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We describe a method for the computation of resistivity in a periodic or nonperiodic multilayer of
magnetic materials. We show that the approach that leads to the well-known constant-relaxation-time
solution to the Boltzmann equation in systems with spherical symmetry [J. M. Ziman, Principles of the

Theory of Solids (Cambridge University Press, Cambridge, England, 1964)] can be generalized to cylin-
drical symmetry. The effects of interface scattering are included. For a layered system with a step-
function potential, we have calculated scattering matrix elements from the exact quantum-mechanical
wave functions. In the special case of two layers these are the well-known Kronig-Penney wave func-
tions, but we have developed a transfer-matrix method for obtaining them in general, so our code will

work for an arbitrary number of layers. We find that in realistic models there are often states trapped
between high-potential layers, for which numerical divergences occur; we show how to handle these
cases by a recursive procedure. The advantages of the quantum method over semiclassical ones are that
(a) it includes interference effects exactly, and (b) it involves fewer free parameters. We give results for
the "giant magnetoresistance" of a model of an FeCr sandwich structure for various numbers of layers.
The approach to the result for an infinite periodic system is highly singular.

I. INTRODUCTION

There has recently been renewed interest in magnetic
multilayers due to the discovery that several such systems
exhibit a very large ("giant") magnetoresistance effect. '

These systems consist of layers of a magnetic material
(e.g., Fe) separated by layers of a nonmagnetic material
(e.g., Cr). The effect occurs when there is an antiferro-
magnetic (AF) alignment of adjacent magnetic layers at
zero field, which can be converted to a ferromagnetic (F)
alignment by the application of an external field. The
magnetoresistance arises because the AF configuration
has a much higher resistance than the F configuration.
The effect is quite robust, occurring in a number of
different systems. This suggests that the effect does not
depend critically on the details of the band structure, but
that a simple model based on free-electron-like band
structures might be adequate to explain the data semi-
quantitatively. In this paper we present a transfer-matrix
method for the calculation of quantum-mechanical wave
functions in an arbitrary layered system. We calculate
the scattering matrix that appears in the Boltzmann
equation, and show how the Boltzmann equation may be
solved to give the conductivity and magnetoresistance.
We include both bulk and interface scattering mecha-
nisms, so we can model the effects of interface scattering
due to atomic-scale disorder or interdiffusion at the inter-
face, which has been found experimentally to enhance
the giant magnetoresistive effect.

Resistance in layered systems has usually been studied
from a semiclassical point of view (for example, the
Sondheimer-Fuchs theory, ' based on the Boltzmann
equation). That is, the fact that electrons can be reflected
or refracted by an interface between (internally uniform)
materials at different potentials is taken into account

through assumed reflection and transmission coefficients.
This differs from our completely quantum-mechanical
treatment of the problem in that it neglects interference
between waves reflected at different interfaces. This
neglect is justified when the layers are very thick in com-
parison with the electron wavelength or some quantum
coherence length. However, interesting recent experi-
mental results to which one would like to apply such a
theory involve thin layers (of order 10—20 A) for which
this assumption is not justified.

Although a quantum treatment of the problem can
give rise to quantum osci11ations, we emphasize that this
is not our reason for using a quantum approach: the rap-
id quantum oscillations in our system (see Figs. 4 and 5
or Ref. 10) are unlikely to be experimentally observable
because they will be washed out by layer-thickness fluc-
tuations. The lack of experimental quantum oscillations
does not imply that a classical approach is adequate.

An additional practical advantage of a quantum-
mechanical calculation is that it involves fewer free pa-
rameters than most semiclassical calculations. Although
the reflection and transmission coefficients of a semiclas-
sical theory can be computed quantum mechanically
from the size of the potential step, in most calculations
they have been taken to be free parameters. If one as-
sumes that the bulk parameters (effective mass, eff'ective

potential for electrons of each spin) are known from bulk
experiments, the scattering strengths are the only free pa-
rameters in our approach.

Our calculation assumes a constant potential within
each layer. Thus it does not account for details of the
band structure beyond the free-electron approximation,
as does, for example, the work of Herman, Sticht, and
van Shilfgaarde. On the other hand, it would be very
dificult to calculate the resistivity in a full band-structure
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calculation, as we have done for the free-electron model.
Our approach is simple and efficient enough that we have
been able to implement it in a menu-oriented program
that runs on an IBM PC. Anyone desiring a copy of the
program should contact the author.

