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Renormalization of the Ising model in a transverse field
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The renormalization scheme recently proposed by White is applied to the Ising model in a trans-
verse field. It is found that this scheme is a significant improvement over standard techniques as
far as the computation of the ground state is concerned. It is shown that the errors in the ground
state energy are the largest in the neighborhood of the phase transition. Thus, this method has no
special virtue in predicting the location of the phase transition and its associated critical exponents.

I. INTRODUCTION

It is widely believed that the critical behavior of quan-
tum systems at finite temperature does not diR'er in an es-
sential way &om that of corresponding classical systems.
The phase transitions at zero temperature may demon-
strate however a typical quantum character through the
quantum fluctuations in the ground state. The determi-
nation of the nature of the ground state and its energy is
a central point of the quantum many body problems and
few methods exist which can handle strongly interacting
systems. One of the techniques is the truncation method,
introduced by Drell et. al. for lattice systems and used
by many authors to study spin and fermionic systems. '

A comparison of the various approaches is made by Stella
et al.4

This method employs an iterative and approximate
construction of the low-lying states of the system. The
lattice is divided into blocks of which the Hamiltonian is
exactly diagonalized. By selecting a number of low-lying
eigenstates of the block and projecting the full Hamil-
tonian on these eigenstates, an effective or renormalized
Hamiltonian is constructed for the blocks as new units.
By repeating the operation the ground state is formed in
a hierarchical way and its energy calculated iteratively
by accumulating the energies of the blocks. Since the
method constructs an approximate wave function for the
whole system, the ground state energy so found is neces-
sarily bounded from below by the exact one. The accu-
racy of the method is determined by the number of states
retained in the calculation.

It is intuitively clear that the determination is partic-
ularly subtle in the neighborhood of a continous phase
transition where generally large fluctuations are ex-
pected. The advantage of the renormalization scheme
is that it can handle such fluctuations in principle. It
remains to be seen whether a specific scheme does do it
indeed adequately.

The quality of the procedure has been usually judged
on its accuracy in the analysis of a phase transition. A
system to which the method has been applied particu-
larly succesfully is the Ising model in a transverse Beld
(ITF). ' However, Ingloi has recently argued that the
success for the ITF is accidental and that in general the

truncation method. mixes bulk and surface properties in
an unacceptable way. Moreover, if we consider the accu-
racy of the energy, the situation is definitely poorer. For
the ITF we find an energy larger than the exact one by
up to 7%. Although modifications have been proposeds,
the results for other systems (especially fermionic ones)
are usually even more discouraging. It is also important
that energies do not seem to be improved by any reason-
able increase in the number of states kept. For example
Bray and Chui have calculated the energies of the lowest
few levels in the Hubbard d = 1 model and their results
were off by 5—

10'%%u&& for a 16-site chain in spite of the fact
that around 1000 states were kept. It strongly suggests
that the true reason for the problems lies elsewhere.

In a series of recent papers White has criticized the
standard technique and proposed a scheme that indeed
for the Heisenberg spin chain gives amazingly accurate
answers for the energy. He argues that the shortcoming
of the standard truncation method is due to the boundary
conditions imposed on the block states by ignoring the
interactions with the surrounding. The idea is to embed
the block in a superblock of which the lowest state is
determined. Then from this state the density matrix for
the block is constructed. The eigenvalues of the density
matrix determine the importance of the corresponding
states for the truncation.

As a test of this method we apply it in this paper to the
ITF, because this model shows a continous phase tran-
sition and it is a sensitive probe in situations with large
fluctuations. The main results concern the d = 1 case
where a comparison with the exact result is possible and
where also the ideal superblock (the infinite system) can
be handled. In Sec. II we collect the relevant informa-
tion of the exact solution. In Sec. III we give the results
for various truncations in d = 1, and in Sec. IV we ex-
tend the calculation to the d = 2 ITF. In Sec. V we
comment on the problem of optimization of a renormal-
ization scheme with a given number of states kept and
show that neither of the proposed methods is optimal.
The paper ends with a conclusion on the trends of the
results.

