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Simple model for dry friction
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The basis of dry friction is discussed using an independent oscillator model with longitudinal
motion. This simple system is treated both numerically and with analytical methods. At vanishing
velocity a sliding dry friction force is calculated which is smaller than the pinning force. At Snite
but not too large velocities the system displays bifurcation, chaotic motion, resonances at fractional
and multiple frequencies of the oscillator, and hysteresis. Dry friction results from these complicated
features. This force varies rapidly with velocity within this range, however, with a roughly constant
mean value.

I. INTRODUCTION

Dissipative processes are described phenomenologi-
cally in classical equations of motions by a friction term.
Usually this is assumed to be proportional to velocity.
This has a quantum mechanical basis, since excitations
can only be created by dynamical processes. ' However,
dry &iction, i.e., velocity independent friction, is also
observed. It is a force the direction of which is opposite
to the velocity and with a constant absolute value while
the system is moving. When the system is at rest, say, an
object lying on an inclined plane, the force takes the value
necessary to keep it at rest. Tomlinson, in his pioneering
work, noted the fact that dry &iction can only appear in
a composed system, such that part of it displays quick
motions even when the system as a whole moves arbitrar-
ily slowly. Several models based on this idea have been
discussed, ' in particular an oscillator which moves per-
pendicular to the gliding surface, a coupled chain along
this surface, ' and films sliding on each other. A quan-
tum mechanical model of dry friction has been proposed
in connection with experiments with the scanning force
microscope. A microscopic model was introduced to
describe dry friction in micromagnetism.

In this work a single oscillator tangential to the surface
is considered. This oscillator moves along the direction of
the force and it is capable of lagging behind the moving
system. This simple model is treated both numerically
and with analytical methods. It is found that the move-
ment presents features which have not been discussed in
this context.

II. THE MODEL

Consider a system which as a whole moves with con-
stant velocity V on a straight line. A small part of the
system of mass M can move separately on that line. It is
coupled to the main body by an elastic force. Its position
is X, while that of the main body is Vt at time t (Fig.

1). Thus the coupling energy is

(M/2) 0'(X —Vt)'.

The small part is also subject to an external potential
which can be taken to be periodic as

—C cos(2vr X/A) . (2)

MA (X -Vt)

V V V V V V v'f

' —C cos (2aX lh, )

FIG. 1. Mechanical model for dry friction. The main body
moves along a straight line with constant velocity V. A small
object with mass M at position X is coupled through a spring
of frequency 0 to the main body, and to a periodic potential

Cc so(2 .sX/ A). The small object drops periodically into a
potential minimum and is subsequently dragged out again.
The motion of the main body can be arbitrarily slow, and yet
the small object moves quickly while falling. This produces
an energy loss by viscous friction. The energy loss per unit
distance represents a term of dry friction.

While the main body moves steadily, the small ob-
ject drops periodically into a potential minimum. Subse-
quently it is dragged out again. The motion of the main
body can be arbitrarily slow, and yet the small object
makes a fast motion while it is falling. This produces an
energy loss by viscous friction. For the system as a whole
this is an energy loss per unit distance F, which results
effectively in a term of dry friction. An evaluation of the
friction coefficient, p = F/F, »t«t, requires a model for
the dependence of C on the contact force F, „t,t. We
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do not specify the physical interpretation of the small ob-

ject, which might be a single atom capable of tangential
oscillations, or a macroscopic part of the solid, say, a part
of a rubber tire with this property.

III. PURE DRY FRICTION
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Let the velocity V of the main body go to zero, V ~
+0, but consider times which are large so that Vt =
L is finite. In this case the main body is effectively at
rest during the fall of the small object into a potential
minimum. At all times except during the fall the small
object is in a minimum of the total potential U(X, t)
which is the sum of (1) and (2). The drop begins when
the second derivative d2U/dX changes sign, i.e. , when
it vanishes. After a dropping motion the small object is

again at a potential minimum. When there are several
minima in U(X, t), the question of where it comes to rest
can only be solved using the equations of motion. Let
us assume that the viscous friction is sufficiently large so
that the small object comes to rest in the next minimum.
In this case the following problem is to be solved: From
dU/dX = 0 and d2U/dX2 = 0 we obtain the positions Lp
and Xo of the system and the object, respectively, at the
beginning of the drop. With the value Lo we look for the
next larger value of X = Xi which satisfies dU/dX = 0.
The energy dissipated during the drop is
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and

8 32-~2f = 2vrc —2vr + m. ~ c '~ —7—rc '+ O(c ~
)3

for c)) 1. (9)

FIG. 2. Dimensionless dry friction force vs c —1 for arbi-

trarily slow motion (v -+ 0). c is a dimensionless measure

of the amplitude of the periodic potential. The dashed line

represents the pinning force.