Quantum-mechanical calculations using a Kubo for-
malism have been carried out by Levy and Zhang. This
is a very different and more abstract approach than ours.
It leads to a local or nonlocal conductivity from which
the overall conductivity of the layered structure is ob-
tained by integration.

In this paper we show the quantum oscillations ob-
tained for finite FeCr sandwiches and compare them to
the results for the infinite superlattice. Additional results
for quantum oscillations in the superlattice have been
given elsewhere. '

II. TRANSFER-MATRIX SOLUTION FOR
WAVE FUNCTIONS IN A LAYERED SYSTEM

We will initially consider a system that is infinite in the
x and y directions and periodic with period D in the z
direction. The potential V(z) depends only on z and is a
step function, having value VL in layer L
(L =1,2, . . .,N). Similarly, the effective mass is assumed
equal to a constant mL in layer L. The special case N =2
is the well-known Kronig-Penney" model. We denote
the individual layer thicknesses by dL, so that
D=d, +d2+ +dz. The wave functions in such a
system have the Bloch form

g(z) exp(ik x+ik y),
where g(z) satisfies a one-dimensional (1D) Schrodinger
equation and the Bloch condition

and v=(A'/m )dgldz are continuous at the interlayer
boundaries. To do this, note that f and v at z=0 are
linearly related to the two coefficients and therefore to it

and v at each other point z within the same layer. A little
algebra allows this relationship to be written

4(z ) =ML 4(0),
where the column vector + is

(4)

(A'/m )d Pldz

and the matrix ML is

coskz u
' sinkz

—u sinkz coskz
(6)

where we have written k for kL and v for irikL /m. Note
that Eq. (6) holds for imaginary as well as real k. To
compute it numerically in the imaginary case, when

k &0 we define a positive real k so that k=ik and
U =erik/m, and use

coshkz u
' sinhkz

0 sinhkz coshkz

where

In what follows we will put z =dL in Eq. (6) so that ML

can be thought of as a transfer matrix that gives the wave

function at the right side of a layer in terms of that at the
left. Using Eq. (4) N times to propagate across all the
layers, the Bloch condition [Eq. (2)] becomes

MiP =exp(ik, D )0',

g(z+ D ) =exp(ik, D )it (z ) (2)
M=—M~ M2M] .

for some k, . The Brillouin zone is infinite in the x and y
directions, and of width 2m/D in k, . Within layer L, the
solution g(z) is a linear combination of sin and cos(kL z),
where kL is defined by

The eigenvalue equation [Eq. (8)] has a solution if and

only if the determinant of M exp(ik, D—) vanishes. Us-

ing the fact that ML and therefore M have unit deter-

minant, this condition is easily converted to

fi (kL+k, +k )/2mL+ VL =e, (3)
cosk, D= —,

' trM . (10}

and e is the energy eigenvalue.
In the familiar 1D potential-barrier problem, the

effective mass is the same on both sides, and the ap-
propriate boundary conditions are that f and dg/dz are
continuous. Thus the momentum density g*dil'jldz is
continuous. When the materials are different, we must be
more careful. We will still assume g continuous, but
physically it is the normal mass flux P*(h /m )dfldz (for
a plane wave, this is U~g~ where v=kk/m) rather than
the momentum density that must be continuous. Thus
we should assume continuity of (R/m )dg/dz instead of
dfldz itself. (This result can also be derived by looking
at the layered free-electron system as the long-wavelength
limit of a tight-binding system, in which the overlap in-

tegral, which controls the effective mass, is different in
different layers. )

To find the wave function, we need to pick two com-
plex coefficients in each layer, such that the values of g

Thus our transfer-matrix method leads to a simple expli-

cit formula for k, . Since kL [Eq. (3)] depends only on

the Fermi surface is a surface of revolution, and we need

only plot a cross section, i.e., a graph of k, vs k„, as in

Fig. 1 below. For a given k„, if Eq. (10) is between —1

and 1, there is a solution for k, and a point of the Fermi

surface; if not, k„ lies in a gap between sheets. In the

former case, it is easy to solve Eq. (8} for %(0) and use

Eq. (4) to find the wave function f(z) everywhere (Fig. 2

below}.
To calculate the conductivity, which is an integral over

the Fermi surface, we require a sampling of points on the
Fermi surface. It is not sufficient to use an evenly spaced
grid in k„, because near k, =0 and k, =~/D, the slope

Bk, /Bk„diverges, requiring very closely spaced k, . We

use an algorithm that chooses the increments dk„so that
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the areas of the resulting pieces of Fermi surface are ap-
proximately equal. In a gap between sheets, we use an in-
terpolative search procedure based on Newton's method
to find the edge of the next sheet.

