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Two-dimensional layered Ising models: Exact variational formulation and analysis

Lev V. Mikheev
NORDITA, Blegdamsvej 17, DK-2100 Copenhagen 9, Denmark

Michael E. Fisher
Institute for Physi cal 'Science and Technology, Uniuersity ofMaryland, College Park, Maryland 20742

(Received 16 September 1993)

Ising models on the plane square lattice with an arbitrary variation of the bond strengths, J~~(z) and
J'(z), with one of the two axial coordinates, z, are considered. The total entropy is exactly represented
as a functional of contributions c (z) to the local energy density arising from the Onsager fermions with
wave vector q parallel to the layer axis, y. The resulting explicit local expression provides an effective
variational principle for the free energy and energy-density profiles. In the scaling limit the problem
reduces to a set of independent second-order differential equations for each c.~(z). The power of the
method is demonstrated by application to an interface between two uniform but distinct regions; this in-

cludes the problem of a wall with a surface field, h l, as a special case. Previous results for the bulk and

surface exponents and for the energy-energy correlation function are easily recovered. Near criticality
the method yields, in addition, universal, scaled energy-density profiles, c(z; T), which exhibit rich cross-
overs and nonmonotonic variation with z.

I. INTRODUCTION

A. Functionals for inhomogeneous systems

Continued advances in sensitive experimental tech-
niques make it increasingly possible to measure profiles of
spatially varying local densities of composition, magneti-
zation, strain, etc. Such spatial variations generally
occur near localized (quenched) defects such as walls,
steps, interfaces between different phases, grain boun-
daries, etc. The defects can be isolated or may form pat-
terns, either regular as, e.g., domain walls in incommens-
urate phases or steps at a vicinal surface, or they may be
irregular, as in disordered systems. In bulk (d =3)-
dimensional samples the defects may be compact or may
be localized in lower-dimensional manifolds: films, sur-
faces, chains, etc. Theoretical knowledge of the profiles
of the important densities allows computation of exten-
sive thermodynamic quantities characterizing the inho-
mogeneity in question, such as surface (or line) specific
heats and adsorptions, or interfacial tensions, etc. These
in turn may be compared with data obtained from other
types of experimental measurements, etc. '

From a general viewpoint one sees that in all these
cases one is dealing with the response of a statistical
mechanical system to a strong local perturbation. This
problem is beyond the scope of the well-developed linear
response theories that relate the profiles induced by weak
external perturbations, such as periodic probing fields
used in scattering experiments, to the two-point correla-
tion functions of the unperturbed bulk system. The
strong, rapidly varying perturbations provided by defects
may thus be viewed as natural probes for nonlinear
response and multiparticle correlations, otherwise una-
vailable to experimental study.

Especially interesting effects are to be expected for sys-

tems which, in the absence of the spatial inhomogeneities,
would be at or close to bulk criticality. In these cases
even a very weak perturbation by a releuant field leads to
a strong nonlinear response in the physical densities.
Furthermore, in the case of noncritical systems the finite
microscopic correlation length/, ,limits the induced per-
turbations to a thin, bounded shell of thickness g sur-

rounding the defect, beyond which linear response theory
will be valid; by contrast, in critical o'r near-critical sys-
tems the perturbations decay slowly, via strong interac-
tions with the sea of bulk critical fluctuations, and are
essentially unbounded in extent. Indeed long-range
effective interactions between defects appear via this
mechanism.

We are thus led to an outstanding problem in the
theory of critical phenomena, namely, to describe the
response of a critical system to arbitrary position-
dependent releuant fields. For Ising-type systems these
are the ordering (or "magnetic") field h(r)=— H(r)l ksT

and the variation in the coupling constant J(r) as con-
veniently embodied in the temperaturelike field
t(r)=K, —K(r) where K(r)=J(r)lksT while K, is the
bulk critical value of E. While many interesting and
significant examples of critical behavior in the presence of
spatial inhomogeneities have been successfully studied in

the literature we believe that the theory still lacks an
effective general formalism for this class of problems.

