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The thermodynamics and kinetics of order-disorder processes derived from the cluster-activation
method (CAM) and microscopic diffusion theory (MDT) are examined. In the single-site approximation,
the homogeneous long-range-order kinetic equations for the direct exchange mechanism (Kawasaki dy-

namics) in the CAM are derived by employing a kinetic theory of a Markovian nature whereas the kinet-

ic equations in MDT are derived from the Onsager-type diffusion equations based on a microscopic
mean-field free-energy functional. While the single-site approximation in MDT results in equilibrium

states corresponding to the Bragg-Williams approximation, the same approximation in the CAM pro-
duces equilibrium states close to the Bethe (nearest-neighbor-pair) approximation. The physical origin
underlying the partial inclusion of nearest-neighbor-pair correlation information in the single-site ap-
proximation of the CAM is discussed. It is shown that if the values of (ordering energy)/k& T and the
time-dependent long-range parameter g are small ( &&1), the kinetic equations in the CAM reduce to
those in MDT. It is demonstrated that the disordering kinetics obtained from the linearized equations
for both models agree, at least qualitatively, with those from nonlinear equations but not the ordering
kinetics.

I. INTRODUCTION

Various theoretical models of order-disorder have been
proposed in the literature and the corresponding kinetic
equations have been extensively employed in the study of
ordering and disordering kinetics in alloys. There are
generally two types of kinetic models. One assumes the
existence of a free-energy functional which is a function
of order parameters and their rates of change with
respect to time are assumed to be linearly proportional to
the thermodynamic driving force. For example, the con-
tinuum time-dependent-Gin zburg-Landau (TD6L) or
Allen-Cahn (AC) kinetic equations' belong to this type.
Excellent reviews exist for the various applications of this
type of kinetic equations. Recently, there have also been
extensive applications of Onsager-type kinetic equations
from a microscopic difFusion theory (MDT) which is also
based on a free-energy functional. ' The other type of
kinetic model, which is uniquely different from the free.-

energy-functional-based model, is that derived from mi-
croscopic kinetic master equations. The kinetic equa-
tions in this type of model are written with respect to a
one-, two-, or n-particle cluster (where n is the number of
particles in a given cluster) correlation functions, and
their rates of change are highly nonlinear functions of the
thermodynamic driving force. There is no free-energy
functional required in deriving the kinetic equations.
Therefore, this type of model will be called the cluster-
activation method (CAM) in this paper. Both short- and
long-range-order kinetics have been studied based on this
type of kinetic model. ' The main purpose of this pa-
per is to give a critical examination of MDT (or TDGL
or AC) and CAM. The plan of the paper is as follows:
the kinetic equations from the two distinctly different
models, MDT and CAM, are given in Sec. II; the equilib-

rium solutions to the kinetic equations are compared in
Sec. III; Sec. IV presents the results on ordering kinetics
and the results on disordering kinetics; Sec. V derived the
linearized version of the kinetic equations, and the order-
ing and disordering kinetics obtained from the linear and
nonlinear equations are compared; the major differences
between these two types of kinetic models are discussed
in Sec. VI; and, finally, the major findings of this paper
are summarized in Sec. VII.

II. KINETIC EQUATIONS

A. Long-range-order kinetic equation derived from MDT

dP„(r, t)

dt

c ( I —c)LO(r —r') gF
ktt T 5P„(r', t)

where Lo(r —r') is a probability of an elementary
diffusional jump from site r to site r per unit of time, kz
is the Boltzmann constant, T is temperature, c is the alloy

In MDT, the atomic structure and morphologies of a
binary alloy ( A-B) are described by single-site occupa-
tion probability functions, P„(r,t), defined at lattice site r
for a given time t. It is assumed that there exists a free-
energy functional that can describe both equilibrium and
nonequilibrium states of a system even though free ener-

gy is only defined for equilibrium states. The evolution of
a nonequilibrium distribution of the single-site occupat-
ing probability function towards equilibrium is described
by the Onsager-type diffusion equations in which the rate
of change of the single-site occupation probability func-
tion is linearly proportional to the thermodynamic driv-
ing force which is defined as the variation derivative of
the total free energy with respect to the single-site occu-
pation probability function, i.e.,
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composition, t is time, and F is the Helmholtz free ener-
gy. In the single-site approximation, F is given by

d g c (1—c)LO(ko) 1+ricgV(ko)+k~ T ln
dt k~T 1—q

+ks T g [P„(r'}ln[P„(r')]