III. FERMI SURFACES FOR FeCr SUPERLATTICES;
TRAPPED STATES

0
TT/D

F+

U=(fi /2m') A =0.946 eV, (12)

where we have taken the effective mass m* to be the
same for all layers and equal to 4.0 times the free-electron
mass. We specify energies in U rather than in eV because
our MR results depend only on VL /U; they can be ap-
plied to models with different effective masses by simply
scaling all energies by U. The resulting values of all the
potentials are given in Sec. V below (Table I).

The overall electron density in our layered system is
not simply related to the choice of potential, and in gen-
eral the densities of the F and AF configurations will be
different. In principle we should adjust the Fermi energy
for each configuration, because physically these densities
must of course be the same. However, we have checked
that these differences are negligible (less than one part in
10 ) and do not affect our conclusions about the MR.

We show in Fig. 1 the Fermi surfaces (FS) resulting
from these potentials for an infinite periodic system of al-
ternating Fe and Cr layers of thickness d=3 A. The
left-hand (low k„) sheets in Fig. 1 resemble the free-
electron case, for which each FS sheet would be a slice of
a sphere cut by horizontal planes separated by 2m. /D.
We show in Fig. 2 the wave function at the point labeled
"2"in the minority-spin ferromagnetic FS, Fig. 1(b).

The nonconstancy of the potential is important only
near the Brillouin-zone boundaries, where it introduces a
gap between otherwise-degenerate sheets. For a given en-
ergy e [Eq. (3)], this effect is greatest for large k„(i.e.,
large kinetic energy parallel to the layers) because then
the remaining kinetic energy (perpendicular to the layers)

(13}

In a free-electron model of a real material, the electron
density N=(2n) (4n/3)k. F represents the density of
itinerant electrons, moving in a weak pseudopotential
determined by the core potentials and the electrons
bound in the cores. Thus the number of itinerant elec-
trons per atom need not be an integer —these plane-wave
states may include admixtures of both s- and d-like orbit-
als. The lattice (with core electrons) must have a positive
charge (assumed uniformly distributed} of equal magni-
tude. To model an FeCr structure we need to choose
three potentials V„,+, VF, , and Vc„where + and-
refer to the spin directions. We have taken the relative
values of these Vs from the work of Inoue, Oguri, and
Maekawa relative to the mean Fe potential, these are
VF,+ =+0.81 eV, Vc, =0.56 eV. To set the absolute lev-
els (i.e., the Fermi energy eF ), we have chosen N„,+ to be
2 electrons/atom = 30 A . This gives k+=1.93 A
and (setting the energy origin at eF =fi kF /2m '

)

VF,+ = —3.72U= —3.52 eV, in terms of a convenient
energy unit

(b)

k

0
TT/D

(c) 0—
0 05 kr(A-1) 10 1.5

'3'

FIG. 1. Cross sections of the Fermi surfaces (FS) of a period-

ic FeCr superlattice for (a) majority and (b) minority spin elec-

trons in the ferromagnetic configuration, and (c) either carrier
in the antiferromagnetic configuration, using layer thickness

d =3 A. Each FS sheet is a solid of revolution about the verti-

cal (k, ) axis. Only the top half of the Brillouin zone (from k =0
to ~/D) is shown. Note that the periodicity D is larger

(D =4d) for the antiferromagnetic case than for the ferromag-

netic (D =2d ) case. In the repeated zone scheme, the leftmost

sheet of each FS is a "lens" and the other pieces are undulating

cylinders. This figure (as well as Figs. 2 and 3) is an annotated
screen dump from the PC program mentioned in Sec. I.

z(A)

FIG. 2. The wave function P(z) at the point (k, =0.663 A )

labeled "2" in Fig. 1(b). The solid and dashed curves are the
real and imaginary parts, respectively. The potential is also
shown, on an arbitrary scale, with e+ (top of graph) and the per-
pendicular kinetic energy e, [Eq. (13)] indicated. Because
e ))

~ Vc, —V„, ~, g is quite free-electron-like.

may be comparable to or smaller than the potential step
V& V2 ~ We show in Fig. 3 the wave function for the
state marked "3"in Fig. 1, as well as the potential V(z).
The wave function is effectively trapped in the lowest-
potential layer.

