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Simulation of below-gap photoresponse of thin-film superconductors by Josephson-junction arrays
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The below-gap, nonbolometric photoresponse of granular, thin-film superconductors seen recently by

Strom et al. and by other experimental groups is simulated by a numerical study of the dc voltage

response to an applied ac current at finite temperature, by ordered and disordered two-dimensional ar-

rays of resistively shunted Josephson junctions. The current-assisted random generation of vortex-

antivortex pairs by the temperature fluctuations and the ac current is observed. The photoresponse for

perfect arrays shows a large peak at the Kosterlitz-Thouless transition TK+ which moves to lower tem-

perature with increasing Id, or I„.For randomly diluted, disordered arrays at p =0.9 (10% of the junc-

tions removed) the peak in the photoresponse is greatly enhanced and moved to lower temperatures.

The behavior of the photoresponse versus bias current, ac power, and frequency is reported. A simple

model of random localized heating is tried as a numerical approach to explain some features of the

above-gap photoresponse.

I. INTRODUCTION

Recent experiments have demonstrated the large, non-
bolometric photoresponse of superconducting thin films.
These experiments have been motivated by possible appli-
cations to high-speed radiant energy detection in the far
infrared. This large nonbolometric photoresponse was
reported for thin, high-resist superconducting thin
films by Bertin and Rose over twenty years ago. ' More
recently the phenomenon has been studied in two-
dimensional (2D) granular films of Sn, NbN, '

NbN/BN, Bapbo 7Bio 30, Bi2SrzCaCuOs, and

YBa2 &Cu3407
' The general features of the non-

bolometric photoresponse in all of these granular materi-
als are the same. The purpose of the numerical simula-
tions reported here is to elucidate the general nature of
this photoresponse and its relation to vortex depinning
and depairing.

Granular superconductors consist of superconducting
grains connected by intergrain tunneling through weak
links. " These weak links can be modeled by arrays of
tunnel junctions. For overdamped systems, such as thin,
superconducting films, these links can be modeled by
resistively shunted Josephson-(RSJ-) junction arrays. '

Furthermore, the new high-T, ceramic superconductors,
especially in their polycrystalline form, behave in many
ways like random arrays of weak links. '

In this paper we extend the studies reported earlier' '
to finite temperatures and to the presence of high-
frequency ac currents in order to simulate the below-gap
photoresponse. We consider two-dimensional arrays of
superconducting grains which are located on the sites
(nodes) of a square lattice. Each node is connected to its
nearest neighbors by bonds occupied by RSJ junctions.
The RSJ junctions (bonds) are identical and disorder is

introduced by randomly removing junctions (bonds). The
numerical techniques used here are described in Ref. 15
(except for the finite-temperature extension) and are simi-
lar to those used by several previous authors. ' ' Since
it has become relatively routine to study the properties of
Josephson-junction arrays experimentally, ' pho-
toresponse measurements on such arrays should be possi-
ble so that the phenomena described here could also be
seen in those systems.

In Sec. II we introduce the model by describing the
case of a single RSJ junction, which has been solved
analytically at finite temperature. The numerical
method is described and the numerical results are
presented and compared with the exact analytic results,
in the case of no applied ac current, as a check of the nu-

merical simulation. In Sec. III, we describe our results
for the photoresponse of a perfect array which displays
the depairing of vortex-antivortex pairs by the tempera-
ture and by the applied ac current. Following that we
study the response of samples with defects and discuss
the enhancement effect caused by the vortex depinning
process at the defects. Also, we briefly attempt a simula-
tion to approximate the above-gap response signals.

II. THE MODEL

We assume that superconducting grains are occupying
the sites of a square lattice. The state on each grain (site)
is described by a complex superconducting order parame-
ter 5=hoe'~ where 50 is constant for all grains and the
phase P varies from grain to grain. Each grain is con-
nected to each of its nearest neighbors by a resistively
shunted Josephson (RSJ) junction (bond). At finite tem-
perature, the shunt resistances will exhibit a fluctuating
noise current I," which is approximated by the white-
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noise form of Ambegaokar and Halperin with the fol-
lowing statistical characteristics:

Eq. (5) is solved for the average voltage by Ambegaokar
and Halperin by the introduction of a Fokker-Planck
equation for the probability distribution for the phase
P;(t) acrossthejunction,

(10)
2k T

(I&(t +r)IkI(t) ) = 5(r)6~ kt,R;
2) where

A(T)= j dye 'r ' 'I 0(T 'sing/2) .
where ( ) denotes an ensemble average. With these as-
sumptions, the noise currents in different shunt resis-
tances are uncorrelated and the noise current in a single
bond has zero correlation time corresponding to white
noise (Josephson noise). Thus, the Josephson equations
of motion for a single junction become

—(p —p )= 2e
dt

and

(4)I; =J sin(P; —P )+ +IJ(t),

It can be checked that Eq. (10) reduces to Eq. (7) in the
limit T~O.