W(r' —r"}= V„„(r'—r")+ V~+(r' —r")
—2V„~(r' —r"),

where V„„(r'—r"), Va~(r' —r"), and V„a(r' —r") are
pairwise interaction energies of A-A, B-B,and A -8 pairs
of atoms located at the lattice sites r' and r", respectively.

Since we are only concerned with homogeneous long-
range-order kinetics, the single-site occupation probabili-
ty function, Pz(r, t}, may be expressed in terms of a
long-range-order parameter and the alloy composition by
employing the static concentration wave method
(SCWM). ' Let us consider a typical case of AB order
with a stoichiometric composition —, such as the case for
the 82 order in a bcc lattice or the case of chess-board
order in a two-dimensional square lattice. For such an
ordered phase, the single-site occupation probability
function can be written as

P„(r)=c +crt exp(ikor), (4)

where c is the composition, g is the long-range-order pa-
rameter, and ko is the superlattice vector for the corre-
sponding ordered phase. Substituting (4) and (2} into (1),
we have

+[1 P„—(r'}]in[1 P„—(r')]] . (2)

In a binary alloy, W(r' —r") is the interchange energy
defined as

Lo(k) = zL—, [1—cos(kr)],

where z is the number of nearest neighbors (z = 8 for bcc
and z =4 for square lattice) and L, is the probability of
atom jurnp between nearest-neighbor sites within a time
unit. Let us consider a particular case of 82 order in the
bcc lattice. The Fourier transform of W(r) for bcc with
a nearest-neighbor interaction model is

V(k) =zw, cos(nh) cos(m.k) cos(n.l),
where w& is the effective interchange energies between
nearest-neighbor atoms and h, k, and 1 are defined in

k=2m(haf+ka2+laf )

in which a&, a2, and a3 are the unit vectors in the re-
ciprocal space of the bcc lattice. Substituting the super-
lattice vector for 82 order,

k0=2m'(a( +a2 +a3 )

into (5), we have the long-range-order kinetic equation,

d& zL& z'9w r 1

dt 2 2k~ T 1+g (10)

The same equation may be derived from the A-C
kinetic model by assuming the following mean-field free-
energy functional for the 82 ordered phase,

where Lo(ko) and V(ko) are the Fourier transforms of
Lo(r} and W(r) evaluated at ko, respectively. Assuming
nearest-neighbor jumps only, the Fourier transform of
Lo(r) is given by

F=—V(0)c +—V(k )(crt)2
1

0

k~T+ [(c+cg)ln(c+cri)(l —c crt) ln(1 ——c cq)+(c c—ri) ln(c —c—71}+(I—c+cg) ln(1 —c+cg)],
2

dg 5F
dt "5g (12)

where L„ is the kinetic coeKcient. By identifying L„
with

c (1—c)LO(k~)/k~ T,
the kinetic equation (12) is exactly the same as (10).

where V(0) is the Fourier transform of W(r) evaluated
at k=0 and e =

—,'. Since we are only concerned with

homogeneous order, the gradient energy term is zero in
the A-C model. The kinetic equation for the long-range
82 order is then

B. Long-range-order kinetic equation derived from CAM5

In CAM, the structural state of an alloy at a given tem-
perature and pressure is described by a set of multiparti-
cle distribution functions or cluster probabilities,
P (r&, . . . , r„;t), where t is titne, r&, . . . , r„are

n

lattice sites, and a„.. . , a„are types of atoms. In order
to compare the long-range-order kinetics derived from
MDT and CAM, single-site approximation is also em-

ployed in CAM. In this approximation, the state of an
alloy is described by the single-site probability function as
in MDT. Different from MDT, the kinetic equations are
written down without referring to any free-energy func-
tionals. Moreover, there is no assumption that the rate of
change of the single-site occupation probability function
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where the first and second terms on the right-hand side
are the average rates at which, at site r, A atoms are ap-
pearing and disappearing, respectively, gs denotes the
summation over all the nearest-neighbor sites 5 of r, and