The trapped states pose the most serious numerical
problem in computing band structures of realistic layered
systems. This is clear from Eq. (7), which diverges as
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a code to handle all such possibilities for an arbitrary
number of layers is not trivial. However, we have found
that the problem can be solved quite generally by using a
recursive procedure to compute all the bound states in a
channel. It increases k„until some element of the matrix
M exceeds a preset limit, indicating channel subdivision,
at which point it calls itself twice to compute all the
remaining bound states in each subchannel. This can
continue to an arbitrary depth of recursion.

'z

3
z(A]

FIG. 3. The wave function at the point labeled "3" in Fig.
1(c). Notation is as in Fig. 2. Because e, ((V(z) in the barrier
layers, the wave function is trapped.

exp(kdL ) with increasing dL . Eventually numerical
overflow will occur, but a more immediate problem is
that the trace in Eq. (10) varies extremely rapidly with k„,
making interpolative solution impossible. The rightmost
sheet of FS becomes nearly vertical in Fig. 1, i.e., it is
nearly a cylinder. It can be seen from Fig. 3 that trap-
ping occurs for large k„when dL is only a few Angstrom
units. ' For these values of k„, we must treat the system
as finite rather than periodic, with decaying-exponential
boundary conditions; then the corresponding sheet of
Fermi surface is exactly cylindrical. If the electron is
trapped in a "channel" between layers L and L', the
boundary condition at the right edge of layer L (the left
edge of the channel) states that the column vector [Eq.
(5})there must be proportional to

A'k /m

Applying the matrix

M =ML ) ML+) (14)

so that

1
(A'k /m 1)M =0 (15}

is the condition for a bound state, analogous to Eq. (10)
for a band state. We use the same interpolative search
procedure mentioned above for finding the band edge
(solving —,

' trM =+1) to solve Eq. (15).
Unfortunately, Eq. (15) can still diverge, since it in-

volves the matrices MI just as Eq. (10) did. This will

occur when a layer inside the channel becomes a barrier
(has large MI ), thus dividing the channel into two. Then
each of these channels can subdivide, and so on. Writing

must give a similar column vector at the left edge of layer
L', which is orthogonal to the row vector

(haik /m 1)

IV. SEMICLASSICAL TRANSPORT
IN CYLINDRICAL SYMMETRY

where Q d k' is the probability (per unit time) of scatter-
ing to state k from a state in the volume element d k'
near lr' (or vice versa, since we assume elastic scattering
here), E is the electric field, and the velocity vt, is
X-'ae/ak.

The most common application of Eq. (16) involves the
use of the constant-relaxation-time approximation, in

which the scattering term [the right-hand side of Eq. (16)]
is assumed to be —gz/~. This leads to

gk = rvk'eEBf /Be (17)

It is well known' that if one assumes spherical symmetry
for the unperturbed system, the constant-relaxation-
time-approximation distribution function [Eq. (17)] is an
exact solution of the Boltzmann equation, for some ~.
We would like to generalize this result to lower (cylindri-
cal) symmetry. We will begin by giving a version of the
standard derivation that makes it clear how the symme-

try is involved. Essentially, the spherical symmetry
determines the angular dependence of g&. We adopt the
ansatz that g& is proportional to the cosine of the angle
between k and E:

g„=y(k }E.k, (18)

where the "distribution factor" y(k ) depends only on the
magnitude of k. Substituting this into the Boltzmann
equation [Eq. (16)],one encounters the integral

f y(k')Q(k, k')k'd k' . (19)

Spherical symmetry implies that this integral must point
along k; denote it by A (y, k ) k (it is a linear functional of
the distribution factor y ). ' Symmetry also requires that
the velocity point along k, i.e., v= vk/k. Thus each term
of the Boltzmann equation [Eq. (16)] is proportional to