We next consider a perfect N XN array of junctions as
illustrated in Fig. 1. The external current is applied to
the array by injecting it at a single superconducting grain
at the top of the sample and removing it from a similar
grain at the bottom (Fig. 1). These two single grains
serve as bus bars which distribute the current appropri-
ately across the top and bottom of the N XN array. At
each node (grain) of the array the z junctions come to-
gether and Eqs. (5) for each single junction are added to
conserve current at the node. The resulting set of cou-
pled equations at node k are

i; =sin(P; . P/)+ —(P—; —P,. )+i (t) . (5)

where the first term in Eq. (4) is the supercurrent due to
the phase difference across the junction, and the second
term is the normal current. The normal resistance is R
and J is the critical supercurrent of the junction. The
capacitive terms in the current have been neglected
which is reasonable for proximity-effect junctions. We
shall write all equations in reduced units, where the unit
for time t is R/(2eRJ), the unit for current is J, and the
unit for frequency f is A'/eJR. Equation (4) thus becomes

where tkt(t) is the white-noise current applied randomly
to each junction in each time step, and where ik"' is gen-

erally zero everywhere except at the top and bottom bus
bar sites. At the top and bottom bus bar sites the exter-
nal current will generally include both a dc bias current
and an ac current as given by Eq. (8). These equations of
motion (11) can be collectively written in a generalized
matrix form

This single junction equation can be solved analytical-
ly, ' at zero temperature to obtain, for i ) 1,

M =C(P),d
dt

(12)

This result gives the form of the Josephson oscillations
that appear for i & 1 with period T; =2m l(i —1)', and
the average voltage as a function of i becomes

where C(P) is the nonlinear term which includes the
sin(Pk —

P&) terms of Eq. (11). In the next section we

shall solve these equations numerically by inverting M to
the right-hand side of Eq. (12) and integrating numerical-
ly.

The analytic solution of Eq. (12) is sufficiently difficult
that it cannot be done exactly except in certain limiting

When an external ac current is applied as well so that the
total external current across the junction is

i '"'(t) =id, + i„cos(2mft ), (8)

there is an extra dc voltage ( b, V„) which appears across
the sample; this voltage increment is called the pho-
toresponse. This extra response to the ac current is dis-
cussed in detail by Kanter and Vernon who derive the
formula for the photoresponse at high frequency, which
1S

(9)

where C = ( I /16m ). This high-frequency behavior is
typical of systems being driven well beyond their natural
resonant frequencies. When the temperature is not zero,

FIG. 1. A perfect XXX array of resistively shunted Joseph-
son junctions connected to single superconducting grains at the

top and bottom of the array, which act as bus bars.



SIMULATION OF BELOW-GAP PHOTORESPONSE OF THIN-. . . 4017

situations. In particular, the behavior near the
Kosterlitz-Thouless (KT} phase transition to the normal
state has been studied in great detail. The behavior
of the voltage near the KT phase transition is of the gen-
eral form

0.1 f =0.5

( V) =i A, exp[ A2/(T TK—~)' ], (13)

where A& and A2 are parameters. At the Kosterlitz-
Thouless phase transition the voltage is produced by the
appearance and dissociation of vortex-antivortex pairs
which are seen in the numerical simulations discussed
below.

Finally, in a disordered array with many defects and an
applied bias current there are many vortices and antivor-
tices pinned to the defects in a state of self-organized cri-
ticality' ' which are easily shaken loose by the thermal
fluctuations or by an applied ac current and thus TKz is

greatly reduced and the photoresponse is enhanced.
In order to make the connection between the various

below-gap experimental results and our numerical simu-
lations we define the photoresponse as the voltage change
across the sample

6VR(id„i„,f, T)= ( V(id„i„,f, T) ) —( V(ia„0,0, T) )

(14}

produced by the applied ac current.