AW = U(Xp Lp) U(Xi Lp).

Xp, Lp, and U(Xp, Lp) can be evaluated analytically. Let

4~2C
MO2+2 (4)

be a dimensionless measure of the strength of the periodic
potential compared to that of the spring; then

A
Xp ———arccos (—1/c),

27'
A

Lp ———Qc2 —1+ arccos (
—1/c)

27r .
U(Xp, Lp) = (c + l)MA A /(8vr ).

(6)

f = -( —1) ——(
—1) + (

—1) +0(( —1) )
9 2 18 3 531 4 5

2 5 175

Here Lo —Xo is positive, since V = +0; however, an
integer multiple of A can be added to Lo, Xo, and
Xi. U(Xi, Lp) is evaluated numerically. The dry fric-
tion force F is defined as the dissipated energy per unit
length, i.e., F = AW/A. In Fig. 2 the solid line shows

f = F/(MO2A/47r ), as a function of c —1. Note that
AW = 0 for c & 1, since in that case d U(X, L)/dX
MO [ccos(2vrX/A) + 1] & 0, so that no instabilities can
occur. It can be shown that in the range 1 ( c & 4.603
the potential U has only one minimum after the inflection
point &om which the drop starts. Limiting cases for the
force f(c) can be treated analytically with the following
results:

Note that MA2(L —X) is the external force that has to
be applied to keep the velocity V constant. If the friction
force at any time turns out to be larger than the available
external force, the system will stop, i.e., "get pinned. "
This happens when the external force is less than 2+C/A.
When the external force reaches this limit, the spring is

expanded to a length D = L —X such that MO2D =
2vrC/A. In dimensionless units the corresponding force

F~ becomes f„= 2xc which is shown in Fig. 2 by the

dashed line. Once this force is overcome, the quasistatic
movement of the system requires an average force f & f„
The force Fz is to be identified with the so-called static
friction force, while F is the sliding kiction force.

One might think that the energy loss during a jump
cannot exceed 2C. This, however, is not correct. In fact,
if C && MO A, when the spring jumps to the next equi-

librium position at a distance of about A, the dissipated

energy is MO2D dD = MO2DA = 27t C. We see that in

this case it is the energy of the spring which is dissipated.

IV. DYNAMICAL TREATMENT

A dynamical treatment is required to solve the ques-

tion whether the small object stops in the next minimum

or proceeds further, and it is also indispensable when the
system has a finite velocity. With the potentials (1) and

(2) the equation of motion for the small object becomes

d2X dX 2vr . (2m Xi
M +MA + —Csin

ldt~ dt A q A

for c —1 « 1 (8) +MA'(X —Vt) =0, (10)
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where A is the coefficient of viscous friction. With di-
mensionless variables and parameters

7. =At,

or, using the force of the spring,

2mn/e

Am= (z —v~)z d~
0

and with z:—dz/d7, (10) becomes

z + clz + cslI1(z) + z —vr = 0.

or, using Eq. (13),

22'.n/e
Am = v X d'T —2' n

0
(16)

This nonlinear difFerential equation is to be solved numer-
ically for some initial conditions (z(0), z(0)). Numerical
solutions show that for a sufficiently large damping coeffi-
cient a, and after a time r )) 2vr/v, the function z(7 ) v7-
usually becomes periodic with period 27m/v (n integer):

z(~ + (2xn/v)) = z(~) + 2xn.

2~m/v

Am=o, X2 d7.
0

(14)

The integer n depends on the values used for the param-
eters c, n, and v and the initial conditions (z(0), z(0)).
However, the nonlinear Eq. (12) gives rise to chaos for
certain ranges of the parameters c, v, and o.. Pigure 3
shows a phase portrait (z vs z = z —vv + nv) which
characterizes the oscillation. Pigure 4 displays the values
of z —vv. for integer multiples of periods. This strobo-
scopic representation makes the bifurcations and chaotic
motions as a function of v apparent. One can easily see
the regions of chaotic and regular solutions.

