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Computer-simulation study of magnetic relaxation in anisotropic magnetic systems
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We present a computer-simulation study of the effect of the distribution of energy barriers in an aniso-
tropic magnetic system on the relaxation behavior of the magnetization. While the relaxation law for
the magnetization can be approximated in all cases by a time logarithmic decay, the law for the depen-
dence of the magnetic viscosity with temperature is found to be quite sensitive to the shape of the distri-
bution of barriers. The low-temperature region for the magnetic viscosity never extrapolates to a posi-
tive no-null value. Moreover our computer simulation results agree reasonably well with some recent re-
laxation experiments on highly anisotropic single-domain particles.

I. Ilv r.RODUCTION

Relaxation phenomena from an arbitrary initial state
to an equilibrium or stationary one are of great impor-
tance in physics. This is both because they are present in
many situations of interest in science and technology and
because they represent particular situations of physics
out of equilibrium, which is an actively developing part
of physics. In this paper we will address the particular
case of magnetic relaxation processes of systems of small
noninteracting particles with two spin states available to
each particle and a distribution of barriers of potential
energy between the two states. This situation has become
one of actual interest because experimental observations
of such relaxation phenomena provide relevant informa-
tion on important problems in magnetism and supercon-
ductivity.

For the simplest theoretical case of systems of particles
with just a single size for the barriers, the problem of the
relaxation has an easy solution. If a magnetic field that
aligns all magnetic moments in one direction is removed,
the total magnetic moment of that system will decay ac-
cording to the law M(t)=M(0)exp( —I' t), I' being the
rate of the thermal transitions determined by the Boltz-
man factor I' ~ exp( —U/ka T), where U is the size of the
barrier.

The problem of magnetic relaxation in the realistic sit-
uation in which there is some distribution of barrier
heights is actually one of great interest. In fact, it has
been noticed long ago' that a broad distribution of energy
barriers may provide a time relaxation law of the type

M(t) =M(to) S(H, T)ln(tlto), —

valid for times greater than to, where S(H, T) is the so-
called magnetic viscosity that will depend on both the
magnetic field H and the temperature T. This logarith-
mic law in time has been observed in a variety of sys-
tems. For the case of superconductors, this type of
magnetic relaxation can also be explained within the
Anderson-Kim model. ' Moreover, very recently,
Lottis, White, and Dan Dahlberg have published a mod-
el consisting of a spin system with the spins interacting

via the dipole-dipole interaction; the dynamics of such
system is also described by a quasilogarithmic or
stretched-exponential time dependence. The common
fact of these different models and the key to understand-
ing the time logarithmic relaxation law is that as the ob-
servation time is running, the system arrives to greater
and greater barriers which are more diScult to over-
come.

The quantity of interest here is the magnetic viscosity
whose dependence on temperature T and magnetic field
H will characterize the relaxation behavior of the system.
It deserves to be noted that the magnetic viscosity depen-
dence on the applied field H is due to the fact that the
field modifies the energy-barrier height. Therefore it is
convenient to express the viscosity as S=f (H)g(T)—,
where f (H) depends on the value and direction of the
external magnetic field and g ( T) is a function of tempera-
ture. In this paper we will concentrate on the depen-
dence of the magnetic viscosity on temperature, S ( T).
Despite the interest of the problem, only few computer-
simulation studies have been performed on this issue. '
Those performed until now are for systems of identical
interacting particles such that the barriers are equal for
all the particles and the distribution of energy barriers is
entirely due to the interactions. Then, in the models
used, the shape of the distribution of energy barriers is
not a variable that can be controlled easily. We will
present in this paper a computer-simulation study of a
model in which the shape of the distribution of barriers
between the states is introduced explicitly, so that it can
be used to get some insight into the effect of the shape of
the distribution of barriers on the relaxation phenomena.
We will limit ourselves here to systems of noninteracting
particles (i.e., the ideal gas version of the model), which
seem to be a good approximation in many experimental
situations.