In this paper we extend our previous discussion (see
Ref. 10, hereafter referred to as I) which argued the mer-
its of an approach based on a variational principle. An
example of a widely effective variational approach is pro-
vided by the classical van der Waals —Landau —Ginzburg
or local-mean-field theory. " Within the latter the effect
of the fields h(r) and t(r) is considered on the basis of a
free energy functional, say, A [t(r);m (r) ]= Idry [t;rn ]

where m(r) is a local order parameter conjugate to the
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ordering field h(r). The desired "grand canonical" free
energy F=V—[t(r),h(r)] is given variationally via

F=min A[t(r};m(r)] —fdrh(r)m(r)
m(r)

+—c(V'm) +1

2
(1.3)

This approach has provided invaluable insights into
many important problems: " Thus it accounts for the
leading scaling behavior of Ising-type systems in dimen-
sions d )4 and works well for certain other systems, like
low T, super-conductors in d =3. However, the approxi-
mation (1.3) fails badly in realistic two- and three-
dimensional systems near critical points having nonclassi-
cal exponents a, rt%0, vA —,', etc. ' Consequently there
is a strong need for more adequate functionals: these
should be based, if possible, on exact solutions or at least
on improved approximations that encompass nonclassical
exponents; if feasible the functionals should also be local.

Recently, ' we have proposed that such a program
might be realized by seeking "microcanonical" or entro-
pylike functionals S[e(r),m (r)], in which all the releuant
critical densities, i.e., those with scaling dimensions a
satisfying co =P/v, co, =(1—a)/v, . . . &d, should ap-
pear. ' For Ising-like criticality only m and c are re-
quired, so that, provided 4'(e, m) is explicitly known, the
basic grand canonical potential V is given by

The profiles of the order parameter and of the local ener-

gy density' e(r) follow from

m(r)= —5V/5h(r), e(r)= 5V—/5t(r) .

Note that the energy density is expected to be particular-
ly important in symmetric situations: for example, when
h vanishes identically and t is not sufficiently negative to
generate spontaneous symmetry breaking, so that m van-
ishes everywhere in the system. Consider superfluid heli-
um close to but above the A, transition. " '" '

For the "canonical" or (t;m) free-energy density, L,
the mean-field approximation gives a local expansion in
powers of the order parameter and its gradients, namely,

1 1X( t; m, V'm, . . . ) = tm +——um +2 4

41

the perturbations of the energy field). The situation is
qualitatively similar to classical electrodynamics: while
the Lagrangian invoking both the matter field and the
massless electromagnetic field is local, eliminating the
latter leaves one with nonlocal (Coulomb and retarded)
interactions.

8. Layered Ising models

+EJ'ps; s; +h gs;
(i i') i

(1.5)

where (i, i ) denotes nearest-neighbor pairs of lattice
sites in a layer.

The model is thus completely specified by the se-
quences (i} of the nearest-neighbor couplings within each
layer or hyperplane, IEl=J~'/ks Tj, (ii) of the layer-to-
layer couplings [E =J /ktt T], and (iii) of the magnetic
fields [hJ=HJ/k&T], while the spacings a~, al set the
overall length scales. Note that due to the intrinsic an-

To investigate this idea further we define a class of lay-
ered Ising models which naturally generalize the standard
d-dimensional Ising model and carry it one step towards
a fully spatially inhomogeneous system: see Fig. 1. The
various coupling constants depend on just one spatial
coordinate, z, remaining uniform in the other (d —1)-
directions. Formally the models are defined on a d-
dimensional rectangular lattice, which for our purposes is
conveniently viewed as a sequence of (d —1}-dimensional
hypercubic sublattices or layers stacked along the z axis
and parallel to the y hyperplane: see Fig. 1. The lattice
spacings are taken as a~~ and a~ in and perpendicular to
the layers, respectively. %e let an integer index j label
successive layers while the integer (d —1)-component vec-
tor i labels the sites within each layer. A standard Ising
spin variable s; =+1 is assigned to each site of the lat-
tice. Then the fully classical, reduced Hamiltonian of the
model is

r

&/k Ts= —g E gs; s;+,
J 1

[t,h ]= m'in S[e,m ]—fdr(ts+hm )
e(r), m(r)

(1.4)
II

h,.„ layer

It is clear that the inclusion of E(r) in the argument of the
variational functional 4 in addition to the local order pa-
rameter, m(r), normally used in the phenomenological
theories, is necessary to render 4' local. Thus in a sym-
metric problem, like a neutral wall' at T slightly above
T„ the order-parameter density m (r) vanishes identically
throughout the systetn, while e(r) clearly varies and, in
fact, provides singular contributions to the thermo-
dynamic quantities. " '""' Second, the coupling of the
energy to the square of magnetization together with the
long-range correlations of energy near criticality imply
effective power-law interactions ~z ', co,=d —

A,„be-
tween local distributions of magnetization (mediated by

J
II

FIG. 1. A general layered Ising model with ferromagnetic
couplings J,~~I(—=k+TK,~I~~ and Jj ( k&TKj ) parallel and perpen-
dicular to layers labeled j=1,2, 3, . . . , and with reduced mag-
netic fields hj acting on the layer spins s; j.
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= —k~T ln
s. . =+1

I,J

expI —&[s;,]Iks T], (1.6)

where, in the thermodynamic limit, we naturally expect
the potential to be proportional to the area A

~~

of the lay-
ers. The basic densities per unit area in the layers then
follow according to

isotropy of the model, in which all quantities vary in just
one of the d directions, there is no reason to set the K
equal or even close to the I( ~. The impact of this anisot-
ropy on the nature of the critical state of the model con-
stitutes one of the problems of the theory.