II. THE EXACT SOLUTION OF THE d, = 1 ITF

In one dimension the ITF is represented by the Hamil-
tonian
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with the ground state defined as rI~ ~0) = 0. The ground-
state free energy has the form

where the operators S; and S, defined on sites of a chain
are spin 1/2 operators represented by Pauli matrices. It
has been exactly solved by Pfeuty and up to now this
represents one of the most relevant exact solutions for
quantum phase transitions. To facilitate the following
consideration, we recall the main facts.

For a zero field the system goes to the doubly degener-
ate Ising-like ground state. For a strong field, the system
reduces to a set of noninteracting sites, which leads to a
singlet ground state. It shows that the ITF should ex-
hibit a transition for a finite ratio h, /J. To demonstrate
this exactly, we first make the transformation

S =S +S,, S, =2&~~, —1, (2)

where N is a number of sites. Next, using the Wigner-
Jordan transformation

b, = exp iver ) cIc~ c—, , b, = c, exp ia) cIc,

which produces a so-called hard-core boson representa-
tion (at a site b; behaves as a fermion).

g = Nh —J) (bt + b, )(bt+, + b, +i) —2h) b, b, , (3)

2(1+ x) & 4x
vr ((1+x)'r '

where the symbol 8 means the elliptic integral of sec-
ond order. Pfeuty has shown that the phase transition
appears for x = 1.

III. THE d = 1 ITF

Let us assume that we know the state of the entire
lattice, for example, the ground state ~gp). In practice,
it will be a state of a superblock. If we want to gen-
erate a set of states for a part of the lattice, which are
especially appropriate to represent its properties for the
whole lattice, we can use the density matrix. Suppose
that ~i) is a complete set of states of a block and

~j) are
the states of the rest of the lattice. Then we can write

~@p) = g, g,~ ~i)
~ j), where for simplicity we assume that

the coefficients g,~ are real. The density matrix is defined
as

(10)

we go over to a quadratic form in the Fermi operators c, .
Neclecting for X ~ oo the boundary term we obtain

'8 = Xh —J) (c,c;+i+ c,+,c, + c, c;+, + c,+ic, )

-2h) ctc, .

with

c, = ) [Ai, rll,
e'""~ —iBirl„e *""'j,

k

1 ( x+ cosk&

~(k) r
'

2% i

It is worth remembering that such a transformation is
possible due to the fact, that we have a one-dimensional
system with only nearst-neighbor interactions. To di-
agonalize the Hamiltonian we carry out the Bogoliubov
canonical transformation with k numbering the elemen-
tary plane waves:

As White has argued, the eigenvectors of p „with the
largest eigenvalues are the optimal states to keep in the
truncation method.

For the d = 1 ITF, let us first consider the case with
keeping two states. The advantage is that the Hamil-
tonian can be again written as a spin Hamiltonian at
each iteration (see Ref. 3 and also our discussion in Sec.
V). It is obvious that building a suitable superblock we

should add spins symmetrically with regard to the block.
However, if we choose periodic boundary conditions for
the superblock, this will not be important. We have
also checked that the results for open boundary condi-
tion (with symmetrical positions) are qualitatively the
same as for the periodic one and converge to the same
values when the size of superblock goes to infinity. In
the Appendix we calculate the form for the density ma-
trix based on the exact solution, considering the whole
lattice as superblock.

For each superblock we have found a finite value of z„
where the system undergoes a phase transition. As we

can see in Table I, the suggestion by White does not yield
an accurate critical point (x, = 1). We always obtain a
value worse than in the standard approach, although the
increase of the superblock improves it slightly.