The paper is arranged as follows. In Sec. II we give a
detailed description of the theoretical model which is the
basis of our calculations. Section III is devoted to
present the results of the computer simulations. In Sec.
IV a comparison is xnade between our computer-
simulation results and some recent experiments on
single-domain particles. Finally, in Sec. V we discuss and
summarize the main results of this work.
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II. THEORETICAL MODEL

To study the relaxation behavior of systems of the type
described above by means of computer simulations, we
have devised a theoretical model whose basic features are
as follows. Our model is a system of X noninteracting
particles. The relevant property of a particle is its
volume V;, i F t 1,2, . . . , N I. Associated to a particle of
volume V, , there are two additional interesting proper-
ties: (i) a magnetic moment M, with M, =p V, , p being a
constant, and such that o; =—(M;e)/M; E I +1,—1), e be-

ing a convenient unitary vector, so that the particle can
be in one of two states I +M, , —M, ), and (ii) a barrier of
energy between these two states, U;=vV;, with v a con-
stant. A state of the system is given by the
enumeration of the individual states of its particles,
0 = Io „02, . . . , o.~ J. Then the macroscopic quantity
that characterizes the state of the system will be the total
magnetization

S
M= goM, .

The particles being independent, the system will evolve as
a succession of thermally induced single-particle events of
the type o.;~—o;. The probability of one of those
events to happen is just the probability of the particle to
jump its own barrier, which is given by

U;
P(U, ) ~exp

B

kB being the Boltzmann constant and T the temperature.
A system of X particles will be characterized by some

distribution function of volumes, f (V), such that the
number of particles in the system with volume V between
the V+dV is dN=Nf(V)dV. A variety of reasonable
choices are available for the function f(V). We have
considered here three that are very different from each
other and whose shapes are representative of reasonable
physical situations, so that our study will be representa-
tive of situations commonly found in experiment. On
these bases we have studied the distribution functions
that follow, whose parameters are a normalization con-
stant A and a characteristic volume Vo: (i) the uniform
distribution

if V+ Vo,
f'V'='0 f V&V, ,

which is representative of the situation where the distri-
bution of particles is flat so that all volumes up to a max-
imum are practically equal represented in the system, (ii)
the exponential distribution

f(V)=A exp
V

Vo

which represents the situation where the number of parti-
cles with a given volume decreases monotonously with
the value of the volume, and (iii) the Maxwellian distribu-
tion

2
Vf(V)= 3 exp

Vo

V
'

Vo

III. COMPUTER-SIMULATION RESULTS

The simulations reported here have been performed for
a system of A' =3.6 X 10 particles, evolved up to
t~=3.6X10 time steps for all temperatures. Then a

which corresponds to the case in which there is a finite
non-null volume preferred by the particles.

To make our study as general as possible, the calcula-
tions have been performed in a system of reduced unities
so that Vo is the unit of volume, v Vo is the unit of energy,
and vvo/ka is the unit of temperature. With regard to
the magnetization, the constant p in the relation
M, =p V, has been taken to be equal to 1.

Our computer simulations have been performed under
the following dynamics. We first set a table in which
volumes, distributed along one of the above functions

f ( V), are assigned to N-10 particles. We will call this
our computer sample. The initial state of the system is
chosen with all the particles in the same state o.;=+1 so
that Mo =pX V,. is the initial value for the magnetization.
Then a value of the reduced temperature T' is selected
and the state of the computer sample is evolved in a
computer-simulated time t* to get the law for the relaxa-
tion of the magnetization M(t')=pro;(t')M, at this
temperature. To do this the following process is repeat-
edly iterated: A particle i is randomly chosen, and its
state is changed if a random number between 0 and 1 is
smaller than P =exp( —U,. /T" ). We define a time step as
a bunch of N of this single-particle process. Then our
unit of time, w', is the length of one of those time steps;
the computer-simulated time is given by t *=n ~', n being
an integer. The evolution of the system is followed until
a computer-simulated time tz-N~* has elapsed. This
algorithm is in fact a particular case of one of the algo-
rithms to simulate time-dependent processes reviewed by
Binder" (algorithm 3). Performing runs such as these for
any one of the above distributions of volumes and a wide
range of temperatures for each f ( V), we obtain a discre-
tized version of the time evolution of the magnetization
M"(t')=M(t*)/p and from it, by means of a least-
squares fit performed in the time interval where M'(t*)
versus ln(t") is linear, we obtain the magnetic viscosity
S'(T')= dM' /[din(t*)].