P„a(z}(r,r+5, {x}}

is the probability of finding an A atom at r, a B atom at
r+5, and the set {X}at the neighboring sites {x}simul-
taneously. A similar equation can be written down for
dPtt(r)/dt, which is the negative of dP&(r)/dt since
P„(r)+Ptt(r)=1. In principle, given an initial set of
single-site distribution functions, the set of equations of
motion uniquely determine the evolution of nonequilibri-
um states of a quenched system as a function of time.

In the single-site approximation, the distribution func-
tion (also called the cluster probability),

P~a(x)(r r+» {xj»
can be written as

P„a(z}(r,r+5, {xj)=P„(r)P~(r+5)P„(x) .

Following Vineyard, the rate constants are given by

—U hER„z({X})=vexp
2 g T

(14)

—U hERzz({X})=vexp +
k~T 2k~T

with respect to time is linearly proportional to the ther-
modynamic driving force. Many different mechanisms
for diffusion are possible, but I will assume the direct ex-
change mechanism often called the Kawasaki dynamics.

In the direct exchange mechanism, a pair consisting of
an A atom at site r and a B atom at a neighboring site
r+5 is considered. At a given temperature and with any
given set of atoms at the sites around this pair, there ex-
ists a probability that the two atoms, A and B, will
directly interchange their positions. Let {xj represent
the set of neighboring sites and {X}the set of atoms on
these sites. I denote R„~({X}) as the rate at which the
AB pair interchanges under the influence of the set of
neighboring atoms {X}.Similarly, R~„({X}} is the rate
at which the BA pair will interchange under the same en-
vironment. Then the rate of change of the probability
that the site r be occupied by an A atom is given by

dP„(r) = g g P~„(x)(r,r+5, {x})Rtt„({X})
5 (X)

X X PAB(x}(r r+~ {xj }RAB({X})
5 jXJ

(13)

where Ez„ is the configuration energy after the atomic
exchange and E„~ is the configuration energy before the
exchange.

For homogeneous order, the set of kinetic equations
can be reduced to a single kinetic equation for the long-
range-order parameter 71 as in MDT. By substituting (4)
and (14) into (13), the kinetic equation (13) for single-site
occupating probability function is reduced to

dg 1 1 2

d~ 2
E(—1 —g) E——(1+7})

2
(17)

U
Eo =zv exp — exp

B

(z —1 }tc,

2k~ T
' 2(z —1)

1 w)
X 1+—(1+q) exp

2 2k~ T

where z is the number of nearest neighbors and w
&

is the
interchange energy between atoms at the nearest-
neighbor sites.

III. THE EQUILIBRIUM SOLUTIONS
TO THE KINETIC EQUATIONS

By definition, at equilibrium, the order of a state does
not change with time. Therefore, the equilibrium solu-
tions to the kinetic equations are obtained by setting
drtldt equal to zero. Stable or metastable equilibrium
occurs at zeros where the plot of de/dt[=f (g)] vs g
has a negative slope and unstable equilibrium occurs at
zeros where f (g) has a positive slope. For both Eqs. (10)
and (17), g=0 is a solution to de/dt =0, which corre-
sponds to the unstable disordered state when the temper-
ature of a system is below the critical temperature for or-
dering. Below T„ there is an equilibrium solution to
drtldt =0 which varies as a function of temperature. It
is shown below that the dependencies of equilibrium
long-range-order parameter on temperature for the two
kinetic equations (10) and (17) are different in spite of the
fact that the same single-site approximation is employed.

