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Exciton trapping in one-dimensional systems with correlated disorder
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Numerical investigations of the trapping of Frenkel excitons in one-dimensional lattices with
interstitial traps randomly placed in pairs are presented. The probabilities of 6nding the exciton
both in the q = 0 mode P(t) and in any mode Q(t) have been obtained following the numerical
approach recently developed by Huber and Ching [Phys. Rev. B 42, 7718 (1990)j for unpaired traps.
We have found that the pairing of traps enhances both probabilities at all times, in comparison with
lattices containing the same fraction of unpaired traps. We suggest that this behavior is related to
the occurrence of larger segments of the lattice that are free of traps, where there exists a major
contribution of the slowly decaying modes.

I. INTRODUCTION

A great deal of theoretical work has been devoted to
the study of excitations in disordered solids. However,
the understanding of quasiparticle dynamics in disor-
dered systems is far from complete. The investigations
generally split into two different topics: transport prop-
erties and spectroscopy. Concerning the first topic, some
new phenomena have been found in relation to quasi-
particle localization. A number of recent works strongly
suggest that the occurrence of correlated disorder in-
troduces a competition between the long-range disorder
and the short-range correlation causing long-range trans-
port. Thus, for instance, electron delocalization appears
in tight-binding Hamiltonians in which the on-site energy
takes on one of two possible values, one of which is as-
signed at random to pairs of lattice sites (the so-called
random dimer model~ s). Moreover, delocalization by
correlation is not restricted to electronic random systems;
for instance, the occurrence of delocalized vibrations by
paired disorder has recently been demonstrated in clas-
sical random chains by means of multi&actal analysis.
In contrast to this progress, much less attention has been
paid to the spectroscopy of correlated disordered systems.

Trapping of Frenkel excitons in one-dimensional sys-
tems with randomly distributed (uncorrelated) traps was
earlier studied by Hemenger et al. ' obtaining exact re-
sults for a number of special cases. More recently, Hu-
ber and Ching have considered both interstitial and
substitutional~o traps (an explanation of the basic differ-
ences between the efFects of these two kind of traps may
be found in Ref. 11), where the e6'ects of trapping are
introduced through a non-Hermitian decay term in the
Hamiltonian. In this paper we investigate the dynam-
ics of one-dimensional lattices whose excited states are

Frenkel excitons in which the coherent quantum trans-
port is afFected by the presence of pairs (correlated) of
interstitial traps placed at random in an otherwise perfect
lattice. We believe that the study of this model is beyond
the formal study of the exciton dynamics. Indeed, our
model could provide insight into the optical properties of
some polymers with active molecules (for instance, it is
known that polyaniline can be mapped onto a random
dimer model ); besides, it could be extended to three
dimensions i.n order to explain some basic features of lu-
minescence in alkali halide mixed crystals (assuming the
validity of the Frenkel-exciton approach in these solids),
as in the case of a dimer emission band originating &om
the localized exciton created at a pair of Br ions, as
occurs in KC1:Br.

II. MODEL

The Hamiltonian for the Frenkel-exciton problem in
the ordered lattice without traps can be written in tight-
binding form with nearest-neighbor interactions as fol-
lows (we use units such that 5 = 1):

'R = V) a&al, + T ) (a&ay+a + al, +zaI, )
t

Here ak and a& are the exciton annhilitation and creation
operators in the site representation, respectively. V is
the single-ion transition kequency, and T is the nearest-
neighbor coupling (the exciton bandwidth is 2~T~).

As mentioned above, we shall be concerned with the
dynamics of Frenkel excitons when interstitial traps are
introduced in the ordered lattice. Interstitial traps do not
replace specific sites: Trapping will occur when particles
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at sites close to the trap fall into it by emitting a phonon.
We assume that either temperature is low and trap is
deep enough to avoid detrapping processes. The presence
of traps is taken into account by adding a non-Hermitian
decay term of the form

—i ) r„a'„a„

to the Hamiltonian (1). Sum runs over lattice sites and
I'p is nonzero only if the kth site has a trap associated
with it. This parameter gives the probability of finding
the kth ion in the excited state as exp( —21't, t) whenever
the coupling between ions is negligible (radiative transi-
tions will be ignored throughout the paper).