It deserves to be noted that the dynamical process im-

plied in this computational algorithm includes two im-
portant features of the real systems: (i) thermal fluctua-
tions given by the temperature-dependent stochastic na-
ture of the process and (ii) the possibility of the particles
to jump back and forth between the two single-particle
states available because a particle suffers one process each
time unit in the average. In consequence, jumps back
into the original configuration of the system are allowed
by the dynamics. However, from the statistica1 point of
view they are very improbable because we begin in a state
of the system with all spins aligned, which is far from
equilibrium, so that it evolves from it toward a state of
more disorder.
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particle suffers an average of 3.6X10 attempts of flip-
ping from its actual state in a run, being the actual num-
ber of flips dependent on temperature. The temperature
range studied in the above reduced units was chosen as
follows. The highest temperature considered was such
that the magnetization completely relaxes to zero in the
fixed value of tN considered. The lowest temperature was
such that the magnetization relaxes to a magnitude of
about l%%uo of its initial value in the same time. In Fig. 1

I &)()00

10800

we show a set of time relaxations of the magnetization for
each of the above distributions and for ten equally spaced
temperatures chosen in a wide interval of reduced tem-
peratures.

When using a logarithmic scale in time, we found that
a time logarithmic decay is a good approximation in a

2time interval that roughly begins between t*=2.5X10
steps and t'=10 steps, and ends between t*=10 steps
and t*=3.6X10 steps, depending on temperature and
distribution. The results for the three distributions con-
sidered appear in Fig. 2. The qualitative resemblance of
the results in this figure and some previously published
experimental results for this phenomenon in different sys-
tems deserves to be noted.

The magnetic viscosities obtained by means of a fit to a
straight line of these relaxations performed in the ap-
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FIG. 1. Examples of the time relaxation of magnetization for
ten different temperatures of the reduced temperature T: (a)
Uniform distribution with T H [0.02,0.11] at intervals of
hT =0.01, (b) exponential distribution with T E [0.05,0.50] at
intervals of hT =0.05, and (c) Maxwellian distribution with
T E [0.04,0.22] at intervals of b, T =0.02.
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FIG. 2. Magnetization vs logarithmic time for the relaxa-
tions shown in Fig. 1.
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this ease the metastability is due to the existence of two
states with minimal energy which correspond to the mag-
netization vector pointing along the easy-axis distribu-
tion. The switching of the magnetization from one stable
direction to another involves overcoming an energy bar-
rier usually via a process of thermal activation. The
height of the barriers when no external field is applied is
proportional to the volume V of the particles. It is deter-
mined by the energy of magnetocrystalline anisotropy
combined with the shape anisotropy. This is given by
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FIG. 3. (a) Magnetic viscosity as a function of temperature
for the uniform distribution (circles), the exponential distribu-
tion (squares), and the Maxwell distribution (triangles). (b)
View of the low-temperature region of (a); solid lines have been
added to show fits to a straight line for the exponential distribu-
tion and to a quadratic law for the uniform distribution.

Uo=(a. +2m.M, )V=K,s V,

where ~ is the first-order anisotropy constant, which is
given by the anisotropy field HK and the magnetic mo-
ment density (or magnetic saturation) Ms of the switch-

ing unit through ~= —,
' HKM~. The particles studied in

Ref. 12 where highly anisotropic, with characteristic an-
isotropy fields of HK —10 Oe. As the typical orders of
magnitude for saturation magnetization density and size
of those particles were M, —5 X 10 emu/cm and
V-5X10 ' cm, the typical size of those barriers is
Uo-10 ' erg.

A sample of single-domain particles being a many-
particle system, one must consider the effect of the dipo-
lar interactions between the particles to properly describe
the system. The effect of these interactions is shown by
the presence of a magnetic field HD on a particle, created
by the remainder of the system. This field varies with the
magnetization of the sample. Moreover, we must consid-
er the possibility of an external field H, applied to the
sample. These two fields are seen by a particle combined
as a field acting on it, H=HD+H„whose effect is to
modify the height of its barrier in a quantity given by the
expression for the activation energy proposed by Neel, '

propriate interval are displayed in Fig. 3(a). The func-

tions obtained increase with temperature toward what to
seems to be a maximum or a plateau. For the case of the
exponential distribution, a pronounced decay of S' with
T' is clearly observable after the maximum. For temper-
atures above the highest considered here for every distri-
bution, the time logarithmic relaxation law is lost in the
sense ~oat the region where linear approximation is feasi-
ble becomes narrower and noisy with increasing tempera-
ture until it becomes practically inaccessible to the com-
puter simulation. In Fig. 3(b) we show in more detail the
low-temperature behavior of S'(T'). From this figure it
is clear that the extrapolation to zero temperature inter-
sects the S' axis at S(0)~0 for all distributions. More-
over, the shape of S'(T*) is also affected by the shape of
the distribution. This seems to be linear for the exponen-
tial distribution, quadratic for the uniform distribution,
and something not adjustable by a simple function for the
Maxwell distribution.