A. The equilibrium solution to kinetic equation in MDT

where Eo and Ed, after some mathematical manipula-
tion, are given by

(z —1)w&
Eo=zvexp — exp

8 8
2(z —1)

1 Wi
X 1+—(1+g} exp

where v is approximately the Debye vibrational frequen-
cy associated with the interchange, U is the average bar-
rier height for the interchange, and hE is the energy
difference between the configuration after and before the
atomic exchange, AB ~BA, i.e.,

By setting d gldt in (10) equal to zero, we obtain

z'g~ w i 1+q,=k~T ln
2 1 —g,

(19)
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z'pew )T=
2k~ ln[(1+g, )/(1 —r), ) ]

(20)

or, writing the temperature as a function of the equilibri-
urn long-range-order parameter g„

at which g, ~0,
zwi

4k,
(21)

Expression (20) is exactly the solution that one would ob-
tain using the Bragg-Williams approximation. The criti-
cal temperature for ordering is defined as the temperature

B. The equilibrium solution to the kinetic equation in CAM

The equilibrium solution to Eq. (17) has been previous-
ly derived by Yamauchi, '

Wi

)z/(z —1)
( 1 )z/(z —1)

9e Qe

(1+g, )(1—ri, )'/' "—(1—g, )(1+r), )' '
(22)

where z is the number of nearest neighbors.
The critical temperature is given by

wi
Tc

2k~ ln[z/(z —2)]
(23)

emphasized that in both cases the single-site approxima-
tion is employed. The physical origin underlying the
different equilibrium states between the two different
models will be discussed later in the paper.

0.8 or MDT

0.6

04

0.2

0.5 1.0

k T/w

FIG. 1. Long-range-order parameter as a function of temper-
ature. Solid line: CAM; dot-dashed line: Bethe approximation;
dotted line: Bragg-Williams approximation or microscopic
diffusion equation.

which is, surprisingly, the same critical temperature re-
sulted from a Bethe approximation rather than the BW
critical temperature that one would expect in a single-site
approximation. The temperature dependence of g, is
close to but not exactly the same as the Bethe approxima-
tion.

To compare the equilibrium solutions to the two
different kinetic equations, the equilibrium long-range-
order parameters g, as a function of temperature are
plotted together with the solution from the BW and
Bethe approximations in Fig. 1. Figure 1 shows that re-
sults obtained from CAM are close to the Bethe approxi-
mation rather than the BW approximation. However,
the equilibrium solution from MDT corresponds to ex-
actly to the BW approximation as expected. It should be

IV. ORDERING AND DISORDERING KINETICS

To obtain the ordering kinetics, kinetic equations are
solved by the simple Euler technique,

ri(t + b t) =rl(r)+

dt's

dt
(24)

where ht is time step for integration. The following re-
duced times are defined:

tLit*= for MDT,
2

t"=tve x(p—U/k+T) for CAM .

As will be shown later, these choices of reduced time
units ensure that the kinetic equation in CAM reduces to
that from MDT in the limit of small driving force and
small long-range-order parameter values. The kinetics of
ordering is demonstrated by obtaining the evolution of
the long-range-order parameter as a function of the re-
duced time t*. A value 0.0001 is assigned as the initial
value of the long-range-order parameter in all cases. The
time step for integration, At, is chosen to be 0.01. Since
Eqs. (10) and (17) produce different critical temperatures
T„ the kinetics of ordering is compared at the same re-
duced temperature, T/T, .

The values of the long-range-order parameters ob-
tained from MDT and CAM are plotted in Fig. 2 for
T/T, =0.5. It is shown that ordering kinetics from the
two types of kinetic models are quite different even
though they are qualitatively similar. Ordering occurs at
an earlier time using the kinetic equation from CAM
than that obtained from MDT.

For investigating the disordering kinetics, a tempera-
ture of T/T, =2.0 is selected. For all calculations, an in-

itial value of 0.999 is assigned to the long-range-order pa-
rameter and the time step is chosen to be 0.01.
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FIG. 2. The temporal evolution of long-range-order parame-
ter as a function of time during ordering at a temperature
T/T, =0.5 for MDT and CAM. Thick solid line: CAM; thin
solid line: MDT.

FIG. 4. A comparison of the ordering kinetics at a tempera-
ture T/T, =0.5 between nonlinear and linearized kinetic equa-
tions. Thick solid line: linearized CAM equation; thin solid
line: linearized MDT equation; thick dotted line: nonlinear
CAM equation; thin dotted line: nonlinear MDT equation.