Since our layered system is invariant under rotations
about the z axis, the problem has cylindrical symmetry in
k space. Each sheet of the Fermi surface is a surface of
revolution about the k, axis. We will calculate steady-
state transport in this system using the linearized semi-
classical Boltzmann equation. That is, we assume the
system is characterized by a steady-state distribution
function ft, =f (ek)+gz where f (e) is the equilibrium
Fermi-Dirac distribution function at temperature T. The
Boltzmann equation has the form'

v„eE@"'/ae= f (g„—g~)Q(k, lr')d'k', (16)
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E.k; canceling this, it becomes

k 'vi, edf Ide= A(y, k) R—(k)y(k), (20)

We now need to compute the scattering probability per
unit time, Q(k, k')d k'. For scattering from a static po-
tential V, Fermi's Golden Rule' gives

where Q(k, k')d k'=2m%' 'i V~ i QdN(e), (26)

R(k):—f Q(k, k')d k' (21)

is a rate for scattering out of state k. Now that we have
removed the angle dependence, Eq. (20) is a straightfor-
ward integral equation for y(k ), and by finding a solution
we will validate our initial ansatz about the angular
dependence of g&. If we assume temperature T=O, so
dfolde is a Dirac 5 function 5(e—ep) at the Fermi
surface, we can assume y(k)=y, 5(e eF) as well, and
Eq. (20) can be solved trivially. The resulting distribution
function is exactly of the form of Eq. (17) with the usual
result'

~-'=—f Q(k, k')(1 —k' k/k')d'k

for the relaxation time.
We will now generalize this derivation to the case of

cylindrical symmetry. In general the electric field will
have components both along and perpendicular to the z
axis. Since g& depends linearly on E, we can treat these
cases separately and superpose the results. We will first
consider the case of most experimental interest, in which
E is in the layer plane (E, =0). We will again use the an-
satz [Eq. (18)], but now the distribution factor y may de-
pend on both the radial and axial components k„and k, ;
it is independent only of the azimuthal angle P. Symme-
try now requires only that the integral [Eq. (19)] has the
same azimuthal angle as k; it need not point along k. But
its z component is irrelevant, so we will consider only the
in-plane component

fy(k')Q(k, k')k„'d'k' (23)

where k„ is the in-plane ("radial" ) component of
k=k„+k,z. Then the integral [Eq. (23)] must point
along k„, and we can write it as A (y, k„,k, )k„. Cylindri-
cal symmetry also requires the in-plane component of the
velocity v& to point along k„, so we can write it as
u„(k„,k, )k„/k„. Then we can again cancel E k„ from the
Boltzmann equation [Eq. (16)], leaving

k„'v„elf Ide= A(y, k„,k, ) R( „k, k)y(k„, —k) (24)

which has no P dependence. The only difference between
this and the spherical-symmetry case is that the points of
the Fermi surface (a curve in the k„k, plane) are -not

equivalent, so that even at T=O, we must in general solve
a nontrivial integral equation for y. This is a relatively
straightforward numerical problem, but for the case of
5-function scatterers considered in this paper, we will see
that it turns out to be unnecessary; A is identically zero,
so we can solve for y by just dividing by R.

After finding y, we can obtain the conductivity in the
usual way. ' Using j =(2n) e fgzvzd k and j =oE, the
in-plane conductivity tensor is

o =(2~} e f yv„k, d k . (25)

V(r)= Vv5(r —r ) . (28)

We will normalize the wave function P so that the total
wave function is

0 ' exp(ik„x+ik y )gz(z),

so that the scattering matrix element is

V, = V,n-'~y„'(z„)y„,(z„)~

(29)

(30)

and is independent of the x and y coordinates of the
scatterer. The important feature of this matrix element
from the point of view of transport calculations is that it
does not depend on the azimuthal angle P' of k'.

We can allow any combination of bulk and surface
scatterers, with both spin-dependent and spin-
independent strengths V0. We denote the volume density
of bulk scatterers in layer L by pl . We label an interface
by I and refer to its position as zi and to the surface den-

sity of scatterers there by pr. Then it is easy to average
Eq. (26) over the positions of the scatterers (assumed to
scatter incoherently} to get

Q(k, k'}d k'=2M ' V(D 'dN(e)

Xpl ~ff. (zi 4'x (zi }~

I

+ g PL, f ~ gq (z )g„,(z ) ~
dz

0
(31)

This result can now be integrated [Eq. (21), which is now
an integral over the Fermi surface] to give the relaxation
rate R.

