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In this article, we discuss a system that is appropriately called a domain-wall junction (DWJ). The
DWJ is a close analog of the Josephson junction with respect to the usefulness of both systems in study-

ing switching by thermal activation {TA) and by quantum tunneling (QT). We will show through
theoretical analysis that it is within our means to fabricate a DWJ that should exhibit switching via

quantum tunneling of magnetization. We further lay out experimental procedures for looking for quan-
tum tunneling of magnetization in a DWJ; these procedures are based upon those used in observing mac-
roscopic quantum tunneling in Josephson junctions. Two examples of DWJ's have been recently made
that apparently show a crossover from TA to QT.

I. INTRODUCTION

Interest in 1ooking for evidence for quantum tunneling
of magnetization (QTM) has increased recently for a
number of reasons: (i) the theoretical basis for this
phenomenon has gained understanding and accep-
tance, ' (ii) the possibility of observing manifestations of
QTM experimentally has been realized, (iii) the march
towards ever decreasing sizes of computer elements is
proceeding to such an extent that it is becoming more
conceivable that, in a generation or so, the regime
wherein quantum tunneling will become the limiting fac-
tor in the stability of computer elements will be realized.

Numerous reports of the possible observation of QTM
have appeared. To our knowledge, all the systems that
have thus far been studied have the shortcoming that
they consist of an ensemble of many subsystems, which
leads to a distribution of energy barriers. The parameters
that determine the transition rate over the relevant ener-

gy barrier, whether it be by therma1 activation or by
quantum tunneling, is exponentially dependent upon, and
therefore extremely sensitive to, certain characteristic
parameters —such as particle volume and anisotropy-
of each subsystem. The systems therefore have a distri-
bution of transition rates. This situation makes it difficult
to gain strong confidence that manifestations of QTM are
indeed not associated with purely classical yet anomalous
processes. The next generation of experiments should
consist of studying QTM effects in a single particle.

A number of researchers have called attention to the
attractive characteristics of quantum tunneling of domain
walls. " In this work we will focus our attention on
what we will refer to as a domain-wall junction (DWJ).
What makes this system especially attractive is that we
do not have to deal with an ensemble of subsystems. It is
a single system, with a single set of parameters that
characterize its behavior. The DWJ is the prototype ana-
log of the Josephson junction (JJ), for which quantum

tunneling in its switching, from the zero voltage state to
the voltage state upon application of a basis current close
to the critical current, has long been firmly estabhshed. '

As in the case of the JJ, switching of the DWJ can be
studied in the classical, high-temperature regime, wherein
switching takes place via thermal activation (TA) and the
theory is firmly established. Also, as in the case of the JJ,
the parameters characterizing the DWJ can be deter-
mined from the DWJ's behavior in the classical regime
and then used to analyze the low-temperature regime
wherein QTM is expected to be dominant.

A DWJ is essentially a small region along a narrow
channel of magnetic material that is so fabricated as to
provide a barrier for the motion of a planar domain wall
(DWJ). A DWJ is depicted schematically in Fig. l, below
as a local barrier. One could just as well use a potential
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FIG. 1. A depiction of a domain wall moving along a narrow
channel of a sample of magnetic material encountering a
domain junction (DWJ). The potential energy o.(x) in the ab-
sence of an applied field is depicted below. Outside the D%'J,
o(x) =o., while inside the DWJ, o.(x)=o.(1+g). Thus, q is the
relative jump in the potential energy. The width s of the transi-
tion region determines the coercive field H„being given by
gu/Ms.
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well. See Ref. 13. %e will refer to a D%J with a barrier
as a "b-D%J" and a D%J with a well as a "w-DWJ."
The barrier (or well) consists of a sandwich layer with a
larger (or smaller) domain-wall energy o. The amsotropy
direction lies in the plane of the film.

It has long been recognized that the equation of motion
of a DWJ is the same as that of a Josephson junction,
with the phase difference of the JJ replacing the position
coordinate x of the DWJ. Close to the critical "force"
(the critical current and the coercive field, respectively),
both systems are governed by a potential energy that is
cubic in the coordinate. ' The purpose of this work is
manyfold: First, we demonstrate the formal analogy be-
tween the JJ and the DWJ. Then, we seek to present re-
sults previously obtained in a form that can be related
more closely to junction fabrication. Next we extend the
theory so as to cover the regime such that the parameters
that characterize the DWJ vary over a length scale
greater than the domain-wall thickness. Finally, we lay
our experimental procedures for carrying out a search for
QTM in a DWJ.