The long-range-order parameters as functions of time
are plotted in Fig. 3. In contrast to the ordering kinetics,
disordering occurs at an earlier time in MDT than CAM. For MDT,

V. LINEARIZED KINETIC EQUATIONS

In general, the rate of change of g with respect to time
is a function off (g), i.e.,

(25)

and for CAM,

zLi
2

ZW)

2k' T (1—gz )
(27)

The linearized version of the kinetic equation of (25) is
given by

=2EO i„—„(1—g, )

(z —1)y
(28)

dq df (rj)
dt Bg

(26)
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FIG. 3. The temporal evolution of long-range-order parame-
ter as a function of time during disordering at a temperature
T/T, =2.0 for MDT and CAM. Thick solid line: CAM; thin
solid line: MDT.

FIG. 5. A comparison of the disordering kinetics at a tem-
perature T/T, =2.0 between linearized and nonlinear kinetic
equations. Thick solid line: linearized CAM equation; thin solid
line: linearized MDT equation (superimposed with the solid
thick line); thick dotted line: nonlinear CAM equation; thin
dotted line: nonlinear MDT equation.



3796 LONG-QING CHEN 49

where

y = tanh( w, /4k' T) .
ED, in Eq. (17) by employing two approximation formu-
las:

The ordering kinetics obtained from the linearized
kinetic equations are compared with those obtained from
the nonlinear equations. It is shown in Fig. 4 that in both
cases the linearized equations describe very poorly the or-
dering kinetics for T/T, =0.5. They are not even quali-
tatively correct. However, the disordering kinetics ob-
tained at T/T, =2.0 from linearized equations are in
reasonably good agreement, at least qualitatively, with
those from the nonlinear equations as shown in Fig. 5.
This is particularly true for CAM.

VI. DISCUSSIONS

and

exp(x) —I =x

(1+x)"=exp(nx) .

The simplified coefficients are

(z —1)i)w,
Ko =zv exp —U

2

(z —1)riw i
KD =zv exp —U—

2
k, T

(29)

A. The origin for the lack
of well-known equilibrium states in CAM

To understand why the kinetic equations in CAM do
not produce the well-known BW or Bethe equilibrium
states, let us first simplify the kinetic coefficients, Eo and

These approximations are apparently very good for
T )&w, /2k'. As a matter of fact, the equations become
exact when g= 1. Therefore, they remain fairly accurate
for g close to equilibrium at all temperatures.

Substituting the kinetic coefficients (29) back into the
kinetic equation (17), we have

dg 1 U

dt 2 kBT
=—zvexp — (1—il) exp

(z —1)gwi

2kB T
(z —1)rlw,—(I+i)) exp

2kB T (30)

By using the identities,

(1—i)) = exp[21n(1 —g)]

and

sinh(x) = exp(x )
—exp( —x )

2

we can rewrite Eq. (30) as

dg U
dt kBT

=zvexp — (1—
rl )

rived from CAM are different from the BW approxima-
tion, let us examine the process of atomic exchange and
compare the equilibrium solutions (22) and (32). In
CAM, the nearest-neighbor pairs have to be considered
for the atomic interchange, which is not consistent with
the BW approximation in which a single-site is con-
sidered. For example, let us consider a case with only
nearest-neighbor interactions in a two-dimensional
square lattice. In MDT, the atom Aux for species A from
site 1 to site 2 in Fig. 7 is given by

(z —
1)ilaw iX sinh ln +

1+vi B
(31)

The equilibrium solution is, then, given by

(z —1)ri, w,

2k& Inr(1+ii, )/(I —g, )]

and the critical temperature

(z —1)w,

4k

(32)

(33)

0.8

0.6

0.4

0.2
which gives a value of 1.75w&/kB for bcc compared to
the value, 1.74w&/kB, obtained from the more elaborate
formula (18). The equilibrium long-range-order parame-
ters as a function of time from Eqs. (32) and (22} are plot-
ted together in Fig. 6 which shows that Eq. (32} is a very
good approximation of Eq. (22).