Because Q does not depend on the azimuthal angle P'
of k', the angular dependence of the integrand in Eq. (23)

where V~ is the matrix element of the scattering poten-
tial between states k and k'. Here 0 dN(e) denotes the
number of states per unit energy at the energy eI, . in the
volume element d k' near k', it is proportional to the
volume 0 of a normalization box. Because these states
lie near a constant-energy surface, it is best to coordina-
tize k space using a variable kj perpendicular to this sur-
face and area element dkFs in the surface, so that a cylin-
drical volume element of height dkj and base dk„s con-
tains the states within dE of eI, where
dE =(dEIBkz)dkj =A'vdkj. Then we find

dN(e) =(2m ) dk„s/A'u

and the total density of states per unit volume is just

fdN(e), integrated over a constant-energy surface.

We +ill now calculate the matrix element V~. . In this

paper we will consider the case that the scatterers are of
negligible extent (5 functions). We will assume that the
scattering potential of a scatterer at r„has the form
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is cos P', and the integral over P' is zero. Thus A is zero
in Eq. (24), and we obtain immediately

) (k„,k, )= —R 'k„'u„edfo/r)e . (32)

o =(2~) e A
' J(u„r/v)irk„dk~~ . (34)

To evaluate this conductivity numerically we must cal-
culate v at each point of the Fermi surface. The com-
ponent v, perpendicular to the planes is given by

B(trM )/Bk,
~u, =aE/ak, =

a(trM)/as '

where

(35)

8( trM )/Bk, = —2 cask, D

from Eq. (10) and

Note that R ' plays the role of a relaxation time in this
5-function scattering case [the k' k term in Eq. (22) van-
ishes, making it identical with Eq. (21)]; we will denote
R '

by r below. We can now substitute y into Eq. (25)
for the conductivity. It is isotropic in the layer plane, so
we need only calculate the xx component. Writing
d k=d kFsdki and noting that J dkidf /de= —I/A'u

over any interval of k~ cutting the Fermi surface, we get

cr=o„„=(2ir) e iri
' J (u„u k, r/k„u)d kFs . (33)

To do the angular integral, we write d kFs=k„dpdk~~
where dk~~ is a length increment along the Fermi-surface
curve in the k„k, pla-ne. Using k, =k„cosP and
u =v„cosP, we obtain finally

majority spins. We will show some results for magne-
toresistance in the next section.

There is an interesting special relation between the
conductivity and the total electron density, valid in the
case of cylindrical symmetry, resulting from the special
free-electron-like U„. To see this, note that a coin-
shaped volume element of the interior of the FS is d k
=ok„dk, . The vertical height dk, is related to the slant
height by dk, /dkll v /"' d' g o

o =(2ir) e A' ' f (u„/k„)rd k . (39)

But because of the special free-electron result [Eq. (39)],
the ratio in the integrand is a constant, irilm. If r is a»o
constant, the integral is just proportional to the electron
density and we recover the Drude result cr =ne r/m
This is true in both the ferromagnetic and antiferromag-
netic configurations in a giant-rnagnetoresistance system,
so since the total electron density is the same in both
configurations, the conductivity is as well. We conclude
that the magnetoresistance (parallel to the layers) van-

ishes if the relaxation time and effective mass are con-
stant. This result has been observed independently by
Levy. '

We can also calculate the conductivity in the z direc-
tion, perpendicular to the layer planes. In this case the
left-hand side of the Boltzmann equation [Eq. (16)] has no
angular dependence, so the consistent ansatz is that gk
depends only on k„and k, :

v, e df /i3e = A '(g, k„,k, ) R( k„,k, )g—( k„,k, ), (40)

where

B(trM)/aE=y a(trM)/ak, (ak, /aE)
I

(36) A'= Iy(k')Q(k, k')d k' . (41)

which can be evaluated from Eqs. (3), (7), and (9). The
other velocity component is defined by a derivative at
constant k„

eu„=aE/ak, . (37)

v, =8k„/m . (38)

This result has an interesting consequence for the
magneto-resistance, which we will describe below. It
does not appear that Eq. (38) is true when the effective
masses are different, or for systems without cylindrical
symmetry; in general U, must be evaluated from an equa-
tion similar to Eq. (35).