II. THEORY

We describe here a b-DWJ (The a.nalysis of a iu-DWJ
is very similar. ) Our DWJ is characterized entirely in
terms of six parameters: two geometrical parameters (the
width w of the barrier layer and the width s of the transi-
tion region) and the values of the exchange constant J
and the anisotropy energy K in the barrier and outside of
it. The latter two parameters are extremely uniform
along the length of the sample (so as to avoid random
pinning sites), except in the region of the DWJ.

The full width w must be greater than s, ranging from s
to a value much greater than s. On the other hand, in
principle, the DW thickness 5= (J/E) '~ is not so re-
stricted. The simplest case to deal with theoretically is
when 5(&s; we have slow spatial energy variation. %e
will refer to this regime as "case I." Then, it can be
shown that the dynamics of the DW is governed by a
potential-energy function U(x). It is the width s of the
transition regions that is crucial to the switching rate,
rather than the width w of the barrier as a whole.

If 5»s, a thorough theoretical analysis is more com-
plicated. The D% cannot be treated as an entity having
a fixed structure. As the DW tunnels through the bar-
rier, one must find the fully evolving spatial variation of
the DW, a task that does not lend itself to an analytical
solution; in principle, one would have to rely on numeri-
cal techniques as were used for the problem of quantum
nucleation. ' In Sec. II, we show that the expected re-
sults can be obtained for 5 »s to within purely numerical
factors which are expected to be on the order of unity.

A. The regime 5 «s

In this case it can be shown (see the Appendix for the
case when transverse anisotropy is omitted), that as long
as the DW velocity is much less than the limiting velocity
[see Eq. (3)], the domain wall moves according to the
equation of motion:

where uo(x) is the local limiting velocity of a DW, given
b 16

' 1/2K' 1vo= 1+ +-
E Q

r~
2M, 2M'

(3)

Here, y is the gyromagnetic ratio and Q=K/2mM, is
the "quality factor. " Also, it is assumed that the easy
axis lies along the z axis in the plane of the DW, being
represented by the anisotropy energy EM, /M, , and that
the hard axis is rejected by the transverse anisotropy en-
ergy K'M„/M, . From Eqs. (2) and (3) we find
m =4M, /y of . The spatial dependence of the mass in
the equation of motion will be neglected for simplicity in
what follows.

The tunneling rate of the DW through the barrier is
given by the expression

I =I Oexp( —8) . (4)

The WKB exponent 8 can be obtained simply from the
equation

2AB= f [2m (x)U(x)]' dx,
o

where A is the area of the DWJ, fi is Planck's constant,
and xo is the exit point of the barrier. The potential ener-

gy U(x) per area is given by o(x) 2M, Hx. The fu—nc-
tion U(x) is depicted in Fig. 2, wherein we note that in
Eq. (5), we must shift our origins so that U(0)= U(xo) =0.

Now, in order to be concrete, we have assumed that
the profile for the local wall energy near the barrier edge
is given by

o(x)
l ~ ~ x

(x 2+s 2)i~2 (6)

In terms of the above parameters, we define the coercive
geld H, as that field above which the potential-energy

d [m (x)u] der

dt x

In this equation, M, is the magnetization, v is the velocity
of the DW, and x is its position. The mass m (x) per area
and the wall energy o(x) per area are both dependent
upon position due to the spatial variation of the exchange
energy J(x) and the parallel anisotropy energy K (x).
The domain-wall energy inside the barrier can be written
as o (x)=( I+ rl)o, where o is the wall energy outside the
barrier. The parameter g can be easily modified through
the chemical composition of the barrier. A b-DWJ has
g&0, while a w-D%J has g&0. In the following, we
shall always assume that g & 0.