III. NUMERICAL SIMULATIONS

The photoresponse of thin-film superconductors is
typified by the results of Strom et al. ' from thin films of
YBCO. As a function of temperature the photoresponse
b, Va shows a nonbolometric peak (see, for example, Figs.
5 and 6, of Ref. 10) at low temperature which increases in
magnitude with increased id„ i„and which moves to
lower temperature and increases in magnitude with de-
creasing frequency of the applied radiation. The peak is
especially strong for granular and disordered samples.

In order to better understand our calculations we begin
with the photoresponse of a single junction. First, we ap-
ply a white-noise current I', (t) according to the prescrip-

0

T[hJ/ kg]

FIG. 3. Plots of photoresponse hV& of a single Josephson
junction vs temperature T for id, =0.1, 0.2, and 0.4, and for (a)

f=0.1, and (b) f=0.5. The applied ac current magnitude is

i„=0.8.

tion in Eqs. (1) and (2) with a different random current
distribution in each time step. Then we apply a bias
current id, across the junction and integrate to solve the
dilferential equation (5). The results of this numerical
procedure are shown as the data points in Fig. 2 where
the dotted line corresponds to Ambegaokar and
Halperin's analytic solution for a single junction as
given by Eq. (10) for id, =0.1, 0.2, and 0.4. Then we add
an ac current of magnitude i„and frequency f as in Eq.
(8) and repeat the process to solve Eq. (5) with the result
shown in Fig. 3 for f=0. 1 and 0.5 (in units of R/eJR).
There is clearly a peak in each of the photoresponse
curves of Fig. 3 corresponding to the fact that as the ac
current is applied the rise of the voltage to its limiting
value (id, R } is pushed to lower temperatures. There is a
larger photoresponse at lower frequencies. Next, we con-
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FIG. 2. Plots of ( V) vs temperature T for a single Josephson
junction for the bias current id, =0.1, 0.2, and 0.4. The symbols
represent the numerical solution of Eq. (5), the dotted curve
represents the analytic solution in Eq. (10).

FIG. 4. A plot of ( V} vs temperature T for a 16X 16 perfect
array of RSJ junctions. The circles are the numerical solution
of Eqs. (11) or (12}, while the solid line is a fit to (13) with
T&&=0.45, A& =3.01, and A, =1.05. The bias current is
id, =0.1. Inset: A semilog plot of ( V} vs (T TK&)—
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FIG. 5. Plots of the photoresponse hV& vs T for a perfect
8X8 RSJ junction array for id, =0.1, 0.2, and 0.4, and (a)

f =0.1, and ib) f =0.5. The value ofi„=0.8.

sider a perfect NXN array of junctions, applying the
external current to the bus bar sites on the top and bot-
tom of the array, as shown in Fig. 1.

First, we confirm the earlier results of Mon and Teitel'
and Chung, Lee, and Stroud, ' which show the
Kosterlitz-Thouless transitions for the perfect array. We
solve the coupled set of nonlinear differential equations
(11) or actually the matrix equation (12) by applying a
bias current id, and a white-noise current i(t) randomly
to each site with the result shown in Fig. 4 where it is
confirmed that our results agree with Eq. (13) (solid line)
with Tz&=0.45. Then, the ac current is added to the
external current as in Eq. (8) with the resulting pho-
toresponse shown in Fig. 5. The peak in the pho-
toresponse has been shifted to higher temperature rela-
tive to that for a single junction (Fig. 3) as the coopera-
tive effects of the coupled junctions serve to suppress the
fluctuation to higher temperatures. Actually the peak in
the photoresponse versus temperature shifts to TK~
=0.45 in the limit as id, ~0. As the bias current is in-

creased the peak shifts to lower temperature and indeed
the curve remains finite at T =0 when the bias current

exceeds the critical current for the first Shapiro step in
the voltage. The magnitude of the photoresponse per
junction in the array is greater than that for a single junc-
tion due to the creation of vortex-antivortex pairs in the
array. In Fig. 6, we plot the photoresponse versus bias
current id, for three different temperatures T =0.25,
0.45, and 0.85. For low temperatures the photoresponse
is very small until the bias current nears the first Shapiro
step. At T) TK-f there is an initial linear region versus
bias current followed by a saturation.