Next we present the energies in Table II. As the point
of reference we have chosen the values for the exact en-
ergy, putting down only the differences for the other

where A(k) = gl+2xcosk+ x2 and x = h/J In.
this way we have obtained a system of noninteracting
fermions:

TABLE I. The values of the critical point for difFerent su-

perblocks with two states.

'R = Ep+ 2J ) A(k)g~tgg,
Superblock St. app.

+C 1.275
3 4 7 8 oc

1.469 1.402 1.349 1.342 1.328
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TABLE II. The energies for difFerent superblocks with two
states.

TABLE IV. The energies for the superblocks with four and
eight states.

Energy

0
0.1
0.2
0.3
Q 4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
3.0
5.0
10.0

Exact
1

1.002502
1.010025
1.022630
1.040417
1.063544
1.092239
1.126829
1.167810
1.216001
1.273240
1.342864
1.419619
1.500823
1.585188
1.671926
1.760508
1.850559
1.941804
2.034035
2.127089
3.083929
5.050126
10.025016

St. app.
Q

2407
8647
16681
24795
32016
37837
42055
44815
46657
49218
55667
60613
61320
59427
57091
54694
52336
50156
48081
46140
32533
20296
10432

a&0 x10 '
3
0
4
35
162
468
1049
2012
3522
5876
9666
16475
29355
42730
53527
59942
60428
58148
55611
53109
50?33
48510
33535
20482
10455

7 OO

0 0
2 2

14 14
69 69
227 225
598 585
1378 1311
2909 2667
5732 5113
10556 9559
18776 19172
32983 37120
46813 49533
56027 57620
57409 57747
55861 56040
53870 53982
51783 51856
49729 49779
4?759 47794
45892 45917
32496 32498
20291 20291
10431 10431

ziDeo x 10

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
3.0
5.0

10.0

St. app.
(four states)

0
1002
3779
7970
13234
19269
25773
32402
38700
43782
42110
38901
36379
34171
32208
30450
28869
27439
26141
24959
23877
16631

10332

5304

White's app.
(four states)

0
2

6
31
98

254
569
1151
2153
3663
1804
719
391
239
157
108
76
56
42
32
25
4

1

&10 '

White's app.
(eight states)

0
1

1
3
3
4
13
29
22
6?

356
437
222
124
74
50
29
21
14
11
11
1

& 10

&10 '

cases. As we can see White's approach yields de6ni-
tively better energies than the standard one. From a
practical point of view, it is worth stressing that already
the three-site superblock gives results close to the exact
ones. On the other hand, &om Tables I and II, we can
also draw the conclusion that relatively far from the point
of a phase transition, we always obtain a great improve-
ment in the energy, as suggested by White. The bigger
the superblock, the better its ground state approximates
the ground state of a entire lattice and the better are
the results. An opposite tendency exists around the crit-
ical value presumably due to the increase of the quantum
fluctuations. In this point the number of states, impor-
tant for the phase transition, increases rapidly. A larger
superblock does not improve the energy, as we can see in
Table II. However, we stress that this de6ciency appears
only in the neighborhood of the critical point.

To complete our calculations we present the values of
the critical exponent v, which describes the divergence of
the correlation length around a critical point. Table III
shows that also the critical exponent is somewhat better
than for the standard approach. However, we notice that

the tendency of the results is not monotonous for increas-
ing superblock size. This is likely to be connected with
a general de6ciency of the method around the critical
point.

White has found that the accuracy of the representa-
tion of the ground state increases roughly exponentially
with the number of states kept. Table IV presents re-
sults (differences of the energy with respect to the exact
values) with four and eight states retained, where the
superblocks contain two or three additional sites as com-
pared with a block. We also put the values of the energy
with four states kept for the standard approach. Whereas
the results for a standard approach demonstrate a weak
progress, the superblock results become more rapidly ac-
curate for a larger number of states. Comparing Tables
II and IV we find that the smallest superblock (three
sites) with two states kept gives better values for x ( 1.1
than the standard approach case with four states. On
the other hand always the worst accuracy is close to the
critical point. It influences the localization of the critical
points, as shown in Table V. The results for the standard
approach are taken from Ref. 2.