IV. COMPARISON WITH EXPERIMENT

An experimental situation where this model is easily
applicable is the case of single-domain particles with uni-

axial anisotropy recently studied by Tejada et a/. ' In

U =K,~ 1—H
K

V.

Moreover, as H varies with the magnetization of the sam-

ple through HD, this introduces a change of the efFective

height of the barriers during the process of relaxation of
magnetization.

In the materials studied in Ref. 12, the particles in the
sample were diluted, and in practice only 1/o of the total
relax during a typical experiment. The particles that do
not relax can be seen as a set of fixed magnetic moments
randomly directed. They create an average field in the
sample that does not vary with time. So one can properly
define the system that we study as the set of particles that
relax and treat the remainder as part of the environment.
Then, in the above description of the field external to a
particle (that relaxes) as a field composed of the field

external to the sample and the dipolar fields of the sur-
rounding particles, one must consider this last decom-
posed into two contributions HD=HDz+HDz, where

HDz stands for the dipolar field due to the particles that
relax and HD~ for the particles that do not relax. This
last can properly be seen as a constant field, external to
the system of interest. The dependence on magnetization
of HD is entirely due to HDz. How important this efFect
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U =K,~ 1+ H
K

V

can be approximated by U =K,zV, neglecting terms that
are two orders of magnitude smaller. This means that in
the present highly anisotropic case the barriers are sym-
metric in the first approximation, so that back and forth
processes must overcome practically the same barrier
height. Then the relaxation processes studied here are
dominated by the shape of the distribution of energy bar-
riers, so that this shape is the convenient control pararne-
ter to study them. Moreover, neglecting effects that in
this particular case are very small, the quantity v in our
computational model can be properly identified as
v=E,I.=~+2m.MS, and it stands for both back and forth
processes.

In this experimental situation, the distribution func-
tions selected above can be justified having in mind that
the actual distributions of energies is determined by the
fluctuations in the anisotropy constant a and volume V,

is will be determined by the comparison of the above size
of the barriers Uo and the magnitude of the dipolar in-

teraction, which is given by (M, V} /R, R being the
average distance between the particles.

Let us first note that in the relaxation experiments in
Ref. 12 an external field of H, = 10 Oe was applied. This
is to be added to the constant average field created by the
particles that do not relax, HDN, which is estimated to be
smaller than 10 Oe. With regard to H&z, one must note
that the energy of the dipole interaction between two par-
ticles that are in close contact with each other is of the
order of 10 ' erg. However, as only 1% of the particles
in the sample relax, and this is very diluted, the average
distance between them will be greater than 10 of the
closest distance so that the corresponding energy will be
smaller than 10 ' erg, which is 10 of Uo. So we can
neglect the effect of the interactions between the relaxing
particles in the relaxation process. As the variation with
magnetization is entirely due to the field created by these
particles, this effect must be negligible. This implies that,
although HDz varies with M, its bounds are such that the
magnitude of HDa(M) is at most of the same order of
magnitude as Hzz. As the total external field on a parti-
cle is the one that results from the combination of these
three fields, it happens that (even considering the varia-
tion with M) its order of magnitude is about 10 of the
anisotropy field. Then the factor (1 H/Hx) —in the
Neel expression is practically equal to 1. So, despite the
fact that this equation holds for the dilute systems, it can
be effectively written in the present highly anisotropic
case as U=K,frV+O(H/Hx), where 0(H/Hx) stands
for higher-order terms in H/Hx, which in this case are
about 1% of E,ff V, so that they can be neglected, and in
practice it is U =E,~Vin very good approximation.

Similarly, H/Hx being very small, the activation
enthalpy for jumps back to the original single-particle
configuration

the distribution of easy axes with respect to the orienta-
tion of the applied field plus the distribution of s, V, and
MH angle values. Then a flat distribution of energy bar-
riers with a maximum barrier height may be a good rep-
resentation for the energy barriers corresponding to a
magnetic system with high metastability. It may be a
system of interacting single-domain particles or, alterna-
tively, a system of identical particles with a broad distri-
bution of a, V, and MH angle values. An exponential dis-
tribution of energy barriers may correspond to a system
of highly defected single-domain particles; the smallest
barriers may be associated with the coercitivity barriers
which clearly depend on the nature of the pinning
centers. A Maxwell distribution of barrier heights may
be invoked to represent the barrier height distribution of
a system of single-domain particles with very high anisot-
ropy constants a. In this case the distribution function
could only be associated with the dispersion of the ~V
values, if we admit that the barrier heights go to zero.