The fundamental grand canonical thermodynamic po-
tential of the model (compare with I) is

say, J+ and J connected via a transition region with a
coupling Jo, as well (c) as the effects of interaction be-
tween those planar structures, including the finite-

thickness effects in the d-dimensional "film." We also an-

ticipate that the rapidly advancing technologies for the
preparation of multilayered structures' will soon allow
detailed experiments on phase transitions in periodic, as
well as random and quasiperiodic sequences of alternat-
ing layers with sharp and diffuse interfaces between them,
etc.

The one-dimensional dependence of the parameters of
the model allows us to reformulate the problem in the
layer-to-layer transfer-matrix representation. Using the
standard methods' we obtain

A~~Fik T= —ln Tr )P T, .

where

Again there is no a priori reason for not distinguishing
the energies cI and c. of the bonds parallel and perpen-
dicular to the layers, respectively. Note that the index j
for the perpendicular quantities, E and c. , relates to the
bonds connecting the pair of jth and (j+ 1)th layers: this
somewhat asymmetric notation, accepted here for brevi-
ty, differs from that used in I.

The motivation for studying these layered models,
apart from some technical advantages discussed below, is
that they represent a number of experimentally interest-
ing systems. A particular example shown in Fig. 2 in-
cludes (a) two boundary surfaces or "walls" with magnet-
ic fields h&, hI acting on them, (b) an interface between
two regions with different values of coupling constants,

Z 7Q p h)g

Ji Ji
J +

h, —= 0

domain

J, =JII II

Ji JJ
A. =O

domain

FIG. 2. A particular two-dimensional layered Ising model
solvable by the methods expounded here which exhibits two
boundary "walls" with (reduced) surface fields h, and h 1, and
two uniform but, in general, differing finite domains of
thicknesses L+ and L with reduced couplings
E~~=E~+~ = J~+~ /kz T, etc. , for j ~ 1, and similarly for j ~ —1,
with layers j=+1 and j= —1 coupled by interfacial or defect
bonds of strength Jo(:—k& TKO).

T = (2 sinh2K )
' exp Kj ' g &,(i)

Xexp K," g &,(i)&3(i')+h; g &,(i), (1.9)
(i,~') 1

where the &~(i) (p =1,2, 3) are the usual Pauli matrices
acting in the two-state phase space of the (now quantal)
spin at each layer site i. Note that

K *=—
—,
' lntanhE (1.10)

represents the standard definition of the dual coupling
constant while N~~ is the number of sites in each layer.
This transfer-matrix representation forms the basis for
our detailed consideration of the planar, (d =2) model in
zero bulk field.

Our analysis will achieve a variational formulation ap-
plicable to the full lattice problem in which the K and
K vary in any way whatsoever. However, since a pri-
mary interest concerns the critical phenomena we will
focus more especially on the problem of finding the singu-
lar parts of the therrnodynarnic functions and energy
profiles. Technically this will be done below in the spirit
of field-theoretic renormalization, ' by taking the limit
of vanishing lattice spacing: ai, a~~ ~0. This is normally
a singular limit and finite answers are obtained if and
only if the relevant fields t and h are properly redefined

N ~m
according to the scalings t a 't, h a h, with the
unique choice of the scaling dimensions co„co . Im-
plernentation of this procedure in our lattice model is
significantly simplified when the values of the parameters
K, E, h are everywhere sufficiently close to their criti-
cal values so as to ensure relatively large values of the
various correlation lengths (in the different regions).
Then a11 interesting physical quantities will vary slowly
on the scale of the lattice spacings.

This scaling limit necessarily involves (although the
converse is false) that K, KJ', and h, regarded as func-
tions of the coordinate z =ja~, are slowly varying. Then,
in the a~-~0 limit one can use

T:=exp[ —a ~jV(z) ]= 1 —a ~&(z), (1.11)
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which serves to define the quantum Hamiltonian & of the
equivalent (d —1)-dimensional zero-temperature quantum
spin- —,

' system with coupling constants and fields depend-

ing on the imaginary "time" z. Establishing a local varia-
tional principle then reduces this quantum-mechanical
problem to a classical mechanical one: instead of solving
the Schrodinger equation for the ¹pin wave function,
one has to solve a system of differential equations for a
set of local densities. Note that in the (1+1)-dimensional
case considered below, one can equally run a transfer ma-
trix along the y axis, thus establishing equivalence to a
one-dimensional quantum spin chain with coupling pa-
rameters depending on the "spatial" coordinate z but
fixed in the "time" y: compare with the discussion in
Ref. 17.