Superblock Exact
1

St. app.
1.47

3
1.374

?
1.316 1.369

TABLE III. The critical exponent v for different su-
perblocks with two states. Method/ numb. st. kept

St. app.
White's app.

4
0.936
0.918

8
0.995
0.971

TABLE V. The localization of the critical point for four
and eight states.
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IV. THE 8 = 2 ITF

Now we extend our calculation to the two-dimensional
ITF. The ideas and formalism as developed and applied
to the one-dimensional case are the same. The calcu-
lations have been carried out for the triangular lattice
with a three-site block. A six-site superblock was made
of one block and three additional sites, which were situ-
ated symmetrically with respect to the edges.

As is well known, at T = 0 the d = 2 ITF also
exhibits a phase transition accompanied by a change of
the ground state properties. The value of x, is expected
to depend strongly on the nature of the lattice, but the
following approximation is reasonable:~4 z, (z —1),
where z is the number of neighbors. Hence, for our case
we have to expect the localization of the critical point
close to 5. To examine the influence of boundary condi-
tions, we considered open as well as periodic boundary
conditions. Table VI presents also the values of the crit-
ical exponent v. In the standard case our results for x,
and v differ from those given by Hirsch and Mazenko, 5

although the formulas used are equivalent.
In view of the similarity of the trends in Table VI

and the corresponding Table I and according to the
approximation we believe that again the density matrix
approach gives worse results for the critical point than
the standard one. Next, because any statistical mechan-
ics system on a lattice in d dimensions can be considered
as isomorphic to a quantum-mechanical Hamiltonian
system on a lattice in d -- 1 dimensions, we can compare
the value v with the high-temperature expansion result
for the d = 3 Ising model, where v 0.625. We see a
slight improvement of the critical exponent for White's
approach but the results are poor. At the same time
we con6rm that the influence of boundary conditions is
weak, and so we can reduce our calculations to the peri-
odic case.

To supplement our remarks we present now results for
the energy in Table VII. With lack of an exact solution
the highest values are the best. They are closer to the
exact solution which is an upper limit for them (includ-
ing the minus sign in eo). We notice a great advantage
of White's approach in the low x region. Moreover, the
standard approach results have there a nonphysical min-
imum. From the perturbation expansion, we know that

2
for x ~ 0 the exact solution is cp 3 + yg

So we see
that White's approach does not give an optimal behav-

ior, because the energy behaves as Eo 3+ &&. For x
above the critical point the standard approach is slightly
better than White's. In limit x ~ oc, where the exact
expansion is 60 x+ 4, the both curves converge in the
same incorrect way 6p x + 7 . It is likely that these

TABLE VII. The energies for the d = 2 ITF.

x/eo
0

0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

6.0
6.5
7.0
7.5
8.0
8.5
9.0

10.0
50.0
100.0

St. app.
3

2.932473
2.787654
2 ' 747374
2.825550
3.025046
3.321545
3.696838
4.127254
4.592847
5 ' 076715
5.567187
6.059976
6.554235
7.049532
7.545600
8.042259
8 ' 539382
9.036877
9.534675
10.032724
50.005986
100,002963

White's app.
3

3.015525
3.059998
3 ' 124207
3.206145
3.340864
3.549838
3.835671
4.195869
4.616909
5.080579
5.566992
6.059760
6.554057
?.049392
7.545488
8.042171
8.539309
9.036818
9.534627
10.032683
50.005986
100.002963

discrepancies (comparing with d = 1 case) will disappear
when we take into account more states.

V. OPTIMIZATION OF THE TRUNCATION
METHOD

As we mentioned in the Introduction the truncation
method is based on an approximate wave function for
the whole system. Thus the energy it yields is bound
from below by the exact value as is also shown by the
various approximations collected in Tables II and IV. So
it is a natural question to ask whether one of these ap-
proximations is the best procedure conceivable for a given
number of states kept in the truncation. We answer this
question for the simplest case of keeping two states.