Tejada et al. ' reported experimental results on the
magnetic viscosity as a function of temperature for
several ferrofluid systems constituted by single-domain
particles. In particular, their results for Fe304, and FeC,
and CoFe204 can be used for meaningful comparison
with our computer-simulation results. Given the simpli-
city of the particular selections off ( V},we are just look-
ing for an overall qualitative agreement between them
and the numerical values that we compute.

The experimental results for Fe304 show a broad max-
imum at high temperature just as our simulations for the
exponential distribution. A reasonable good scaling be-
tween experiment and computer-simulation results is
shown in Fig. 4(a). This has been achieved by means of
the following scale transformation of computer-
sirnulation results: T =33T* and S =115S*. In a simi-
lar manner, the experimental results for FeC can be
reasonably scaled with the computer-simulation results
for the uniform distribution when the transformation
T =102T' and S =127S' is used as shown in Fig. 4(b).
For the case of CoFe204, the computer-simulation results
that gave a best fit were found to be those for the
Maxwellian distribution as shown in Fig. 4(c), where the
transformation used was T =245T' and S =831S*.

From the expressions and the comments on the re-
duced unit system in Sec. II and the transformations
used to scale the functions, one obtains the following
estimations for the characteristic barrier heights:
Uo(Fe304) =33.Oaks, Uo(FeC) = 102Ek~, and
Uo(CoFe204) =245Kk~. From Tejada et al. ,

' one can
obtain only estimations of the average size of the barriers.
These are Uo(Fe304) = 15%k~, Uo(FeC) =30Eks, and
Uo(CoFezO~)=75Kks. As expected, the results from
computer experiments agree with those from real experi-
ments in order of magnitude.

It deserves to be noted that the distribution of volumes
measured in the above samples was found to be of the
log-normal type. As in the simulation in this paper the
distribution of barriers and the distribution of volumes
are identical, it follows that in real systems the distribu-
tion of barriers is not necessarily equal to that of volumes
as discussed in this section.
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FIG. 4. (a) Computer-simulation results for the exponential

distribution (open squares) scaled to experimental measure-
ments for Fe304 (solid squares), (b) uniform distribution (open
circles) scaled to the experimental measurements for FeC (solid
circles), and (c) Maxwellian distribution (open triangles) scaled
to the experimental measurements for CoFe&04 (solid triangles).

V. COMMENTS AND CONCLUSIONS

We have investigated the magnetic relaxation behavior
of highly anisotropic systems by means of the simulation
of a computational model of systems of noninteracting
particles with two available states separated by a barrier
of energy. Thermal fluctuations and the possibility of
jumps back to the original con6guration have been in-
cluded in the computer simulation by means of a con-
venient stochastic dynamics. Our investigation has been
concerned with the effect of having a distribution of ener-

gy barriers instead of a single-barrier height. %'e have
neglected other possible effects on relaxation such as
external or internal Selds, which is a good approximation
in some real experimental situations. Moreover, this
model is interesting from a theoretical point of view be-

cause the effect of the distribution of barriers appears iso-
lated from other contributions to the relaxation process,
which is relevant from an analytical point of view.

The variety of shapes for the distribution law of bar-
riers considered allows us to conclude that, except for
very singular distributions, we will be able to obtain a
time interval for which the time logarithmic law decay is
a good approximation. So it follows that slow relaxation
can also be obtained, neglecting interactions and consid-
ering only a distribution of barriers plus thermal agita-
tion. Moreover, magnetic viscosity appears as a con-
venient quantity to characterize this phenomenon.

