2)
1

1+g II,
Wo —Uoco (1+2V, +2V2)

'2

Wo —
Uolte (1+2V, +2V2)

gPII l

1

go(II]+ IIz)
Wo+2( V&+ V2)

(4) (4)I bare, w+ I bare, u

is a convergent integral. We can see that the bubble II3 is smaller by the factor e (setting d =2+@)than II, and II2 so
that the contribution from I b„', 9 is higher order in e and we can neglect it.

Using the calculated V2, we can evaluate. I b,'„as

where

W v
I (4) 2(3 —d)Z —4

bare, w
gPC l

X 1+
—2 2

Wp e v', , Wpvp
+2

Z g2 2

U 2 4—2 d d —4 +d d —6
3q 2 4q 4

Vp Up Up

I be e, u Uo~ I 2 d3q' ', +d4q" '
Up Up Vp

Wpup dl2

+2 q
gp Cl

(39)

I (4)
q& =q4 =p, q2 =q3 =O, lim pQ)] Q)2 Q)3 I@74 Qpp

6

p
Wu 2(3

g2C2

gI (4)
u

q, =q4=p, q& =q3 =O, lim pN Qp Q) QJ —QI}p

(40)

= —U.

Adding appropriate counter terms and using the renor-
malization condition, we obtain the following equations:

2 d —2-
Vp

Wp= WZ
V

1+2
z

—d, ln—W e — A

Cl P

where d2 =0 for the short-range interaction is used.
We take the following renormalization condition for

I (4)—I (4)+I (4).
W u

U

U
U

'd —2

1+ (c3+c2+2 —2d &)ln—W e — A

(a)

U UQ= UZ
Up

2 d

'2

A—Uc4ln-
p

A
1 —2W ln-

Cl P

(41)

W
-X-

1 —
2

(c3+c2+2d, )ln-
Cl

A+ Uc41n-
p

W
-X-

(e)
FIG. 5. Additional diagrams that contribute to the four-

point function in the generic commensurate dirty-boson model
up to second order in the impurity strength. FIG. 6. (a) The vertex V2. (b) The polarization bubble H3.
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X W —c4UW, (42)

U—:P( U) =aU —(ci+ci+2di ) WU+c4U
C 1

where 2'4=ec4 and for small e, the coeScients of these
equations are given by

ci =1/8, Z'z =1/n, ci = —1/n,

Vq= 1/(2m ), di =1/m .
(43)

%e can ignore F which is the order of e. Now the RG
equations for W U, and u are given by

= —P( W) =@W+ UW+ W
dl

U — — 128--= —P( U) = —eU+ WU — U
I 7T 2'

64 — 1
uW — uU,

7T 2'
where l is again the logarithmic measure of the RG low.
The RG flow is drawn in Fig. 7(a) for e & 0, (b) for e & 0.

For d &2(@&0},we can see that there are three fixed
points which are given by (W', U')=(0, 0), (0, 2m ~a~),
(m. ~e~/128, 0). The dynamical exponents at these fixed
points are given by z =1,l+)e~, 1+—,'~e~, respectively.

Using p independence of the bare parameters, we obtain
the following equations for W and U:

p W=—P( W)= —eW+ i ci+cz+2 —2d,
a-

Bp c, c&

Note that all of these fixed points are essentially unstable
because they have at least one relevant direction in the
W —U plane. Among these three fixed points,
( W*, U')=(0, 2n ~E~ } is a nontrivial fixed point that has
the least number (one) of relevant directions. However,
we need to fine tune the strength of the w(x)-type disor-
der in order to reach this fixed point. For
2 & d & 3(e ~ 0), there is only the trivial fixed point
(W', U')=(0, 0). At this fixed point, U is relevant and
W is irrelevant so that the RG flow goes to the strong
randomness regime where our RG scheme breaks down.

Therefore, in both cases, there is no stable nontrivial
random fixed point near the pure XY fixed point. This
means that the SF-insulator transition should be de-
scribed by possible strong random fixed points. The con-
clusion we can deduce from these results is that, near
d =2, the direct SF-MI transition is unlikely to happen
in the whole w —u plane even for the weak disorder.
This result essentially supports the original picture of
Fisher and co-workers' [Fig. 1(a)] that the SF—insulator
transition should always occur from the Bose-glass phase
rather than from the Mott insulator even for the corn-
mensurate case.