A general word of caution is in order here: many phys-
ically interesting systems involve local perturbations with
at least one microscopic dimension: see the surfaces and
the interface or grain boundary illustrated in Fig. 2. It is
then known, in particular from studies of the critical
behavior at surfaces, that such abrupt perturbations usu-

ally require additional renormalization of the local quan-
tities which lead to a new scaling dimensions describing
local critical behavior, which have no direct connection
to bulk critical exponents or properties. One may hope
that the effect of such "discontinuous" perturbations will

be equivalent to imposing appropriate boundary condi-
tions on a continuum formulation. ' '" However, since
there is no a priori obviously correct recipe for formulat-
ing such boundary conditions, one really needs to have
control of the problem formulated on the lattice scale, in
order to properly generate the scaling limit with bound-
ary conditions.

C. Inhomogeneous linear Ising chains: Recapitulation

The program outlined in Sec. IA above has already
been fully realized for the simplest member of the family
of layered Ising models, namely, a one-dimensional
nearest-neighbor ferromagnetic Ising chain. Completely

I

local expressions for the functional S[s,m] have been ob-
tained both in the lattice representation' and, in I, in the
scaling limit. As the parallel dimension is absent in the
d =1 case, the microscopic model is specified by the set
of fields h. and couplings E =E between the jth and the
(j+1)th spins. The corresponding order parameter and
energy densities may be defined as

m~=(s~) and E.=(1—(s s +, )) . (1.12)

g [P, ,~,(s, ,s, ~, )lnP, ,+,(s, s, +, )
s.=+1 j

—P (s }lnP (s }), (1.13)

where

P~(+1)=—,'(1+m ),
P, , +,(+1,+1)= —,

' —
—,'s, +—,'(m, +m, +,),

P +&(+1, +1)=—,'s + —,'(mj+& —m ) .

(1.14)

(1.15}

(1.16)

Note that with our conventions the microcanonical po-
tential 4 is equal to —S/ks, where S is the conventional
total entropy of the system; in addition the definition of c.

accepted here differs from that of I by a factor of 2.
The continuum functional representation for linear Is-

ing systems was obtained in I by working with the
Schrodinger equation for the equivalent two-state quan-
tum system. The result can be written

It proves convenient to add a constant to the definition of
the (reduced) energy density introduced in (1.7) in order
to make eJ

=0 for a fully ordered bond. [This is

equivalent to defining the interaction part of the Hamil-
tonian with (s; s —1) replacing s,"s,'J' in (1.5): the form-
er definition was, in fact, accepted in I.]

The exact lattice result obtained by Percus' takes its
most elegant form when expressed in terms of the singlet
and pair-spin probabilities PJ(sj.) and PJ +,(sj,sj+, ):
specifically one can write

Sd =
~ [e, m ]=—,

' fdz s (z) —I + ln z' s(z ) ——,
' ln [ 1 —m z(z) ]+8 (1.17)

where the gradient, m (z):—(Bm /Bz), enters through

P(v)= —,'ln(1 —
U )+v tanh 'v .

Here we have chosen units of length so as to preserve the
definitions (1.12).

As commented above, both representations have their
advantages: the lattice result (1.13) allows for treatment
of arbitrarily strong and rapidly varying perturbations;
but with respect to the criticality at h, =0, and T, =0 (or
K, =+ 00) the scaling result (1.17) represents the whole
(d = 1)-dimensional smoothly inhomogeneous Ising
universality class, rather than just nearest-neighbor
chains. Other advantages of the form (1.17) include (i) its
manifest conformal covariance: see I and below; (ii) that,

consequently, it yields a11 results automatically in scaling
form; and (iii) that the evident classical Lagrangian form
allows application of standard theorems of mechanics. '

While the continuum result (1.17) was, in fact, obtained
independently of (1.13), the general renormalization pro-
cedure yielding (1.17) as the appropriate scaling pro-
cedure for the lattice formulation (1.13) will be discussed
in Sec. III below.

D. Outline

In this paper we derive an exact local variationa1 prin-
ciple for a two-dimensional layered Ising model in zero
bulk magnetic field. The latter limitation comes as no
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surprise, of course, since the corresponding homogeneous
problem has not been solved. Our variational principle is
then applied to a number of simple cases to obtain some
novel results. More complicated applications are left for
future work.