The Hamiltonian of the system has a simple invariance
with respect to a simultaneous change in sign of S, and

S," while keeping S; invariant (such that the commuta-
tion relations are not afFected) since 'R is even in S, . The
operator S,*. flips a spin i and thus there exist two sub-
spaces, which difFer by one spin flip, and Q has no matrix
elements between the two subspaces. For a two-site block
the states in the two subspaces can be written as

Case St. app.
5.247
1.547

6 open
5.509
1.482

6 periodic
5.621
1.432

TABLE VI. The position of the critical point and the crit-
ical exponent v for the six-site superblock (d = 2 ITF).

, (IN)+ pl 4t))

The two states building up the
~ Q) state are equivalent

through particle exchange, and so we may set p = 1 and
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we are left with one free parameter q. Indeed all ap-
proximations keeping two states can be characterized by
a function q(x). For example we have for the standard
approach and the three-site superblock

qst (x) = (pl + 4z —2x),

1 —2x+ 2/1 —x+ x'
qs(z) =

3

So the problem boils down to finding the optimal q(z). In
terms of the states (11) the renormalization is so simple
that we may write down the explicit formulas for arbi-
trary q(z). The renormalization of z' reads

(1-q&

&'+ qi &'+ q)

and the recursive relation for the ground state energy
ep —— Ep/N —J becomes

1 f 1 —q2 (1 + q)2 ~ (1 + q)2
ep z) = — z , + , + , ep(z')

2 ( 1 + qz 2(1 + q2)
~

4(1 + q')

(14)
In the neighborhood of the fixed point x = 0 and x = oo
the analysis of (13) is easy

z'
q~zi(z) 1 —x, e pi(z) 1+ —,for z ~ 0, (15)

4

1 1
q.p, (z) = —,e.p, (z) = z+ —,for x ~ oo. (16)4x' x

From (12) one sees that qs(z) indeed has the optimal
behavior for z ~ 0 and x ~ oo and that the stan-
dard approach fails for x ~ 0 but that it is optimal
for z ~ oo. We note that e ~i(x) as obtained from (14)
disagrees already in the second term with the exact ex-
pansion ep(z) x + —.

We have not determined the optimal curve q ~i(z) but
restricted ourselves to an analysis arround the unstable
fixed point which follows &om variations of e with respect
to q. We find q ~i(z, ) = 0.2065 and the associate z, =
1.3717. However, one cannot find an expansion of q(z)
around this fixed point which signals the fact that the
optimal energy is generated by two branches of q zt(z),
starting &om x = 0 and x = oo as given by (15) and (16),
which do not meet at the same intermediate point. The
energies of the branches cross at a first order transition,
a situation not uncommon for variational procedures.
This proves that neither of the renormalization schemes
which have a continuous q(x) is optimal as far as the
energy is concerned.

VI. CONCLUSION

The origin of the shortcoming of the standard method
is due to the fact that eigenstates of an isolated block are

chosen to be the states kept. In this way all connections
to neighboring blocks are neclected during the diagonal-
ization. %'e have tested White's proposal for a model
with a phase transition in the ground state (the d = 1
ITF) and have confirmed his statement about a greater
accuracy of the energy. The accuracy increases rapidly
when we keep more states in each renormalization step.
The density matrix approach therefore may be expected
to be useful for other models with a phase transition in
spite of the errors around the position of the phase tran-
sition. In this region the quantum fluctuations are the
strongest and one is not able to keep a suScient number
of states anyway. For this reason White's method has
no special virtue in predicting the location of the phase
transition and its associated critical exponents.