For periodic solutions the energy dissipated in an n-
cycle is AW = (MO A /4+2)Dm where

A numerical evaluation can be tested by using the for-
mulas (14)—(16), which should give the same result once
a periodic solution is attained. The average force over
the unit distance is F = AW/(nA). Figure 5 shows

f = E/(MO A/4x ) as a function of v. The contribution
of the viscous force due to the constant velocity v is rep-
resented by the dashed line; the excess over the dashed
line is the dry friction force.

V. LARGE VELOCITIES e )) 1

The numerical results are rather complex. It is re-
warding to note, however, that several features can be
understood analytically.

Let us rewrite (12) in the form

z = —z —az —csin(z) cos(vv) —ccos(z) sin(vr), (17)

where z = z —vv + nv and the time 7 is shifted by a.
Equation (17) describes a damped harmonic oscillator
which is driven parametrically by the external oscillating
force k(z, r) = —csin(z) cos(v7) —ccos(z) sin(vw). The

FIG. 3. Phase space representation (z vs z = x —vr + av) for c = 4.0 and a = 0.5. The ranges —7 ( z ( 7, —5 ( z ( 5
are shown. (a) Attractor with period 2 for v = 1. (b) A case of two attractors of period 1 (the small one) and of period 3
(the larger one) for v = 2.995. They are obtained starting with initial conditions z(0) = z(p) = 0.5 and z(p) = z(p) = p.p

respectively. (c) Two different attractors with period 6 for v = 2.6. (d) Chaotic attractor for v = 2.49.
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case v )) 1 corresponds to the situation when the fre-

quency v of the external force k(z, r) is much larger than
the natural frequency of the oscillator which is equal to
1 in our units. We now apply a well known technique
which is historically connected with the problem of the
Kapitza pendulum. We assume that the motion sepa-
rates into a smooth part 4 (w) and a small but rapidly
oscillating (with frequency v) part ((w); i.e. , we write
z(w) = 4 (w) + ((~) where ~((~)~ (( 1. Expanding (17) in
powers of the small parameter ((7) we get up to linear
terms in (

~ ~ ~ ~

4 + ( = —4 —( —a4 —a( —c sin(4) cos(v~)
—c(cos(4) cos(vr) —ccos(4) sin(v~)

+ c(sin(4) sin(vr).

or slowly changing in time. The fast terms satisfy ap-
proximately

( —csin(4 + vw)

because the other fast terms contain a small factor (,
while the term ( is not small, since it is proportional to
the large number v . The oscillatory solution of (19) is

((~) = csm(4 + v~)/v . (20)

4' = —4 —o.4 —(c(cos(4) cos(vw))

The equation for the slow variable 4 (r) can be obtained
taking the mean value of (18) over the period (2vr/v) of
fast oscillations. The result is

Now we separate Eq. (18) into terms that are either fast + (c(sin(4) sin(vr)). (21)

25

20-

l5-

0
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0

FIG. 5. Average friction
force (f ) vs velocity v. The
dashed line results from the vis-

cous friction for constant veloc-
ity. The contribution above the
dashed line is dry friction. Note
that a rough average of this is
essentially velocity independent
in the range where dry friction
dominates. The thin line is the
analytic result for large veloc-
ities v )) 1. The features in
the figure are due to resonances,
chaotic motions, nonunique at-
tractors, and hysteresis. Here
c=40,m=05.
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The physical meaning of the last two terms in (21) be-
coines evident if we use the solution (20) and write (21)
in the form

dG(4)4 = —o4 —'4—
dC

(22)

where the additional "effective potential" G is a "mean
kinetic energy" contributed by the fast variable,

The solution of (27) is (see the Appendix for the explicit
form of all parameters)

zi(T) = cAI cos(vT + ZLI). (30)

It possesses a standard resonance peak at v = l. Using
(30) we can write the solution of (28) as (see the Ap-
pendix)

G(@)
(&')

2
(23)

z2 (T) = c [B2 + A2 cos(2vT + 62)]. (31)

From Eq. (20) then follows G(4) = c2/(4v2). Thus, in
our case, G(4) is independent of 4. It follows that the
fast variable is decoupled completely from the slow vari-
able in the leading order of expansion. Then, f'rom (22),
C'(T) ~ 0 after some transient period.