The local energy, width, and mass of the D%' are
given, respectively, by

o (x)=4v'J (x)E (x ),
&(x)=&J(x)/Z (x),

m(x)= o(x)
uo(x)'
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U(x) the applied field.
The crossover temperature can be estimated from the

relation

EA
C (12)

where k is Boltzmann's constant. This relation leads to

5 faro 1/2E1/4 0 074 1/2, 1/4
C (13)

FIG. 2. A depiction of the potential U(x) in the presence of
a field very close to the coercive field, so that the function is
essentially cubic in x.

function U(x) has no barrier. For the model of Eq. (6), it
is given by

H =
4sM,

(7)

27 xU(x)= E
4

(8)

where the energy barrier per area E is given by'

E=Ee =(—')7)oe —=—0 54goe
3

and the width of the barrier b, is given by

b, =s(6e) '/

(9)

(10)

Once we recognize that the potential is cubic, with an
c. dependence, we can use the results determined long
ago for the Josephson junction. '

The WKB exponent B, on the order of (mE)' 5, is
given by

' 3/4
96 2 M As

5 3 ffiy

The specific choice (6) for o(x) merely pins down the
definition of the parameter s. (Any other choice would
give the same result to within an order of magnitude. ) It
is interesting to note that the ratio of the coercive field to
the anisotropy field H„=2K/Jt/I, can be expressed sim-
ply as Ii, =H, /H„-—g(5/s ).

Domain-wall switching across the barrier will be possi-
ble when the applied field is close to the coercive field,
i.e., e —= (1 H/H, ) &(1—. Then, the potential is a cubic in

x, given by
T '2

As usual, the crossover temperature is independent of the
size of the system. The prefactor frequency is given by'

1/2

I o= 8' co
30

(14)

where coo is the oscillation frequency of the DW at the
bottom of the well. This frequency is given explicitly by
[U"0)/m]', which turns out to be expressible as
2( ', )' f(—e' /rl' )coL, where coL =yH, is—the Larmor
frequency at the coercive field H, . Alternatively, coo is
given by ( —", )kT, /A'.

In order to observe QTM, we desire 8 to be as small as
possible and the crossover temperature to be as large as
possible. Equations (12) and (14) show us that it is desir-
able to have the width s, the magnetization M„and the
anisotropy energy E as small as possible and the trans-
verse anisotropy E' as large as possible. We must keep in
mind that the width s is limited from below in our
analysis and approximation by having to be much larger
than the wall thickness 5.

In Table I, we list an example of a possible set of values
of parameters. We list in Table II a set of values for the
derived parameters. The control needed for the coercive
field, cH, =25G, is quite easy to manage and the tunnel-
ing rate, I oexp( —8)=17sec, is quite high.

The next important question is how the basic pararne-
ters in Table I are to be determined. Methods exist for
determining the parameters y, J, E, and M„from which
one can obtain o and 5, and the area A can be known ac-
curately. We assume that techniques are available for
determining the area A. Experiments in the TA regime
can be used to reliably determine 8, and the energy
Eo—:0.54go, so that g can be determined. Finally, the
parameter s can be determined from the relation
s =go. /4M, H, . In a later section we will discuss experi-
mental methods for studying DW tunneling through a
DWJ.

M,=-7 ' as " ~5/4

where 2 is the area of the DWJ and p~ is the Bohr mag-
neton.

The WKB exponent is seen to be proportional to the
tunneling magnetic moment contained in the volume
( As) of the barrier. It is noteworthy that except through
the parameter c, the WKB exponent is independent of
the exchange energy. The exchange energy as well as
other parameters contained in H, determine the scale of

B. The regime 5&&s

TABLE I. Values of the basic parameters characterizing a
domain-wa11 junction.

A =100 AX100 A
s =100 A
g=0. 1

K =6X 10 ergs/cm'
J = 10 ergs/cm
M, =100 emu/cm'

K'= 10' ergs/cm'
6=0.01

In this regime, the coercive field is still well defined,
since it depends only upon a static configuration of the
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TABLE II. Values of the derived parameters characterizing a domain-wa11 junction.

5=40 A
s/5=2. 5

Q =95
a =9.8 ergs/cm

H, =2500 Oe
Hp =—2K/M, =120000 Oe
up =2.8 X 10 cm/sec
m =1.3X10 ' g/cm

cop=3.0X 10 Hz
EpA=5. 3X10 ' ergs
B =24
T, =140 mK

DW. Recall that in this case, strictly speaking there is no
potential-energy function for the dynamics of the DW.
However, we expect that the dynamics can be approxi-
mated by the use of a quasistatic potential-energy func-
tion U(x), which in this case is not given by
cr(x) 2M—,Hx In .our approximation, we imagine the
DW positioned at various locations x and estimate the
energy associated with that position, neglecting varia-
tions in the shape of the domain wall and the domain-
wall thickness parameter 5(x). Let us suppose that the
width s of the transition region is fixed and that the width
m of the barrier is varied from being «5 to being ))5.
We discuss cases below.