A mechanism for the production of vortex-antivortex
pairs by the applied external field has, for the above-gap
case, been suggested by Kadin et ah. , but we have ob-
served a very similar mechanism for the below-gap
response. The mechanism we have seen in these simula-
tions is illustrated in Fig. 7 and is as follows. First there
is a large random temperature fiuctuation. In our simula-
tions this appears as a large current Auctuation which
may be in the direction of the applied bias current. If
this random current fluctuation makes the total current
in the region to be near or above the critical current then
the excess current caused by the ac current (or the dc
current near T„~) is shunted to each side of the fluctua-
tion, as is illustrated in Fig. 7(a), just as if the fluctuation
were a defect. ' ' This sweeping of the current around
the ends of the IIiuctuation creates a vortex and an an-
tivortex on the opposite ends of the Auctuation, as it
would about a defect. ' ' The bias current then sweeps
the vortex and antivortex across the sample in opposite
directions creating the photoresponse voltage. An exam-
ple of this process is shown in Fig. 8 for a 16X 16 perfect
array. In this example, the temperature fiuctuation at
Monte Carlo time step t =28 080 creates a current
enhancement on each end which evolves into a separate
vortex and antivortex, and these vortices then move away
from each other across the sample perpendicular to the
external current annihilating each other when they meet,
due to the periodic boundary conditions. This series of
snapshots was taken at a low temperature T=0.025 in
order to isolate a single vortex-antivortex pair; at higher
temperatures the number of such pairs increases and

f =0.5

T = 0.25 T = 0.45 T = 0.85
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FIG. 6. The photoresponse hV~ vs id, for (a) T=0.25, (b)
T=0.45, and (c) T=0.85 for a perfect 8 X 8 RSJ junction array.
The value of i„.=0.8.

FIG. 7. A schematic picture of the creation of vortex-
antivortex pairs by the temperature fluctuations, id„and i„.
The current flow produced by E'd, +i„ flowing past a high-

temperature fluctuation is diverted around it, as if it were a de-

fect, creating a vortex and an antivortex on the opposite ends of
the fluctuation which can be depaired by the applied current to
move across the sample producing a voltage.
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often many are present at any one time.
Finally, to simulate the granular, thin-film supercon-

ductors we repeated these simulations on disordered ar-
rays of Josephson junctions. The arrays are disordered
by the random removal of junctions (or bonds) as is
typified by the sample shown in Fig. 9. When a bias
current is passed through such disordered samples there
are emerging vortices and antivortices pinned to the ends
of each random defect. As the bias current is increased,
more and more of the sample is in a state of self-
organized criticality, ' ' just on the verge of releasing the
local vortices from their pinning sites. So when the ac
current is applied a much larger response is seen at low
temperatures due to presence of disorder.

I I I

FIG. 9. A typical sample of RSJ junctions in a 25 X25 array
with p =0.90 so that 10% of the bonds are vacant.
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FIG. 10. The average voltage ( V) vs T for an 8X8 disor-
dered (p =0.90) RSJ junction array for id, =0.1, 0.2, and 0.4.
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FIG. 8. Snapshots of the creation and annihilation of a
vortex-antivortex pair in a perfect 16X 16 array at T=0.25,
id, =0.7, i„=0.25, and f=0.2. The Monte Carlo time steps
are indicated on each picture as the temperature fluctuation
produces a barrier to the super current flow which causes the
vortex and antivortex to be produced on each end of the fluctua-
tion to depin, and travel across the sample annihilating at the
periodic boundary conditions. The actual plot is of the magni-
tude of the supercurrent flowing in the bonds perpendicular to
the external current.

T[hJ/ek, ]

FIG. 11. The photoresponse AVz vs T for an 8X8 disor-
dered (p =0.90) array of RSJ junctions with id, =0.1, 0.2, and
0.4, and (a) f =0.1, and (b) f=0.5, with i„=0.8.
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FIG. 12. The photoresponse hV~ vs id, for an 8X8 disor-
dered (p =0.90) array for (a) T=0.25, (b) T=0.45, and (c)
T =0.85, with i„=0.8 and f =0.5.

FIG. 14. The photoresponse dV~ vs f, for id, =0..4 and 0.8,
with i„=0.8, and T=0.2 in 8X 8 disordered arrays (p =0.90).
For id, =0.8, d Vz goes to zero as f ' at high frequency in this
model.