IV. 1/N CORRECTION

In this section, we are going to investigate the effects of
the 1/N correction to the RG equation. The 1/N correc-
tion due to the P interaction in the previous commensu-
rate dirty-boson model will be considered. The most im-
portant 1/N correction that can affect the RG equation
enters in the coefficient of the W term in Eq. (44). This
1/N correction can be read off from the scaling dimen-
sions of P P at the pure fixed point:

l4 43=2 (45)

where

32 1
71=

3~~ 2N
(46)

As a result, the critical dimension for W is changed from
2 to 2 —2g. If the convention of e=d —2 was taken, the
RG equation becomes

W
=(@+2')W+ UW+ W

dl 2n 7T

dU = —U+ 128
U — 1

dl m. 2m.
(47)

du

dl
64 — I

uW — uU .
7T 2'

FIG. 7. RG Bows (a) for 2~d &3 and (b) ford(2.

Note that the density p has no anomalous dimension'
and the RG equation for U is not affected at this order.

Now there can be three passible RG flows that depend
on the dimensiona1ity of the system and N. For
e=d —2~0, there is only one fixed point which is the un-
stable trivial fixed point ( W*, U') =(0,0). The RG flow
is given by Fig. 7(a) and it flows to the strong disorder re-
gime. For e&0 and ~e~ &2i1, there can be two fixed
points which are (W*, U }=(0,0), (0, 2m ~@~) with the
dynamical exponents z =1,1+~@~. But all of them are
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U

FIG. 8. RG flows which has the 1/N correction for d (2
and ~e( &2g.

unstable and the RG flow is given by Fig. 8. On the oth-
er hand, for e & 0 and

~ e~ )2', there is one more fixed
point which is given by (W*, U")=[a/128(~e~ —2g), 0]
with z =1+—,'( ~e~

—2'�). All of the three fixed points are
still unstable and the RG flow goes to the strong disorder
regime. The RG flow is again given by Fig. 7(b). There-
fore, after the inclusion of the 1/N correction, there is no
stable weak random fixed point. The direct SF—MI tran-
sition is unlikely in the whole w —u plane.

V. SUMMARY AND CONCLUSION

We study a large-N generalization of the commensu-
rate dirty-boson problem. The 1/N expansion allows us
to treat interaction e8'ects properly. On the other hand,
the disorder is assumed to be weak and the perturbation
in the strength of the randomness is performed. In order
to understand the behaviors of bosons in this model, we
need two types of disorder, i.e., the random coefficient of
the density term P Bog, u(x), and the random coefficient
of the quadratic term P P, w(x).

For a restricted model with u(x) =0 which has an ad-
ditional particle-hole symmetry, we introduce more gen-
eral long-range interactions V(q) =go/q, (0& A, & 1/2),
(which is not a genuine long-range interaction as men-
tioned in Sec. II). The critical dimension for w(x)-type
disorder is found to be d, =2+2K, and we performed the

e=d —2 —2A, expansion. It is found that the X=O and
A,WO cases show different behaviors and they are not con-
tinuously related in the e =d —d, expansion.

First, let us look at the case of A, WO. For d )d„ the
pure fixed point is unstable, but there is a stable fixed
point which governs the transition. For d ~d„ the pure
fixed point is stable and the disorder is irrelevant. There-
fore, we expect the direct SF—MI transition. For d ~ d„
the critical point is the same as that for the pure system.
For d )d„SF—MI transition is described by a new non-
trivial fixed point.

For the short-range interaction (A, =O), the disorder is
relevant for d )2 and irrelevant for d &2. There is only
the unstable pure fixed point and the RG flow goes to the
strong disorder regime for 2 & d & 3. For d & 2, the pure
fixed point becomes stable and there is also an unstable
nontrivial fixed point. Therefore, we expect a direct
SF—MI transition for d & 2 but none for 2 & d & 3.

We consider the usual short-range interaction for the
general case of u(x)%0 but u =0 (the commensurate
dirty-boson problem). The critical dimension of both
types of disorder is found to be d =2 [at (1/N) order]
and we performed the e=d —2 expansion (d &3). For
d &2, we have three fixed points and they have at least
one relevant direction in the 8' —U plane. In the case of
2 & d & 3, the RG fiow is governed by the w(x)-type dis-
order and it flows to the strong disorder regime which
cannot be reached by the perturbation in the strength of
the randomness. Therefore, we expect that the direct
SF—MI transition is unlikely to happen near two dimen-
sions.

The effects of the 1/N correction are considered. For
the commensurate dirty-boson model, the 1/N correction
due to the P interaction does not change the qualitative
features of the problem. There is still no stable weak ran-
dom fixed point for d-2 and the direct SF-MI transi-
tion is unlikely.
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