E-qo —c ', a-W 3/z
M A(~5}

~/2 5/4
Yl s

' 1/2
fl B W ~/2 &/4

M, 5
'g E,

2. CaseII-b: s «5«w

According to the expression for 8 and T„the number of
spina that tunnel is given by M, A(w5}' (us, instead of
that case I, M, As/ps.

I. CaseII-a: s «w «5
In this case, the characteristic length of the function

U(x) is 5 and we write

U(x)= V(x/5) —2M, Hx . (15}

H, — or h, -g—.'g(X M N

M, 52
(16)

Clearly, the function V(y} looks like a broadened version
of o (x). Its width is 5, its height is the same as in the re-

gime 5 «s except that because only a fraction (w/5) of
the DW is in the region where the wall energy o (x) is in-

creased by the factor go, the barrier energy of V(x /5) is
now given by (w/5)rlo. The order of magnitude of the
coercive field is determined by setting the barrier energy
equal to 2M, H5 and is therefore given by

In this case, considerations similar to those for case
II-a show that w is irrelevant, the characteristic length of
the function V is again 5, but the barrier height of the
function is that of cr(x), namely, rla. As a result
b, -5s'/ as in case I above, while h, -rl. We find

~~3/2 g 1/2 5/4M, A5

fpa

kg. I /2s I/4

M 5

We see that all three parameters, E, 8, and T„saturate
as w approaches infinity at a value corresponding to case
I with w replaced by 5.

In both cases II, small M, and large K' lead to small 8
and large T, . However, for small 8 we need small K,
while for large T, we need large K. Therefore, a
compromise must be made with regards to the magnitude
of E.

This approach reproduces the result of Friedberg and
Paul ' and Barbara and Uehara to within a factor of or-
der unity.

Next, we expand U(x) about the minimum next to the
barrier. The resulting potential is cubic as before. The
barrier width is given by 6-6c,', so that 5 replaces s in
our previous expression for case I (5«s). We find the
following results:

C. Variations of the predicted behavior of a b-DW J
mth respect to its topological characteristics

All of the results we have obtained thus far in this pa-
per are summarized in Table III. We have included nu-
merical coefficients for case I since they are not all on the
order of unity. While they pertain to the specific model
of Eq. (7},we expect them to reflect the general situation.

TABLE III. Values of the coercive field h„energy barrier E, %KB exponent B, and crossover tem-
perature T, for various ranges of domain-wall thickness 5.

Case h, /[q] E/[goo'/~] B/[(M, A /f p~)g'/ c'/ ] T, /[(f pro /M, ) )' ~7' /]s/

I- 5«s
II-a: s &w «5
II-b: s «5 « w

5/s
w/5

1

0.5
w/5

1

7$
(w5)'"

5

0.07/s
(w/5~'"/5

1/5
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It is interesting to note that at fixed w and s, the coercive
field has a peak with respect to varying wall thickness 5
at 5-s. On the other hand, the energy barrier E and the
crossover temperature T decrease monotonically with
respect to 5, for 5 & s, while the WKB exponent increases
monotonically with respect to 5. It is therefore best to
have the smallest possible wall thickness allowable by
constraints on measurability of the switching field. Sys-
tems with 5-s seem most appropriate.

III. DISSIPATION

Our analysis has so far neglected the effects of dissipa-
tion. Therefore, for our results to be valid, dissipation
must be weak. The effect of dissipation on QTM in the
switching of single-domain particles has been analyzed
with respect to eddy currents when the particles and/or
particle environment is a conductor material and with
respect to photon emission. In the first case, the damping
is linear ("Ohmic" ), with a rate y' proportional to the
square of the radius of the particle and is typically on the
order of 10 —10 coo. [The result in cgs units is
y'/coo= 32m 'R yM, /pc, where p is the resistivity of the
material, R is the particle radius, and c is the speed of
light. ] The damping is thus extremely weak. In the
second case, the damping is nonlinear; the damping can
be characterized by an effective y'/coo that is proportion-
al to the cube of the radius [-y K R /M, c ] and is on
the order of 10 for a particle of 30-A radius. Garg
and Kim have shown that y'/coo is typically on the or-
der of 10 in the case of phonon emission mediated by
the magnetoelastic interaction (a nonlinear process).