For the problem of dry friction we write the average
damping force as

where

and

2m/e

f=n dT = fvisc + fdry
0

27' /Vf;„=a v dT = 27rnv
0

2m/v
7i 0,'C~ 2

qy =Of Z dT =
0 v 3

(24)

(25)

(26)

To get the last part of (26) we put z = ( and we used
(23). The leading term in the friction force (24) is f;„
which is proportional to the velocity v and represents
standard viscous friction. The contribution of dry fric-
tion fg, y idminish sefor large velocities as v; it is due
to the kinetic energy of the fast variable ((T). The solu-
tion (24) is plotted in Fig. 5. The comparison with the
numerical results shows that (24) is a very good approxi-
mation provided that initial conditions are chosen in such
a way that a system evolves towards a low amplitude at-
tractor in which it is not excited by nonlinear parametric
resonance (see discussion in Sec. VIB and Sec. VI C).

The solution (31) possesses a resonance peak for v = 2.
Using (30) and (31) Eq. (29) becomes (see the Appendix)

zs(T) = c [Cs cos(vT + Ps) + As cos(3vT + As)]. (32)

,y
——a z dT Irav) c m A (v).

0 m

(33)

To get the last part of Eq. (33) we used our solutions

(30)—(32) and we neglected small contributions coming
from the amplitudes B2 and C3. It is clear that due
to the resonance form of (30)—(32) a large value of dry
damping can result even &om small values of the strength
parameter c provided that the velocity v is near one of
the resonance values 1, 2, 3, etc. The comparison of the
formula (33) with the numerical results is presented in
Fig. 6. We have chosen such values of the parameters c
and a that peaks at v =

2 and v = 3 can be seen easily.
On the other hand for the chosen sets of parameters the
condition c/cI « 1 is not fulfilled; this leads to evident
differences between analytical and numerical results for
v & 0.6.

The solution (32) possesses a resonance peak for v = s.
The self-consistency of the above method requires

]z;~ &&1. After some algebra we found for a && 1 the
following particular conditions in the neighborhood of
various resonances: The resonance at v = 1 requires
c/cI « 1, at v =

2 we need 2c2/(3'n) « 1, and at v = s
the condition is 5cs/(8n) « 1.

The contribution of the above resonances to the dry
part of the friction force f becomes

VI. SMALL POTENTIAL: c && 1

There are several analytically solvable cases in the limit
c (( 1, i.e., when the amplitude of the periodic potential
(2) is small enough.

A. Resonance at fractional frequencies

We will assume that z = zq + z2 + z3 + . . - where
z c and

] z ]« 1. Expanding in (17) the functions
sin(z) and cos(z) in series of powers of z and equating
equal powers of c, we get

B. Resonance at multiple frequencies

Z ~ —Z —0!Z —C SlIl V T —CZ COS VT (34)

Then we can use the standard theory of the parametric
resonance; i.e., we look for the solution

Besides the above resonances at fractional frequencies
we observe also peaks for v 2, v = 3, etc. (see Fig. 7),
that follow from a combination of parametric resonances
and nonlinear terms in Eq. (17). For example the pres-
ence of the parametric resonance for v 2 can be easily
understood if we linearize Eq. (17) to the form

zl = —zl —0!zl —csin v'T

Z2 = —Z2 —AZ2 —Czl COS VT

(27)

(28)
z(T) = a(7.) cos(vT/2) + b(T) sin(vT/2) + d(T) cos(vT)

+e(T) sin(vT) + g(T), (35)

zs = —zs —cxzs —cz2 cos(vT) + (c/2)zi sin(vT). (29) where the functions a(T), b(T), d(T), e(7 ),g(7 ) change
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FIG. 6. Resonances at 1/2
and 1/3 of the frequency of the
spring with o. = 0.1. + + +
for c = 0.25, o o o for c = 0.2.
The solid and dotted lines are
the corresponding analytic ap-
proximations.
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slowly in time. The result is that the coefficients a(r)
and b(v') can grow exponentially in time provided that

iu —2i ( (c/2) —a2. (36)

Thus the parametric resonance around v = 2 can appear
only for

c) 2o.. (37)

The above condition was checked with numerical data.
Figure 7 displays the fact that for c = 0.45 and o. = 0.25
the peak around v = 2 disappears. In agreement with the
theory we also observed in the range between o. = 0.25
and o. = 0.2 a transition from small amplitude oscilla-
tions with the frequency v to large amplitude oscillations
with the frequency v/2 (for v = 2).