In detail the layout of the paper is as follows. Section
II starts by summarizing some basic results obtained by
Shankar and Murthy (SM) in their studies of a random
layered Ising model in d = 1+ 1 dimensions. With
some generalizations (and corrections) we thence find

that the basic, zero-field thermodynamic potential
Vd =2[KJ),KJ, h~ =0] of the general two-dimensional lay-
ered Ising model decouples exactly into a sum of separate
potentials for a set of virtual one-dimensional Ising
chains labeled by a wave number q conjugate to the layer
coordinate y. The couplings E and fields h of the
linear chains are explicitly and locally related to the cou-
plings E, E of the original planar model. This result is
then combined with the exact lattice expressions for the
chains, (1.13)-(1.16), to yield an explicit variational prin-
ciple for the planar model in its full lattice form. The
critical manifold can be expressed in general form. ' '

Obtaining the universal scaling limit of the lattice vari-
ational principle is the subject of Sec. III. We present
first the result obtained just by combining the decoupling
of the potential Pd i into those for linear chains, with
the continuum forms (1.4) and (1.17) of the variational
principle for the individual chains. We then verify that
the same result can be obtained directly by proper scaling
and renormalization of the full lattice form of Sec. II
when a~, a~~ 0. An especially appealing simple continu-
um scaling form is obtained after noticing that the con-
formal covariance of the one-dimensional result can be
used to absorb the anisotropy of the planar model into a
rescaling of the spatial coordinates. The anisotropy thus
appears to be a marginal perturbation just as in the

homogeneous case. At this stage one sees that the vari-
ational fields, now called e (z), are essentially transverse
Fourier coeKcients of the overall local energy density
E(z) of the layered planar system. Indeed an integral over

q yields s(z) directly.
Some general properties of the continuum scaling func-

tional are discussed in Sec. IV. The methods of Lagrang-
ian mechanics lead to nonlinear "equations of motion"
for each energy-density component E (z) and provide an
"energy" integral of motion, namely, a combination of
the local energy-density components and their gradients,
E~(z) = (BEq /Bz), conserved whenever the temperature
field t(z), in other words the sequence [K, , K ), is con-
stant. The existence of this first integral allows us to ex-

plicitly integrate the equations of motion for the impor-
tant case t(z) piecewise constant. A simple application of
this result reproduces the thermodynamic and correlation
scaling properties of the standard planar Ising model.

In the subsequent three sections the formalism is ap-
plied to the problem of a single planar structure or "de-
fect," either bounding a homogeneous half-plane so form-
ing a wall (Sec. VI) or separating two unlike inhomogene-
ous half-planes and so representing an interface or grain
boundary (Sec. VII). The latter problem, which to our
knowledge has not been addressed in the literature previ-

ously, seems important as a natural basis for the theory of
more elaborate multilayered structures. The boundary
conditions at wall/interface needed to supplement the
continuum formulation, which is applicable within the in-

dividual uniform half-planes, are obtained in Sec. V. The
derivation proceeds via analysis of the exact lattice repre-
sentation. At the end of Sec. V we point out, however,
that the final result appears to follow correctly from fair-

ly simple macroscopic arguments. This is, of course,
most encouraging in view of the further applications to
more complicated discontinuities in t(z), for which expli-
cit expressions might not be readily available. In study-

ing the general solution of the wall and interface prob-
lems later, we pay special attention to the energy profiles,
E(z), which, as mentioned, follow naturally from the vari-
ational solutions. We show that the variation of e(z) with

distance from the boundary resembles renormalization-

group Aow trajectories for various surface phase transi-
tions. Indeed, the profiles e(z) exhibit rich crossovers
and, in particular, nonmonotonic variation with z in ac-
cord with the How diagrams for the corresponding
surface-criticality regimes.

The paper concludes in Sec. VIII with a discussion of
the results obtained and a review of perspectives for the
future development of the idea of microcanonical func-
tionals for critical systems.

II. EXACT VARIATIONAL FORMULATION

A. Decoupling of chains

Xexp K( g 03(i)&3(i+ I) (2.1)

Note that in d = 1+ 1 dimensions i is just an integer suc-

cessively labeling the columns of the rectangular lattice,
while j counts the layers (or rows).

We will now closely follow Shankar and Murthy (SM)
to show that this quantal spin chain decouples into a se-

quence of two-state systems evolving independently of
one another, even though the parameters K, E ~ depend

on the "time" j. We will then map each of the quantal
two-state systems onto a classical Ising chain with

position-dependent ferromagnetic couplings K and mag-

netic fields h . This finally allows us to use the results of
Percus' described in Sec. I C.