Dissipation in quantum tunneling of domain walls has
been discussed in Refs. 2, 9, and 10 with respect to all
three of the above mechanisms. Here, we will merely dis-
cuss explicit results for damping of D% motion via eddy
currents. The seminal paper on this subject is that of
Williams, Schockley, and Kittel. Since the damping is
linear, it contributes a term —my'v to our Eq. (1). Ac-
cording to Ref. 26, for a wire of rectangular cross section,
with a dimension d in the direction of the easy axis and
length I. that is much greater than d, in cgs units,

M d
y'=98 (19)

pmc

Using the relation for the DW mass m =4M, s /y o, this
equation reduces to

at what field the DW passes across the DWJ. Or, the
passage of the DW past the D%J can be recorded as a
switching of the direction of the magnetization of the
sample as a whole. The basic quantity determined is the
distribution function P(H) of fields at which this passage
takes place. This quantity is closely related to the ir-
reversible susceptibility of a hysteresis loop and is analo-
gous to the distribution of switching currents used to
study switching of JJ s via TA, and via MQT in JJ's
(Ref. 28) and SQUID's, as discussed below.

We first note that the passage rate atPxed app1ied geld
H is a function of the applied field, writing
I = I oexp( EA /—kT) At fi.xed applied field, the proba-
bility that the DW does not pass the DWJ at time t, given
that the DW had not yet passed at time t =0, is given by
exp[ —I (H)t]. However, if the field is swept at a rate
dH/dt, that same quantity is given by

W[H(t)]=exp —f, dH'H 1(H')
o dH'/dt (21)

where we regard H and H' as functions of t and can re-
gard 8'as a function either of H or of t. The distribution
function P (H) is then given by

P(H)= W(H), (22)

120-.-

80--

P(H)--

40--

where r =dH/dt is the sweep rate. For simplicity, we
will consider the case of constant r.

To appreciate the meaning of this equation, note that
the first factor I (H)/r is the probability that the DW
will pass the DWJ in the range H to H+dH (at time t),
given that it has not yet passed the D%J. The distribu-
tion function P(H) has the shape exhibited in Fig. 3
below, wherein it should be noted that P (H) vanishes at
H, . We can relate P (H), measured accurately as a func-

0'd

pc
(20)

Letting p = 10 ' sec and using the values of Tables I and
II, we obtain a value y'=1.4X10 sec '. In this case,
y'/co0 =—2.9X10 . As has been surmised in Refs. 2, 9,
and 10, damping from eddy currents is extremely weak.

IV. EXPERIMENTAL METHODS

A basic procedure for studying DW motion across the
DWJ runs as follows: We first create a DW on the side of
the DWJ. We then apply an oscillatory field, which is
essentially linear in the range zero to H„noting precisely

0.92 0.94 O.S6
8/H,

1.00

FIG. 3. The distribution function P(H) of passages via TA as
a function of swept applied 6eld H, plotted as H, P(H) vs

H/H, . We have used EpA/kT=1000, which according to
Table II corresponds to a temperature of 3.8 K. In addition, we

have used a value H, I p/r = 10 . In the TA regime I p=ct)p/27T.

With the values cop= 3.0X 10"Hz and H, =2500 Oe from Table
II, along with r/H, =1 sec ', H, I p/r =4.8 X 10' and the peak
lies at around H/H, =0.93.
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tion of the field H and temperature T, to theory, in a few

ways, as follows.
(1)Method I. We plot the field H, at the maximum of

P (H), vs temperature. For large E/kT,

H —= 1—
JJ

2/3
kT o

Eo kTH, I o
ln (23)

where I p is the prefactor for passage of the barrier under
TA. Neglecting the slow varying logarithmic factor, a
graph of H vs T should produce a straight line. QTM
is indicated if, instead, Hz levels ofF—at low tempera-
tures, below T,—with a zero slope to a value below H,
[given approximately by Eq. (24), with T replaced by T, ].

(2)Method II. We can follow the Fulton-
Dunkelberger and Voss-Webb procedure, plotting the
width hH of the distribution function as a function of
temperature. Analysis shows that, for large Eo/kT,

2/3
kT «o
E kTH, I

(24)

Under TA, the width should go to zero as T ~ . QTM is
indicated if, instead, hH exhibits a cross-over behavior
(presumably at T, ) and levels off to a nonzero value [ =
Eq. (25) with T replaced by T, ]. See Fig. 4.