The correlated disorder is introduced as follows: We
suppose that all traps are identical so that I'y = I', and
they are randomly distributed along the lattice but only
appear in pairs of neigboring sites (the correlation length
equals the lattice spacing). Thus, we define the fraction
of traps c as the ratio between the number of sites with
a trap associated with it and the total number of sites in
the lattice. Following Refs. 9 and 13, trapping of a q = 0
exciton created by a pulsed optical excitation in a lattice
with 1V sites is described by a set of correlation functions

Gi (t) = ) .(0la~(t)a,'I0)
N

where IO) denotes the exciton vacuum state and ay(t) =
exp(i'Rt)ai, exp( —i'Rt). The function G~(t) obeys the
equation of motion

(4)

with the initial condition Gt, (0) = I/y N. The diago-
nal elements of the tridiagonal matrix H~k are V —iI'k,
whereas off-diagonal elements are simply given by T. The
equation of motion is a discrete Schrodinger-like equation
on a lattice, and standard numerical techniques may be
applied to obtain the solution. Once the equation of mo-
tion is solved, the following two functions are calculated:

scheme. Energy will be measured in units of T, whereas
time will be expressed in units of T . The maximum in-
tegration time and the integration time step were 25 and
5 x 10, respectively; smaller time steps led to the same
results. Since we are mainly interested in the effects of
the configuration of the random system (correlated disor-
der) rather than in the effects of the different parameters
on the trapping process, we have set V = —T = I' = 1
hereafter. The fraction of traps ranged from 0.01 up to
1.0, and for each lattice a random distribution of paired
traps was chosen. In addition, lattices with uncorrelated
(unpaired) traps have been studied and compared with
lattices containing the same fraction of correlated traps.
This enables us to separate the effects merely due to trap-
ping in one dimension from those that manifest the pe-
culiarities of the correlation between random traps.

In our computations we found that P(t) decays faster
as the fraction of traps increases, as shown in Fig. 1.
This behavior is also obtained in the case of uncorre-
lated traps. This is expected, since trapping depletes
the q = 0 mode in both cases. Although not shown in
the figure, we have checked that P(t) exp( —2I't) in the
limit c -+ 1. In this limit the trap distribution exhibit
translational symmetry so there is no scattering by dis-
order. Thus q = 0 is the unique present mode and the
trapping is simply exponential. For any other &action
of traps randomness occurs and disorder causes a non-
exponential decay, as seen in Fig. 1. Similar comments
apply to the survival probability Q(t). The correspond-
ing results are presented in Fig. 2. It is observed that
this probability also decays nonexponentially (except for
the case c = 1, which is not shown in the figure). The
main difference is the decay rate of P(t) and Q(t) for the
same fraction of traps (note the different vertical scale in
Figs. 1 and 2) showing that P(t) & Q(t) at all times.

The above results have been obtained for a single real-
ization. An important and nontrivial question is whether
these results strongly depend on each particular realiza-
tion of the system or not. If diferent realizations of the
system yield rather different values, then it would make
no sense to deduce any general behavior of P(t) and

and

(6)

These two functions characterize the exciton dynamics.
P(t) is identified with the probability of finding an ex-
citon in the q = 0 mode at time t, whereas Q(t) is the
probability of finding the exciton in any mode at time t
(survival probability). Hence, it is clear that P(t) & Q(t)
at all times.

III. NUMERICAL RESULTS AND DISCUSSIONS
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We have numerically solved the equation of motion (4)
for chains of N = 1 000 sites using an implicit integration

FIG. 1. luP(t) versus t for lattices with 1000 sites. The
fraction c of paired traps is indicated on each curve.
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FIG. 2. 1nq(t) versus t for lattices with 1000 sites. The
fraction c of paired traps is indicated on each curve.

with those obtained in one-dimensional lattices with un-

paired traps. As mentioned above, this comparison will

be carried out for systems with the same fraction of traps.
In all cases considered we have observed that the exciton
decay is slower in the presence of correlated traps. This
is illustrated in Fig. 4 for a fraction of traps c = 0.4.
Hence, our computations show that correlation of traps
reduces the depletion of the q = 0 mode as well as the
trapping rate as compared to uncorrelated traps. This
is one of the main results of this work. The physical
explanation of this behavior is based in the particular
spatial distribution displayed by the traps when pairing
is present. Let us consider the lattice to be divided in 6-
nite segments without traps, while we assume that traps
are associated to the ions closest to the ends of the seg-
ments. It becomes clear that the average length of the
segments is larger when correlation is present, since traps