The derivation starts by making a transformation from
the spin variables in (1.9) to two sets of Majorana fer-

mions, f,(i) and $2(i), further decomposed into Fourier
coefficients with wave numbers q (0 ~ q ~ ~), conjugate to
the y coordinate: see SM Eqs. (2.3) and (2.6). Then one

observes that the coef5cients defining the transformation
do not depend on the values of the varying coupling con-
stants E" and K~~. The transformation can thus be per-

In this subsection we employ the transfer-matrix repre-
sentation (1.8), (1.9) which maps the zero-field (d=2)-
dimensional layered Ising model in question onto a

(d =1)-dimensional quantal spin chain in discrete time j,
whose evolution operator is

T =(2sinh2K ) " exp KJ*+0,(i)
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formed globally with each matrix f' achieving a block-
diagonal form.

Each block describes transitions within the four-state
space corresponding to the pair of fermions with the
given wave number q. SM then notice that both the fully
occupied state with n& =n2 =1 and the completely
empty state with n2 =n2q 0 are eigenstates of the
transfer inatrix T, with eigenvalues unity [apart from the
simple prefactor (2 sinh2E )' which we will account for
separately], again independent of the values of the con-
stants K and K~I~. One is left with a set of independently
evolving two-state spaces, the only allowed transitions be-
ing the transformation of a type-1 fermion into a type-2
fermion with the same wave number, and the inverse.
Any 2 X 2 matrix can be expressed as a linear combina-
tion of Pauli matrices and so by properly choosing the
axes of the latter we can write

8.~3/2 A. kl B.&3/2exp[2Ei*(r3cosq+r, sinq)]=e ' ' e ' 'e ' ' (2.5)

After projecting both sides onto the four basic matrices 1,
7 ),7 2, 7) it is an exercise in the algebra of the Pauli ma-
trices to see that this relation is satisfied by the unique
choice

Az (q) = sinh '[sinh(2E ")sinq ],
BJ.(q) =tanh '[tanh(2E ')cosq ] .

(2.6)

(2.7)

exp(E.'&, )exp(h &3)exp(E.'+i &i)exp(hj+]o3). . .

(2.4)

We will be able to recast g.f' (q.) into the same form if
one can manage to represent the first factor in (2.3) in the
symmetric form

a~~Pd z[E E"]=——g ln(2sinh2E )
1

J
At first sight the solution of the system of four scalar
equations implied by (2.5) by a choice of just two parame-
ters may seem miraculous. In fact it is not. Rather, the
symmetric form of the right-hand side of {2.5) ensures
that both sides represent a rotation around an axis in the
(1,3) plane (the r2 component being identically zero).
Thus the orientation of the axis and the amplitude of the
rotation are the only two degrees of freedom to be fixed
by A and8.

On combining (2.6) and (2.7) with {2.5), (2.3), and {2.4),
we see that for each q the layers of the two-dimensional
model are mapped onto the sites of a linear Ising chain
subject to local reduced magnetic fields

1V~

ln 2+Tr q
0 277

(2.2)

where f' is essentially given by SM Eq. (2.14) as

f~(q)=exp[2E *(r3cosq+risinq)]exp( 2E)r&) . —(2.3)

H, =&8, i(q)+. &8, (q}—2E)

=E ', +E *—2EJ~+O(q. ) (2.8)

while the layer-to-layer bonds are mapped onto the bonds
of the chain: the corresponding bond strengths

&~J =E~J=J~J/k&T can be conveniently defined via the
fugacities

g~~
=e "= tanh Ez' = tanh A (q)

=sinh(2E~ ')sin q l[1+sinh (2Ei')sin2q ]

=sinh(2E. ')sinq+0(q ) . (2.9)

The low-q behavior exhibited here and in {2.8) is of direct
relevance to the continuum scaling limit discussed below
in Sec. III.

B. Full lattice functional

The results of the previous subsection are summarized
by the identity

a))Vd q[EJ, ICq~~]= f Vd i[E,H 1]+g C, (2.10)
0 2'

C~ = —
—,
' kz T in[2 sinh(2E. )cosh (2E.*sin~q ) ] . (2.11)

Here the couplings K - and the magnetic fields H - of the
fictitious or virtual linear chains are given by (2.8) and

Here N~ is the number of layers in the model, i.e., the
length L, in units of a~.

Note that we have completely ignored the difficulties
related to the boundary conditions in the y or layer direc-
tion. ' This is surely harmless as regards the thermo-
dynamic limit of Vd 2 taken with Nl ~~, which is our
only present concern; we leave questions related to the
finite size of the layers for future work. We will also ar-
gue below that we may take X~~ 00 and still obtain the
leading scaling contributions to the efFects of finite size in
the z direction: the trick is simply to keep the corre-
sponding correlation length gi also growing so that
Nial lg j stays finite: see Sec. III. This latter limit allows
us to neglect the additive term 2 in the argument of the
second logarithm in (2.2).