Now we can evaluate the conductivity numerically
from Eq. (34) in the course of plotting the Fermi surface
shown in Fig. 1. In a magnetic system, we do the FS and
conductivity calculations separately for the minority and

But k, depends on the kL 's in the layers, and if all the
effective masses mL are the same, these kL 's can be held
constant by varying e and k„so that Eq. (3) remains true.
Differentiating Eq. (3) gives

(iri /m )k„dk„=dE

(where m is the common effective mass) so that we obtain
the free-electron-like result

In this case, 3' does not vanish for 6-function scatterers,
so one must solve an integral equation to get the perpen-
dicular conductivity.

Parts of a formal development using the same general
viewpoint as the present one were described by Inoue,
Oguri, and Maekawa' for a two-layer system (Kronig-
Penney model). This differed from the present work in

that they did not calculate any wave functions (they used
i(= 1), and their numerical results did not depend on the
quantum-mechanical nature of the model.

V. RKSUI,TS

Magnetoresistances resulting from applying the
method described here to infinite Peer superlattice struc-
tures have been given elsewhere; we wi11 give here MR
results for finite sandwich structures to see how the
infinite limit is approached. We summarize in Table I the
parameter values we have used.

The scattering parameters Sb„,k and S,d in Table I are
defined as follows. The scattering probability due to in-

terface I in Eq. (31) is proportional to Vopl. Assuming

this is due to interface roughness, the scattering centers
are atoms situated on the wrong side of the interface; the
perturbation to the potential at such an impurity site is

the difference between the atomic potentials of the two
materials. Within our step-potential mode1, this is just
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m*
VF,+
VF,
Vc.

Sbulk

4m,—3.71 U
—2.00 U
—227 U

1.0 A (scattering,
spin-dependent)

04U A
0.0125 (convergence parameter;

see Appendix)

—3.515 eV
—1.896 eV
—2.148 eV

0.358 (eV)~A

the potential jump 6Vl at a step I. Allowing also for in-
terface scattering due to impurities or lattice defects,
which does not depend on the potential difference, we
thus parametrize the interface scattering by

VoPI =S„+Ssd(h V (42)

TABLE I. The parameters used, in terms of the energy unit
U [Eq. (12)] and in electron volts. Only the relative values ol sof
the scattering strengths Saffect the MR.

20
d (&)

4,0 6,0 8,0

infinite relaxation times when g vanishes accidentally at
interfaces, but we have approximated the corresponding
term in Eq. (31) using /=1. The exact f was used in the
interface term.

We have defined the magnetoresistance by

1/o (F ) —1/o. (AF ) (44)MR —=
1/o(AF)

which is always less than unity. The sign is chosen so
that MR) 0 if the resistance increases with field, so our
giant magnetoresistances are negative.

We show in Fig. 4 the conductivities of the various
spin channels for a four-layer Fe-Cr-Fe-Cr sandwich
structure, together with its resulting magnetoresistance.
The MR is quite complicated, but arises from a fair y

For notational consistency, we parametrize the buhe bulk
scattering by

~oPL, —Sb
2 b (43)

-0,4

-0, E3

so that the free parameters S„., S,d, and Sb„&k control the
spin-independent, spin-dependent, and bulk scattering re-
spectively. We have shown previously' that large mag-
netoresistances are obtained only when spin-dependent
scattering is included, so in this paper we will concentrate
on this case. A small Sb„&„must be included to avoid
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FIG. 4. Conductivities in a four-layer Fe-Cr-Fe-Cr sandwic,
'

h
in the ferromagnetic state (curves labeled F+ and F—for up
and down spin, respectively) and the antiferromagnetic state
(curves labeled AF+ and AF —). Because the curves overlap
heavily at large d, three of them have been displaced downward
by 0.4, 0.8, and 1.2 units, as indicated. This does not change the
order of the curves at most values of d; the minority (F—) con-
ductivity is the largest. The scale at left uses a conductivity unit
e /8sr m. The lowest curve is the magnetoresistance, whose
scale is indicated at the right.