In order to understand why the equilibrium states de-

0.5 1.0
k T/w

B

1.5 2.0

FIG. 6. Long-range-order parameter as a function of temper-
ature. Thick solid line: Eq. (22); thin solid line: Eq. (32).
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5F 6F
1~2 1~2fip ( )

2—+1 gp ( )

= —L, 2

P„(r}
w, p„(r')+k21 T ln

r'=2+5 A p=21 P—r
+L2

PA(r)
w1P& (r')+ kz T ln

'=1+5

(34)

+ Q P„21(x)(1,2, {xI)R„21({XI),
IxI

(35)

where {x I represents the set of sites 3—8 around the pair
1 and 2. Therefore, the site 1 which is a nearest-neighbor
site of 2 is treated differently from the rest nearest-
neighbor site 4, 6, and 8. Similarly, the nearest-neighbor
site 2 of 1 is treated differently from site 3, 5, and 7. In
the evaluation of the rate constants R21&({XI) and

R&21( {XI} for the atom exchange, only the bond energies
between sites 1 and 3, 1 and 5, 1 and 7, 2 and 4, 2 and 6,
and 2 and 8 are considered. Therefore, it is obvious that
the transition temperature obtained from CAM in a
nearest-neighbor interaction model will be approximately
(z —1)/z times the transition temperature obtained from
a true single-site mean-field model. In writing Eq. (35),
and also Eq. (17}, although single-site approximation is

employed, some pair correlation information is included,
resulting in the equilibrium states, which is close to the
Bethe approximation rather than the BW pair approxi-
mation. It appears to be also the case in path probability
method (PPM) that single-site approximation does not
correspond to the BW approximation. '

However, for the spin-fiip (Glauber) dynamics, the
single-site approximation in CAM corresponds exactly to
the BW approximation since all the nearest neighbors of
the spin-flipping site are treated as the same and the
spin-flip occurs at a single-site.

where 2+5 means the nearest-neighbor sites of site 2 and
1+5 means the nearest-neighbor sites of site 1. In writ-

ing the driving force, we do not distinguish the
differences between site 1 and sites 4, 6, and 8, which are
nearest neighbors of site 2, and between site 2 and sites 3,
5, and 7, which are nearest neighbors of site 1.

On the other hand, in CAM, the flux of atom A from
site 1 to site 2 is given by

J1 2= —g P21~(x)(1,2, {xI)R21~({XI)

IxI

If the pair approximation is employed in CAM, the
equilibrium states derived are completely consistent with
the cluster variation method (CVM} calculation. This is

true for both Glauber and Kawasaki dynamics. One may
expect any treatment including pair and/or large cluster
correlation functions in CAM should reduce the equilib-
rium states to those calculated by CVM.

The fact that CAM in the single-site approximation for
the exchange mechanism does not give rise to the exact
BW approximation for the equilibrium thermodynamic
states does not invalidate CAM. One has to keep in mind
that the BW model itself is an approximation. As a
matter of fact, CAM produces a equilibrium states more
accurately than the BW model compared to the exact
thermodynamic solution. CAM also provides consistent
descriptions for the relaxation kinetics of high-order
correlation functions in addition to single-site probabili-
ties.

B. The origin for the di8'erences

in the kinetics from CAM and MDT

Both the continuum TDGI. and C-A kinetic equations
and microscopic equations from MDT are based on a
free-energy functional, which depends on values of local
order parameters in the continuum model or the single-
site occupation probabilities in the microscopic model.
Both approaches describe the rate changes of order pa-
rameters or occupation probabilities with respect to time
as linearly proportional to the thermodynamic driving

0 I ~ ~

0.8

0.6

0.4

0.2

0.0
0.2 0.4 0.6 0.8

FIG. 7. Schematic diagram showing the exchanging pair and
its surrounding infiuence set of sites in CAM.

time

FIG. 8. The temporal evolution of long-range-order parame-
ter as a function of time during ordering at a temperature
T/T, =0.5 from Eq. (10) (thin solid line), Eq. (17) (thick solid
line), and Eq. (31) (thick dotted line).
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sinh(x)=x . (36)