(3)Method III. We extract the passage rate I (H) from
P(H), using the relation

cated by the independence of ln(I ) with respect to T at
low temperatures, with a crossover temperature predicted
at around T, .

V. ON THE NEED TO CONTROL THE DW VELOCITY

2M, H, y O.H,v)=, =f
m y' 2M, y'

(27)

Recall that Eq. (1) is valid only if the velocity v of the
DW is much less than the limiting velocity Uo [see Eq.
(4)]. We will show below that if the DW is allowed to ac-
celerate over the length L of the sample under the force
present when the applied field is comparable to the coer-
cive field, the DW velocity would exceed vp, thus violat-

ing the above restriction. In this case, our theoretical
analysis would have to be modified so as to deal with this
"relativistic" regime. This situation can be avoided ex-
perimentally by simply nucleating the DW under a weak
field and aBowing it to accelerate slowly towards the
DWJ. Only subsequently would the field be raised to a
value close to but below the coercive field so as to bring
about passage of the DW past the DWJ.

First we show that we need not take into account
damping during this period of acceleration. This is so be-
cause the typical length L is much smaller than the
"damping distance" u, /y' needed to reach the terminal
velocity v, of the DW. Generally, we have

~( )
rP(H)

1 —I P(H')dH'
p

We note that

v,

Vp

H COL

y' y'

Using the relation vo =fyo /2M„we have

(2&)

Eo(1 H /H, )—
ln(I )= — +ln(I o) . (26)

The advantage of this method is that one does not have
to deal with the logarithmic factors present in the expres-
sions for the other two methods. It also provides us
with a direct way of extracting the value of Ep. One
should plot ln(I ) as a function of (1/T) at fixed H as well
as(1 H/H, )

~ at fi—xed T for various T. QTM is indi-

With H, =2500 Oe, mL =4.4X10' Hz. Assuming that
y' is as large 10 cop and using the figures of Table II, we
find a damping distance U, /y'-430@, which is much
larger than the length L one expects to use. Thus, finally,
neglecting damping, the DW will accelerate along the
length L under a force 2M, H„from rest to a ve1ocity
such that U =2(2M, H, /m)L, so that

1/2
v L

7l (29)
Vp S

aH,
With g=0. 1, s =100 A, and L =1P, we find v/vo=3, in
violation of the requirement U/Uo « l.

VI. DISCUSSION

y. 2I3

FIG. 4. The vvidth hH, of the distribution function I'(H) as
a function of temperature T '. T, is the crossover tempera-
ture, below which QTM is manifest.

We have shown that ti'- formal analogy existing be-
tween the equations of motion of a DWJ and a JJ allows
for a very simple description of the dynamics of a DWJ
for a whole range of domain-wa11 thicknesses. As in the
case of a JJ, the attractiveness of a DWJ lies in its charac-
terizability. It appears that the observation of quantum
tunneling in a DWJ will be easiest when the DW thick-
ness 5 is of the order of magnitude of (and eventually
thinner than) the width s of the interface between the
DWJ and the surrounding material. We have also dis-
cussed the role played by other parameters, such as longi-
tudinal and transverse anisotropy, spontaneous magneti-
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zation, and barrier width, on the behavior of the DWJ.
The analogy with the JJ also suggests the most appropri-
ate experimental procedures to display MQT in a DWJ.
Numerical calculations indicate that the observation of
quantum tunneling in a DWJ is currently accessible to
experimental methods.

sine cose
2

(„)2

a+ sin0 —r(u)

'2

APPENDIX

S= —A f f dx dt J(x) ae
ax

ae
c(x)

In this appendix, we provide a derivation of Eq. (1) of
the paper, neglecting transverse anisotropy. We begin
with the action of Enz, ' modified so as to include a spa-
tial dependence of the various parameters that character-
ize the sample.