The voltage vs temperature is shown in Fig. 10 for
three values of the bias current id, =0.1, 0.2, and 0.4.
When the ac current is added the photoresponse is as
shown in Figs. 11(a) and 11(b). Here the photoresponse is
considerably larger than that shown in Fig. 6 for the per-
fect array. The peak in the response is at lower tempera-
tures in the disordered arrays due to the lowered
Kosterlitz-Thouless transition temperature and moves to
still lower temperatures as the bias current i„, is in-
creased. These peaks in Fig. 11 are qualitatively very like
those seen in the experiments on thin-film superconduc-
tors (see, for example, Figs. 5 and 6 of Strom et al. ' ).

We have also calculated the behavior of the pho-

toresponse vs bias current with the results shown in Fig.
12 for T=0.25, T =0.45= T„~, and T=0.85 (for com-
parison with Fig. 7 of Strom et al. ' ). There is good
qualitative agreement between these simulations and the
experiments if one assumes that the bias current in the
real experiments did not exceed about id, =0.3. At these
lower values of i„„the photoresponse curves upward vs
i „, for T=0.25 corresponding to the remnant of the on-
set of the first Shapiro step, whereas for T) TK~=0.45
the photoresponse vs id, is linear for Id, &0.3. These re-
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FICx. 13. The photoresponse hV~ vs i.', for an 8X8 disor-
dered (p =0.90) array of RSJ junctions with T =0.25 in (a) and
(d), T =0.45 in (b) and (e), and T =0.85 in (c) and (f), and where

f=0.5 in (a), (b), and (c), and f =0.1 in (d), (e), and (f). The
value of ~d, =0.4.

FICx. 15. A simulation of above-gap photoresponse 5 Vz vs T
for an 8 X 8 RSJ junction array with 10% of the junctions heat-
ed by b, T=0.5 [in (a) and (c)] and b, T=1.0 [in (b) and (d)] ran-

domly in each Monte Carlo time step. The curves are for
id, =0.1, 0.2, and 0.4. (a) and (b) are for a perfect array
(p = 1.0), while (c) and (d) are for a disordered array (p =0.9).
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suits are much more like the behavior seen experimental-
ly (especially at T =0.25) than are the results for the per-
fect array (Fig. 6) which shows very little photoresponse
at low values of id, .

Another comparison is with the photoresponse vs in-
cident power (i„) for the disordered array. These nu-
merical results are shown in Fig. 13 for T=0.25, 0.45,
and T =0.85 and for f=0.5 and 0.1. Figures 13(b) and
13(e), where T= TKT, are to be compared with Fig. 8 of
Strom et al. ' for i„~1.0. Strom et al. have fit these
curves to straight line power laws and that can be done
here with about the same degree of success as is seen by
the straight lines in Figs. 13(b) and 13(e). But we do not
really believe that these curves are simple power laws.
For the record, we plot in Fig. 14, the photoresponse
versus frequency f for the disordered samples at id, =0.4,
and 0.8. These curves clearly drop off rapidly at high fre-
quencies. The drop at high frequencies becomes less
steep as the current i4, is increased until the i lf high-

frequency behavior of single junctions [Eq. (9)j is seen at
about id, =0.8. This is not what one would expect as the
high-frequency limit in real experiments because this lim-
it is above the superconducting energy gap and some-
thing more like the f ' suggested by Kadin et al.
would seem more appropriate here as individual photons
separate Cooper pairs.

Finally, we report a brief attempt to simulate the
above-gap response by randomly heating isolated sites in
the lattice in each time step to mimic the effect of pair
breaking by the photons. The results for the pho-
toresponse versus temperature are shown in Fig. 15 for
both the perfect (p = 1.0) and disordered (p =0.9) arrays
where 10%%uo of the sites are randomly raised upward in
temperature by ET=0.5, or 1.0 in each Monte Carlo
time step. This procedure clearly creates extra vortex-

antivortex pairs and hence a photoresponse. The results
are qualitatively like those reported by Strom et al. ' but
we have not pursued this model further.

IV. CONCLUSION

The below-gap photoresponse seen experimentally in

many granular and disordered thin-film superconductors
can be simulated by applying an ac current at finite tem-
perature to two-dimensional disordered arrays of resis-
tively shunted Josephson junctions. Virtually all of the
qualitative features seen experimentally are reproduced in
this manner. This agreement makes it very clear that the
photoresponse is generated by the depairing and depin-
ning of vortex-antivortex pairs by the combination of the
temperature, the bias current and the applied ac current.
Explicit analytic calculations should now be done using
the models identified here to understand quantitatively
these photoresponse phenomena.
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