Q(t) from a particular realization. It is worth mentioning
that other works on exciton trapping in one-dimensional
random systems deal with data for a single realization
only. Therefore, we have investigated this question,
generating a number (up to a maximum of 40) of random
con6gurations with a 6xed &action of paired traps. The
magnitudes used for averaging were ln P(t) and ln Q(t).
The reason to average the logarithm of the observable
quantities is twofold: First, the numerical values of P(t)
and Q(t) become very small for long times, and conse-
quently they can be severely affected by numerical round-
oE errors. The second reason is the well-known fact that
logarithms usually exhibit better statistical properties
than the magnitudes themselves. The relative disper-
sion of values around the mean was determined at each
integration time t as follows:
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where ( .) denotes an average over all configurations of
Nc paired traps and f(t) stands for lnP(t) or lnQ(t)
correspondingly. Notice that the relative dispersion ((t)
is the usual dispersion divided by the mean value of the
magnitude. In Fig. 3 we present the results for c = 0.2
and 40 averages for both lnP(t) and lnQ(t). Figures
3(a) and 3(b) show, respectively, the plots of ln P(t) and
ln Q(t) along with the uncertainty band given by their
dispersion, and Fig. 3(c) shows the corresponding rela-
tive dispersion ((t). It is important to realize that the
uncertainty band is indeed small: Its width is much less
than the distance to the same curves for slightly diH'er-

ent fraction of traps (cf. Figs. I and 2 taking into account
the difFerent vertical scales). We observe that the relative
dispersion increases slightly at short times but remains
almost constant at large time. The constant values are
about 11% in both cases, so we are led to the conclusion
that different configurations of traps yield very similar
results without strong Quctuations.

Having confirmed the main features of the exciton de-
cay due to the presence of paired traps, we compare them
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FIG. 3. (a) 1nP(t) and (b) 1nq(t) (solid lines) along with
the uncertainty band given by their dispersions (dashed lines),
and (c) relative dispersion of values ((t), as defined in (7),
of 1nP(t) (dashed line) and lnq(t) (solid line) versus t In.
all three plots, averages were taken over 40 realizations of
systems with a fraction c = 0.2 of paired traps.
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These values confirm that disorder correlation reduces
the exciton decay rate even at long times.
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FIG. 7. In
~

in P(t)~ and ln
~

in Q(t)~ versus Int for lattices
with a fraction c = 0.1 of correlated (solid line) and uncorre-
lated (dashed line) traps.

It is worth mentioning that some authors suggested that
this asymptotic behavior is achieved in experimentally
accesible times only in one dimension (see Ref. 11 and
references therein). We have studied the exciton de-
cay at long times (up to 25) for lattices with uncorre-
lated, as well as correlated, traps. It must be noticed
that our calculations are not in the asymptotic regime,
so that a direct comparison with analytical results for
t —+ oo could be inconsistent. We have observed that
decay probabilities fit stretched exponentials of the form
P(t) exp( —At ) and Q(t) exp( —Bt~) in the range
t = 18 up to 25. To obtain the parameters a and P
we have plotted ln

~

ln P (t) j and ln
~

ln Q (t) (
versus ln t, as

shown in Fig. 7. For a small concentration of traps (up
to c = 0.2) we obtained n 0.5 and p 0.3 for corre-
lated traps, whereas in the case of uncorrelated traps we
obtained n 0.6 and P 0.4 over the indicated interval.

IV. CONCLUSIONS

As mentioned in the Introduction, the present study
is devoted to obtaining a more complete and general
comprehension of the quasiparticle dynamics in one-

dimensional systems with correlated disorder, which is

being investigated extensively at present. In particu-
lar, we have numerically investigated the dynamics of
Frenkel excitons in one-dimensional ordered lattices with
a certain number of paired interstitial traps. The numer-

ical procedure allows one to develop a time analysis of
the exciton decay in a relatively simple way. Based on
these computations, we have concluded that excitons de-
cay slower when correlation is introduced. The pairing
of traps causes the occurrence of larger segments of the
lattice, which are free of traps, and the slowly decaying
modes associated with them cause the slowdown of the
trapping rate. In view of these results, we point out that
obtaining analytical results concerning trapping in one
dimension with correlated disorder would be an interest-
ing theoretical task. As a final remark from the view-

point of applications, our findings suggest that studying
the optical response to pulsed excitations may be a means
to discern the local spatial structure of active centers in
solids. Regarding this, we envisage that more compli-
cated groupings of traps may lead to even slower exciton
decays. It would then be experimentally relevant to pur-
sue this possibility further.
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