FIG. 5. (a) Magnetoresistances of FeCr sandwich structures
with 4 (main graph), 6, and 8 (insets) layers. The dashed line su-

perposed on each graph is the superlattice (N= 00 ) result (Ref.
10). There are no data for large d and large N because when the
total thickness D =Nd is very large one encounters the overflow

problems discussed in Sec. III. (b) MR for 3, 5, and 7 layers;
these have one more Fe than Cr layer.
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simple sawtooth pattern in the individual conductivities,
involving a nearly linear rise followed by an abrupt drop.
The drop is actually infinitely sharp in our model; the ap-
parent width in Fig. 4 is due to the finite spacing of the
sampled d's. The drop occurs when a new cylindrical
piece of Fermi surface appears at small k„with area
dk„s = (2'/D )(2~k, ). The corresponding extra density
of final states [Eq. (27)] is m /2mAD, independently of k„.
Thus the scattering rate [Eq. (32)] for all initial states in-
creases discontinuously, and the relaxation time and con-
ductivity decrease. An analogous (but not discontinuous)
effect was seen' in the infinite superlattice, where such a
conductivity decrease accompanies the appearance of a
new lens sheet in the Fermi surface [such as that at the
lower left in our Fig. 1(c)]. These quantum oscillations in
MR should not be confused with the well-known oscilla-
tions in magnetic coupling' (we have assumed AF cou-
pling for all layer spacings d ) although the two phenome-
na are obviously closely related.

In spite of the complicated MR of the sandwich struc-
ture, it does appear to be consistent with convergence to
the superlattice result' in the limit N~ ~. We show in
Fig. 5 the MR of sandwiches with various numbers N of
layers, together with the N= ~ result. Experimentally
we expect the very rapid oscillations of MR with d that
occur for large N to be smoothed out, giving a result very
similar to the N= ~ curve.

It is apparent from Figs. 4 and 5 that there is a long-
period modulation of the MR oscillations due to beating
between the conductivity oscillations in the various chan-
nels; this bears some resemblance to the aliasing effects
that have been proposed as explanations of the long-
period oscillations in antiferromagnetic coupling in lay-
ered systems. ' Though the distance scale is sensitive to
our choice of parameters (especially the itinerant-electron
density), the period b,d of the present oscillations is so
short that they are very likely to be washed out by layer-
thickness fluctuations and therefore not experimentally
observable.

VI. CONCLUSION

The transfer-matrix method makes it possible to calcu-
late the electron wave functions in a model magnetic mul-
tilayer eSciently and rapidly enough that one can in-
tegrate over the Fermi surface and evaluate the conduc-
tivity, taking into account both bulk and interface (sur-
face roughness) scattering. We find strong short-period
quantum oscillations in the conductivities of sandwich

TABLE II. Convergence of magnetoresistance of an infinite
FeCr superlattice as the number of sampling points on the anti-
ferromagnetic FS increases. (The number on each of the two
ferromagnetic FS's is about —, of this. ) Parameter values choices

are those in Table I, with d =2.2 A.

Convergence
parameter 6

0.1

0.05
0.025
0.0125
0.00625
0.003125

Number
of points

37
63

125
242
458
915

Magneto res&stance

0.27192
0.27848
0.27480
0.27289
0.27324
0.27312

structures. These oscillations may combine to produce
long-period structure in the magnetoresistance. Similar
effects have been found' for infinite superlattices.
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APPENDIX: CONVERGENCE WITH RESPECT
TO NUMBER OF FERMI-SURFACE

POINTS SAMPLED

In our program, the fineness of the Fermi-surface mesh
is controlled by a dimensionless convergence parameter
A. Roughly speaking, this is the fraction of each sheet of
Fermi surface that is allowed to be represented by one
point. More precisely, we require our increment dk„ to
be less than k~6, (where k~ is an efFective Fermi wave
vector), the corresponding dk, to be less than 2n d/D and
the number of points in each sheet to be more than 6
The convergence of the MR as 6~0 is given in Table II.
It is not monotonic, because the MR is sensitive to the
positioning of sample points with respect to the end
points of FS sheets. However, at the value of 6(0.0125)
used in our figures it is quite well converged, to about
0.1%. The fractional uncertainty in MR is much greater
for the case of spin-independent scattering, ' because the
MR itself is so much smaller, of order 2'. The uncer-
tainty is especially large near the singularities at which a
piece of FS first appears.
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