The methods involving a projection to a reduced num-
ber of states give an approximation to the energy which
is bounded from below by the exact ground state en-
ergy. Thus a variational principle exists which may be
exploited to improve a particular method. Optimaliza-
tion of renormalization transformations with free param-
eters is however a cumbersome affair with unwanted side
effects such as a first order transition. Therefore it does
not seem profitable to spend much effort on optimization
rather than inclusion of more states.

The proposed methods perform better in d = 1 than in
d ) 1. Already for d = 2 we see that, with a few number
of states retained, the various procedures do not reach the
perturbation results for low x or large x. The inclusion of
more states is necessary for accurate results but the den-
sity matrix method is severely limited by computational
problems connected with the size of the superblock.

Inclusion of more states presents also a serious problem
for the renormalization analysis of a phase transition. As
long as one is interested in energies one does not have to
bother about the meaning of the matrices generated in
the iteration process. From a renormalization viewpoint
one wouM like to interpret each step in the process as a
transition to a renormalized Hamiltonian. For two states
retained one can simply adhere to a spin representation
as we outlined in Sec. V. For more states one should ana-
lyze the steps in terms of basic operators associated with
the more complicated degrees of freedom represented by
the blocks. It is not difBcult to locate a critical point
z on the basis of the nature of the asymptotic block
Hamiltonian. It either corresponds to a doubly degen-
erate ground state (z small) or to a single ground state
(z large) with x as a dividing point. But even for the
case of four states kept, we could not interprete the it-
eration steps for x = x as a flow to an instable fixed
point. This may be due to an intrinsic shortcoming of
truncation methods. In all cases some eigenstates are
kept while others are disregarded. It may happen that
an included state becomes degenerate with a disregarded
state. As function of z a crossing of levels may occur at
some high iteration step and consequently a branching
to different asymptotic behavior. We have noticed this
phenomenon in a few cases which prevented us &om de-
termining critical exponents &om the eigenvalues of the
linearized flow matrix.

The overall conclusion is that the employment of a den-
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sity matrix of some superblock for the projection tech-
nique gives a substantial improvement of the ground state
energy. The projection technique needs however further
refinement in the neighborhood of a phase transition for
a determination of the critical properties.
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APPENDIX

p22 ——pss = (0~(l —nq)nz~0), p „=0 otherwise.

(Al)

These elements can be expressed as combinations of the
elliptic integrals of first and second order, K, E' with m =

4x
(i+~)»

1 x —1 1+x
iC(m) + 8 (m),

2 27rx 27rx

z'(1+ sz') —(1+z')'
B~z2(1+ *)

(1+z) (1 —2z')
+ E' m,6ax2

When we are going to consider the infinite superblock
due to the exact solution, it is more convenient to use the
Fermi operators c; and occupation numbers operators n,.
instead of formula (10). We present it for the case of two
states. We have four states for a two-site block labeled
by (gg), (g$), ($t), ($$) or 1, 2, 3, and 4. Because of
the Hermiticity and parity symmetry of the Hamiltonian
only five diH'erent elements of the density matrix p „are
nonzero; ~0) is a true ground state of the d = 1 ITF:

1 4z —(1+z )14 ——
2 Km+ 1+z 1+x 8 m

pi4 ——L4, P33 ~1 ~] ~2~3 ~4~ P23 ~3 ~

2 2

(A2)

Then we obtain

pgr ——L, + L2Ls + L4, p44 ——(1 —Lz) + L2L3 + L4)

p» —= (0ln~n210), p44 = (0~(1 —n~)(1 —nz) ~0),

p4i = pz4 —= (0lczc210) ~ ps& = p2s = (0lczczl0) ~

t t t

It is also worth noticing that formulas (Al) could be ex-
tended to systems without an exact solution. In this case
one may use, as ~0), the state coming from approximate
theories such as, e.g. , the mean field theory.

* On leave from Institute for Low Temperature and Structure
Research, Polish Academy of Sciences, P.O. Box 937, 50-
950 Wroclaw 2, Poland.
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