In the homogeneous case the 2X2 blocks f~ (q) are.
conveniently diagonalized by application of the
Bogoliubov-Valatin transformation. ' It is easily seen,
however, that the coefficients of the latter do depend on
the couplings E and K ~. Therefore the rotations di-
agonalizing T (q) for different j generally do not com-
mute and thus do not help in calculating the trace
'rr [II,T, I.

The situation is thus quite similar to that considered in
I in relation to the inhomogeneous classical Ising chain
problem. Indeed, for each q the transfer-matrix product
g.f' (q) turns out to be equivalent to that of a classical
chain, the two states of the quantum subsystem being as-
sociated with the two states of a classical Ising spin.

To see this note first that, up to a constant factor, the
product of the transfer matrices in (1.8) reduces for d =1
to
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(2.9). The last sum in (2.10) accounts for various back-
ground pieces usually dropped off in the process of trans-
formation. It is nonsingular on the critical manifold of
the planar model and its precise form depends, in fact, on
the background terms assumed in the planar Hamiltonian
(1.5). Here we follow the conventions of SM and I and
define &d, in a way' ' that makes the energy density
positive definite. We will see, however, that in the limit
K ~0, corresponding physically to decoupling the pla-

nar model into two noninteracting half-planes, the back-
ground part provides a singular contribution

Cj z
ln Kg Accounting for these terms turns out to

be essential for maintaining analyticity of the total free
energy Vd 2 in this limit. (See Sec. VI below. )

We now combine (2.10) with (1.4) and the lattice ex-
pression (1.13) to obtain the exact local variational func-
tional, namely,

0
~ ~

Pd =2 [K~, K)', h
~
—=0 ]

—p C~
J

= min kp L 1+Mqj L 1 Mqj +L 1
2 qj+ z Mq j+Mq j+

(2.12)

where L(x)= ,'x lnx a—nd we have chosen M and 8 to denote the magnetization and the energy density of the virtual
spin chains, just as H and ~ denote the corresponding magnetic and thermal fields. Note that we use the linear-chain
bond strengths ~ =K ——t . as the thermal field here because for d =1 we have K, = ~.

For completeness we write down the variational equations following from (2.12) by differentiating the right-hand side
with respect to M and 6, respectively. They are

M )+M 1 M +M—tanh '(M )+—tanh ' ' ' + —tanh
2 2 —8„, 2 2 —|,,

—tanh
M +) —M—tanh ' ' ' =H (2.13)

.J+~™a&)'
=exp( 4r ) =—

(2—8 )
—(M +M )

q j+j
(2. 14)

The expressions (2.12)—(2.14) provide a full variational
formulation for the layered planar Ising model. They are
obviously local in real space since the variables M, , v
are coupled only to those at nearest-neighbor sites. The
price one has to pay for locality in this representation is
the necessity to deal with a whole continuum of varia-
tional densities for each layer, parametrized by the wave
vector q. However, the densities with different q's are
completely decoupled, so one merely has to solve an in-

dependent set of equations, namely (2.13) and (2.14) for
each q. This task becomes much easier if the difference
equations (2.13) and (2.14) may be approximated by

differential equations. Such an approximation is
developed in the next section.

perature Td, =0). This induces a singularity at an end

point of integration: q=0 and/or q=ir. In the limit
K ~~, the density of one-dimensional domain walls (or
pairs of neighboring antiparallel spins) in a linear chain
freezes out and the configurational space of the system
reduces to just two states: all spins up and all spins
down. The corresponding energies are clearly

E& = —g H = E~. A sing. ula—rity may occur only

when the gap E& —E& closes, i.e., in zero total one-

dimensional magnetic field g H . As our original pla-

nar model is ferromagnetic: K, K~~ )0, the values of the
fictitious fields H at q =it are by (2.7) and (2.8) negative
definite: H (0. The singularity can thus arise only i

one satisfies the formal condition

C. Critical manifold of the layered model

Before turning to the scaling limit we locate the critical
manifold of the planar model. This is easier to achieve in
the discrete representation. Following SM we notice that
the only way 9'd 2 can become singular is via a singulari-
ty in the integrand in (2.10), i.e., via criticality in one of
the d = 1 chains. But a linear spin chain can become crit-
ical only when K = ao (corresponding to fictitious tem-

QH0, =2+ [K *—K"]=0 .
J

(2.15)

In the homogeneous case this condition immediately
reproduces the well-known condition of self-duality: '