2

=sin0cos0+sin0 f (u)+h (u), (A8)tp

aQ

8 8—r(u) =1
Bu dt

(A9)

where h (u):MH—/2E(u) is the local anistropy field. If
we now equate the respective corresponding factors of
[sin0cos0] and [sin0], we obtain

2 '2

+K(x)sin 0—M, H cos0 ',
8lp pcl 8—r(u) = f (u)+h (u) .
ag 2 at2 ag

Using Eqs. (A6) and (A9) we find exactly

(A10)

(Al)

a2e 2 a2e 80—r(u) =sin0cos0+f (u) +h (u)sin0,
at2 Bu

(A2)

where u (x } is a dimensionless position variable, deter-

mined by the equation

dQ

dx
1

5(x) ' (A3)

where A is the area of domain wall, J is the exchange en-

ergy, c is the maximum speed of the domain wall, and e is
the angle of rotation of the magnetization in the plane of
the domain wall. (See Enz for the details. ) The equation
of motion that follows from this action is given by

B0
aQ

2

—r(u) , ae
at

=sin e . (A 1 1)

f du sin 0—=du sech y=2/y(t), (A13)

in the integral (A9) we can let

sin 0~ 5[u —q(t)]
2

y(t)
and replace (1 —cos0)/2 by the unit step function, equal
to zero for u (q(t) and unity for u )q(t). We then in-

tegrate (A12) over u, and, aside from an irrelevant con-
stant, obtain

(A14)

Thus, the action is given by

S=——f f du dto(u)[sin 0—h (u)cos0] . (A12)
2

Next, we assume that the domain wall has a thickness 5
much less than the length scale of variation of the param-
eters o (x) and h(x). Since

r(u) is a local time coordinate, given by
c2

2
1/2

S=A f dt cr(x) 1— 2M, Hx(t) . , — (A15)

1
r(u) =

2y[2nE(u)]'
(A4) where v =dx/dt is the velocity of the domain wall. For

small velocities, v &&c, we obtain

and f (u ) is the force on the DW due the spatial variation
of the wall energy o ( u ): S=f dt —,'m(x)v —[o(x) 2M,Hx]—(A16)

d lno(u)
dQ

We next assume that the domain wall has the form

(A5) where m (x) is the local inass per area, given by

m (x)=o(x)/c(x) (A17)

0(u, t) =2 tan 'exp[qr(u, t)],
where

(A6)

q&(u, t)k =y(t}[u —
q (t) ] . (A7}

The function q(t) is the position of the center of the
domain wall at time t. Substituting Eqs. (A3) and (A4)
into Eq. (A2} leads to

The equation of motion for the variable x (t) that locates
the center of the domain wall is gotten from the varia-
tional equation 5S/6x =0 and is given by

2d [m (x)v] Bo +2M,H+ v dm (A18)
dt ax 2 dx

For small velocities we can neglect the last term on the
RHS, thus obtaining Eq. (1) of the text.



49 QUANTUM TUNNELING ACROSS A DOMAIN-WALL JUNCTION 3933

~See simple review articles by L. Gunther, Phys. World 12, 28
(1990); in Proceedings of the International Workshop on Prop
erties ofFine Magnetic Particles, edited by J. L. Dormann and
D. Fiorani (North-Holland, Amsterdam, 1992). For an intro-
duction with details, see E. M. Chudnovsky and L. Gunther,
Phys. Rev. Lett. 60, 661 (1988); J. L. Hemmen and S. Suto,
Europhys. Lett. 1, 481 (1986); M. Enz and R. Schilling, J.
Phys. C 19, 1765 (1986); 19, L711 (1986).

~For a detailed comprehensive review see P. C. E. Stamp, E. M.
Chudnovsky, and B. Barbara, Int. J. Mod. Phys. 6, 1355
(1992).

B. Barbara, P. C. Stamp, and M. Uehara, J. Phys. (Paris) Col-
loq. 49, C8-529 (1988);C. Paulsen, L. C. Sampaio, B.Barbara,
D. Fruchard, A. Marchand, J. L. Tholence, and M. Uehara,
Phys. Lett. 161, 319 (1991);Europhys. Lett. 19, 7 (1992); 19,
643 (1992).

4X. X. Zhang, L. I. Balcells, J. M. Ruiz, J. L. Tholence, B. Bar-
bara, and J. Tejada, J. Phys. Condens. Matter 4, L163 (1992);
X. X. Zhang, L. I. Balcells, J. M. Ruiz, O. Iglesias, J. Tejada,
and B.Barbara, Phys. Lett. A 163, 130 (1992).

~D. D. Awschalom, J. F. Smyth, X. Grinstein, D. DiVincenzo,
and D. Loss, Phys. Rev. Lett. 68, 3092 (1992).