Another major result of this paper is the study of the
magnetic viscosity. The dependence of the magnetic
viscosity with temperature has been found to be sensitive
to the shape of the distribution of barriers both at high
and low temperatures. Particularly interesting is the case
of the exponential distribution of barriers where we have
been able to observe very clearly a S ( T) function that in-
creases toward a maximum at some value of T and then
falls down toward zero. This type of behavior has been
reported in various experiments in small particles, ' su-
perconductors, ' ' and spin glasses. ' We will note that
we have observed different low-temperature behaviors,
but none of them was convergent to a positive value of
the magnetic viscosity as the temperature goes to zero.
This last observation is relevant in relation to the inter-
pretation of plateaus in the low Tregion o-f S(T) as evi-
dence of quantum tunneling of magnetization. ' ' '

When compared with experiment, our S(T) functions
look similar to the observed in experiments. Moreover,
we obtained reasonable estimations of the size of the bar-
riers from a scaling of our functions with the experimen-
tal ones, despite the fact that no attempt of 6tting multi-
ple parameters has been done. This is reliable evidence
that the computational model proposed here is a good ap-
proach to understand the phenomena of slow relaxation
that appear in magnetism and superconductivity. To get
better agreement in comparisons of this nature, two im-
provements are needed. First, in the experiments, the
distribution functions of the energies (or volumes of the
particles) must be determined more precisely and the re-
lation between volume and energy barriers must be well
estimated so that average values are properly de6ned and
computed. Second, extensive computer simulations are
needed to get a more precise idea of the relation between
the shape of the distribution of barriers and the function
S(T).

Finally, we will note that as our calculations have been
done for an ideal system, we have obtained evidence that
for, the experimental systems considered here, weak in-
teractions between the particles is a fair approach. In
fact, the effect of the interactions between the particles on
the relaxation of the system, in the type of systems con-
sidered here and in other related systems, both in magne-
tism and superconductivity, is an interesting issue that
will be addressed in future investigations by means of nat-
ural generalizations of the model presented here.

ACKNOWLEDGMENT
Financial support from CICYT Project No. MAT90-

0051 is greatly acknowledged.



49 COMPUTER-SIMULATION STUDY OF MAGNETIC RELAXATION. . . 3873

R. Street and J. C. Wooley, Proc. Phys. Soc. London A 62, 562
(1949).

U. Uehara and B. Barbara, J. Phys. (Paris) 47, 235 (1986), and
references therein.

C. Paulsen, L. C. Sampaio, B. Barbara, R. Tucoulou-
Tachoueres, D. Fruchart, A. Marchand, J. L. Tholence, and
M. Uehara, Europhys. Lett. 19, 643 (1992).

4X. X. Zhang, Ll. Balcells, J. M. Ruiz, J. L. Tholence, B. Bar-
bara, and J. Tejada, J. Phys. Condens. Matter 4, L163 (1992).

~L1. Balcells, J. L. Tholence, S. Linderoth, B. Barbara, and J.
Tejada, Z. Phys. B 89, 209 (1992).

M. R. Beasley, R. Labush, and W. W. Webb, Phys. Rev. ISI,
682 (1969).

~Y. Yeshurun and A. P. Malozemoff, Phys. Rev. Lett. 60, 2202
(1988).

D. K. Lottis, R. M. White, and E. Dan Dahlberg, Phys. Rev.
Lett. 67, 362 (1991).

R. W. Chantrell, A. Lyberatos, and E. P. Wohlfarth, J. Phys. F
16, L145 (1986).

A. Lyberatos, R. %. Chantrell, and A. Hoare, IEEE Trans.
Magn. MAG-26, 222 (1990).

I IK. Binder, Monte Carlo Methods in Statistical Physics
(Springer, Berlin, 1979).
J. Tejada, Ll. Balcells, S. Linderoth, R. Perzynsli, B.Rigau, B.
Barbara, and S. C. Bacri, J.Appl. Phys. 73, 6952 (1993).
L. Neel, Ann. Geophys. 5, 99 (1949).
M. Tuominen, A. M. Goldman, and M. L. Mecarthey, Phys.
Rev. B 37, 548 (1988).
M. Tuominen, A. M. Goldman, and M. L. Mecarthey, Physi-
ca C 153-155, 324 (1988).
C. Rossel and P. Chaudhari, Physica C 153-155, 306 (1988).
D. K. Lottis, E. Dan Dahlberg, J.A. Christner, J. I. Lee, R. L.
Peterson, and R. M. White, J. Appl. Phys. 63, 2920 (1988).
E. M. Chudnovsky and L. Gunther, Phys. Rev. Lett. 60, 661
(1988).
E. M. Chudnovsky and L. Gunther, Phys. Rev. B 37, 9455
(1988).