C. Hysteresis

It is interesting that for a certain range of parameters
o. and c several attractors can coexist [see Fig. 3(b)]. This
multistability leads to the phenomenon of hysteresis: The
stable solution "chosen" by the system depends on the
initial conditions, i.e. , on the history of the system. In our
model we observed that the system behaves in a diferent
way for increasing and decreasing velocity v (see Fig.
8), or for different initial conditions z(0), z(0) (see Fig.
3). The quantitative theory of this effect needs some
approximations. We expand Eq. (17) up to terms cubic
ln Z:

2 = —~o(r)z —nz —csin(v7) —A(r)z —B(w)z, (38)

where ufo(r) = 1+ ccos(v~), A(~) = —(c/2) sin(vr), and

FIG. ?. Numerical data
shouting the inBuence of para-
metric resonance on the damp-
ing force. The resonance
at v = 2 is subcritical for
n = 0.25 (a), while it appears
for n = 0.20 (b) and o = 0.15
(c).
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FIG. 8. Hysteresis in the de-

pendence of the damping force
on the velocity v is absent in
the upper curve with n = 0.25,
while it exists for o. = 0.15
(lower curve). c = 0.6.
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B(r) = —(c/6) cos(vw). It is well known' that if A(r) and
B(7) are time independent constants, then in the case
v = 1 the system described by (38) exhibits hysteresis if

27u ]c ) 160. (39)

where

3B 5A2

84)p 12(dp
(40)

The parameter v describes a dependence of the system
eigenfrequency p = ~p + zb on the amplitude b of the
forced oscillations. This frequency shift follows from the
presence of nonlinear terms in (38). Using explicit ex-
pressions for uo(~), A(7 ), and B(7 ) we calculated (up to
the leading order in the powers of the small parameter
c) the time averaged value (z2) = c /512. Taking into
account (39) we got the following approximate condition
for the presence of the hysteresis around the point v = 1:

VII. CONCLUSIONS

This work discusses a simple model of classical me-

chanics with the purpose to describe dry friction. The
nonlinearity of the problem gives rise to a variety of com-
plex features, such as bifurcation, chaotic motion, reso-
nances at fractional and multiple frequencies, and hys-
teresis, which have been studied both analytically and
numerically. Actual friction between solids may result
from processes which are described by more complicated
but related models. It is the aim of this work to show
that even a model designed to be as simple as possible
leads to a variety of phenomena which may contribute to
dry friction. This is illustrated by Fig. 5 which suggests
that an average over many contributions to the friction
force may produce a roughly velocity independent term
at not too large velocities.
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num
0'h,

an

TABLE I. Comparison between numerical and analytical
values of ng for various values of c. a.h separates the ranges
of the damping parameter o. in which there is hysteresis
(n ( nq) or not.

APPENDIX

The coefficients in the solutions (30), (31), and (32)
can be written as

0.1
0.3
0.6
1.0
2.0
4.0

0.039 + 0.001
0.11 + 0.01
0.21 + 0.01
0.34 + 0.01
0.63 + 0.02
1.12 + 0.02

0.0386
0.116
0.232
0.386
0.772
1.54

1
Ag ——

Q(1 V2)2 + C12V2

( av ) vr 2Ai ——arctan
~ i

+ —sgn(1 —v ),iv2 —1) 2

(A1)

(A2)
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—Ag
Ap ——

2/(1 —4vz)z + 4azvz
(A3)

Eq ——arctan(A/p) + arctan[3nv/(9v —1)]
+[sgn(p) + sgn(1 —9v ) —2]7r /2, (A8)

( 2nv ) vr-
Aq ——Aq + arctan

~ ~

+ — sgn(1 —4v ) —1
(4vz —1) 2

(A4)

A = —(Aq/2) sin Aq —(Az/8) cos(26'),

p = —(Aq/2) cos Aq + (Az/8) sin(26'),

(A9)

(Alo)

Ag
Bz ——— cos(A q),

2
(A5)

Cs ——AgVP +o (All)

K
Ag ——

Q(1 —9v ) + 9rr v2

K = — Az + + sin(Aq —2Aq)
1 ~ A~ AaA

2 16 2

(A6)

(A7)

p, = —(Aq/2) sin Aq —(Az/4) + (Az/8) cos(26'),
(A12)

o = Bq ——(Aq/2) cos Aq —(Az/8) sin(26'), (A13)

Q3 —arctan(p/0') + [sgn(rr) —1]z /2 + &z (A 14)
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