J. I. Arnaudas, A. del Moral, C. de la Fuente, and P. A. J. de
Groot (unpublished).

7For a discussion of this subject see Ref. 1 and B. Barbara (un-
published).

T. G. Egami, Phys. Status Solidi B 57, 211 (1973); A 20, 157
(1973).

P. C. E. Stamp, Phys. Rev. Lett. 61, 2905 (1988).
E. M. Chudnovsky, O. Iglesias, and P. C. E. Stamp, Phys.
Rev. B 46, 5392 (1992).

'L. Gunther (unpublished).
' J. Clarke et al. , Science 239, 992 (1988). For an excellent

summary on studies of MQT in the JJ and SQUID's see the
review by J. Clarke (unpublished) ~

~3B. Barbara et al. (unpublished).
B.Barbara (unpublished), and Ref. 3.

~5E. M. Chudnovsky and L. Gunther, Phys. Rev. B 37, 9455
(1988).

tsJ. C. Slonczewski, in Physiques des Defauts, Les Houches
XXXV, 1980, edited by R. Balian et al. (North-Holland, Am-
sterdam, 1981),p. 642.

'7L. Neel, Les Oeuures Scientiftques de Louis ¹el (Edition du
CNRS, Paris, 1989).

'sJ. Kurkijarvi, in SQUID '80, edited by H. D. Hahlberg and H.
Lubbig (De Gruyter, New York, 1980), p. 247.
A. O. Caldeira and A. J. Leggett, Ann. Phys. 149, 374 (1983).

See, for example, T. H. O'Dell, I'erromagnetodynamics (Wiley,
New York, 1981).
R. Friedberg and D. I. Paul, Phys. Rev. Lett. 34, 1234 (1974).
It is important to note here that the definition for the coercive
field taken in this article is quite precise and directly connect-
ed to its experimental definition, namely, it is that field above
there is no static solution for a domain wall localized at the
pinning site. Our result is expected to agree with theirs be-
cause it makes use of a quasistatic potential-energy function
for which our coercive field corresponds to that field above
which the barrier is absent, as in the regime 5 «s.
B. Barbara and M. Uehara, Proceedings of the Rare Earth
Conferences, Durham, Great Britain [Inst. Phys. 37, 203
(1978)j.

See D. I. Paul, J. Appl. Phys. 53, 1649 (1982); 53, 2362 (1982),
which reports on extensive calculations for the coercive field

covering the entire range of widths 0& w & oo for a specific
model. The comments in Ref. 21 above apply here as well.
Our results are in agreement with the results of these papers
as far as the qualitative dependence of the coercive field on w.

In particular, H, starts out linear in m and ultimately ap-
proaches a constant as w approaches infinity.

24L. Gunther, Physics World (Ref. 1); in Proceedings of the Inter
national Workshop on Properties of Fine Magnetic Particles,
edited by J. L. Dormann and D. Fiorani (North-Holland,
Amsterdam, 1992).
A. Garg and G. H. Kim, Phys. Rev. Lett. 63, 2512 (1989);
Phys. Rev. B 43, 712 (1991).
H. J. Williams, W. Schockley, and C. Kittel, Phys. Rev. 80,
1090 (1950).

The theory for switching via TA was presented by J. Kurkijar-
vi, Phys. Rev. B 6, 832 (1972). Experimental confirmation
was obtained by T. A. Fulton and L. N. Dunkelberger, ibid.
9, 4760 (1974); L. D. Jackel, W. W. Webb, J. E. Lukens, and
S. S. Pei, ibid. 9, 115 (1974).
L. D. Jackel et a/. , Phys. Rev. Lett. 47, 697 (1981);R. F. Voss
and R. A. Webb, ibid. 47, 265 (1981); S. Washburn, R. A.
Webb, R. F. Voss, and S. M. Faris, ibid. 55, 1550 (1985).
D. B. Schwartz, B. Sen, C. N. Archie, and J. E. Lukens, Phys.
Rev. Lett. 55, 1547 (1985).

OAn avoidance of such a logarithmic term is exploited by the
method of M. Uehara and B.Barbara in the study of magnet-
ic viscosity. See M. Uehara and B.Barbara, Phys. Lett. 114A,
23 (1986);B.Barbara and L. Gunther, J. Magn. Magn. Mater.
(to be published).
U. Enz, Helv. Phys. Acta 37, 245 (1964).