Second, even when the driving force is small, the propor-
tionality coeScient should not be constant according to
Eq. (31). Therefore, to have an accurate prediction about
the rate in the small driving force regime, the linear pro-
portionality constant in MDT should be made to be pro-
portional to (1—ri ). To have a comparison on the order-
ing and disordering kinetics, the kinetics obtained from
Eqs. (10), (17), and (31) are plotted in Figs. 8, 9, and 10

0.6 I
I

~
I

~
1

~
l

~
1

~
1

0
1

~

0.5

0 4

force. Therefore, in principle, the description of kinetics
by these two approaches are only valid when a system is
not too far from the equilibrium state, i.e., the driving
force for phase transformation is small. Furthermore,
the proportionality constants in both the continuum and
microscopic equations are assumed to be independent of
the values of the local order parameter or the occupation
probabilities. On the other hand, the kinetic equations in
CAM based on the master equation method do not as-
sume the existence of free-energy functionals. They do
not suffer the approximation that the rate of change of an
order parameter is linearly proportional to the thermo-
dynamic driving force.

To make the connections between kinetic equations de-
rived from MDT and those from CAM, let us examine
their corresponding kinetic equations (10), (17), and (31).
It is noted that Eq. (31) is derived from Eq. (17) with the
assumption, w&/(2k& T) «1. Two points immediately
become clear if we compare Eqs. (10), (17), and (31).
First, the rate of order parameter change with respect to
time is proportional to the driving force in MDT,
whereas it is an unknown complex function of driving
force in CAM. In the case that the condition
w, /(2k+T) «1 is satisfied, the rate can be written as
proportional to sinh(driving force) [Eq. (31)]. Therefore,
the linear approximation in MDT is valid only when the
driving force is small because of the approximation
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for T/T, =0.5, 0.9, and 2.0, respectively. It seems that
the kinetics predicted from Eq. (10) almost coincides with
those from Eq. (31) when the value of long-range-order
parameter is small. The ordering kinetics predicted from
Eq. (17) is, however, quite different from those predicted
by either Eq. (10) or (31) at all values of long-range-order
parameter. The difference in kinetics from Eqs. (17) and
(31) or (10) decreases when T/T, increases as expected
since the w, /ks T decreases as temperature increases.

Ludwig and Park recently compared the kinetics
derives from the Langevin-type equations to kinetic Ising
models with the thermally activated dynamics using a
magnetic spin model. ' The Langevin-type equations are
free-energy-functional-based kinetic equations while the
thermally activated dynamics is similar to CAM, but
with a kinetic equation similar to Eq. (31) except that the
factor z —1 is replaced by z. They concluded that, when
the driving force is large, there are significant differences
in the kinetics described by Langevin equations and
kinetic Ising models. The difference can be significantly
reduced, however, in the small or intermediate-driving
force regime if the proportionality constant is chosen to
depend on the instantaneous magnetization m (t) as

[1—m(t) ]'~

FIG. 10. The temporal evolution of long-range-order param-
eter as a function of time during ordering at a temperature
T/T, =2.0 from Eq. (10) (thin solid line), Eq. (17) (thick solid

line), and Eq. (31) (thick dotted line).
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FICx. 9. The temporal evolution of long-range-order parame-
ter as a function of time during ordering at a temperature
T/T, =0.9 from Eq. (10) (thin solid line), Eq. (17) (thick solid

line), and Eq. (31) (thick dotted line).

Long-range-order kinetic equations in binary alloys d--
rived from the cluster-activation method (CAM) and the
microscopic diffusion theory (MDT) are examined in the
single-site approximation. It is shown that MDT can be
derived from CAM in the small driving force regime with
small values of long-range parameter. It is demonstrated
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that CAM in the single-site approximation produces
equilibrium states which are close to the Bethe approxi-
mation with the critical temperature for ordering the
same as the Bethe approximation, indicating that partial
pair correlation information is included in the single-site
approximation of CAM. Finally, it is shown that linear-
ized kinetic equations describe reasonably well the disor-
dering kinetics above the order-disorder critical tempera-
ture but not the ordering kinetics.
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