K *=K~~. As a phase transition can occur only in the
limit of an infinite q=0 chain, N~~ ~, the condition
(2.15) makes sense only if the infinite sum involved there
is suitably convergent; more precisely one should prob-
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ably ask for convergence of its value per layer, i.e.,
N~

lim g [K * K—II]/Ni=O .
N~ —+ oo j=

(2.16)

Convergence in this latter case is certainly achieved for
an infinite periodic system with Ej Ej+p and
Kj Kj+p for some integer p )0, where the condition of
criticality

p p

g K,"= g KJI, (2.17)

has been obtained by different methods some 25 years ago
by Ferdinand and one of us ' (see also Kardar and Berk-
er ). The more dubious, albeit natural, extrapolation to
the homogeneous random layered model solved exactly
by McCoy and Wu, namely,

« K,"» = « K[I », (2.18)

III. CONTINUUM AND SCALING LIMITS

A. Expectations

Generalizing slightly the concept of scaling and univer-
sality at critical points, ' ' ' we anticipate that the
universal singular part of the free energy Vd i of any
two-dimensional system belonging to the Ising universali-
ty class with the strength of the couplings t (z) depending
on only one of the two spatial coordinates z, will be
correctly given by the scaling limit of the functional
(2.12). In this limit one deals with coarse-grained fields
E(z), t(z}, etc. , and thus loses information about the mi-
croscopic features of the phenomena; in exchange one
gains universality and, as we will see below, also a
mathematical form which is much more convenient for
analytical treatment.

One way of obtaining the scaling form of the variation-
al principle for the layered d=2 Ising model, is to
proceed directly from the transfer-matrix representation

where (( . )) denotes an average over the distribution
of the random coupling variables, seems to work as well
(see SM). A ferromagnetic phase transition does take
place at the temperature defined implicitly by (2.18).
However, the existence in the random model of arbitrari-
ly large domains of the fields Ko of one sign provides ad-
ditional, Griffiths-type singularities. The danger of over-
looking infinitely large clusters of a single orientation of
the fields Ho in interpreting the criterion (2.15) is most
clearly seen in the simplest case of the models consisting
of two unlike half-planes studied below. There, obvious-
ly, each half-plane is self-sufficient in producing a singu-
larity at its own value of the critical temperature. Cri-
terion (2.15) is hardly appropriate in that case. Instead
one ought to consider the sum g Ho taken over each of
the infinite clusters.

At any rate, the derivation of (2.15) makes it natural to
anticipate that the critical properties of the system will
most probably come from the q ~0 part of the integral in
(2.12}. The corresponding low-q asymptotics is developed
in the next section.

(2.3) to the scaling form obtained in I for the variational
principle for each d= 1 chain, namely (1.13). That scal-
ing form was derived under the condition that the
relevant fields, H an. d g . =exp{—2r .) (in our present
notation), are much less than unity for every j. This
essentially means that the local correlation length

, = (H +g )
't is everywhere much larger than the

lattice spacing a~. Of course, once the result is obtained
under these restrictions we expect it to describe correctly
the scaling part of the free energy for a much wider class
of systems in which the fields have rapidly varying com-
ponents and may even violate the H, g « 1 constraint.

Recalling the correspondences (2.8) and (2.9) between
the d = 1 and d =2 variables, we immediately notice that
the condition g «1 is automatically satisfied in the
q~O limit. The latter is naturally required to achieve
scaling: the lattice dispersion appearing in the nonlinear
forms cos q, sin q is clearly nonuniversal and breaks scale
invariance. The interpretation in the two-dimensional
system of the other constraint appearing in the chain for-
malism, namely, Kq «1, follows from the results of the
previous subsection. In the limit q~O, one sees from
(2.15) that H =Ho, and Hqt «1 become the natural
conditions for local proximity to the critical locus,
Ho=0, in the uniform or homogeneous model. Indeed,
as we will see in the next section, the inverse bulk correla-
tion length of the homogeneous model is given by

(K K II ) =H (K E II) The condition
is thus again the requirement gb (KJ,K II ) ))a i, for every

J
To summarize, for every layered planar Ising model

satisfying (i) KJ* KJ «1 an—d (ii) the natural condition
that E, K~ vary slowly relative to the lattice spacing a~,
the low-q part of the variational principle (2.12) is
correctly given by the scaling form

9'd 2[K,K"]= min f Sd i[@q(z),Mq(z)]
M (z), c (z) 0 2w

+f dz [rq (z)8 (z) H(z)M (—z)],
(3.1)

where Sd i[I,M] is given by the local form (1.13) while

qq{z) and Hq(z) depend on the local values of the slowly
varying couplings K (z) and KI'(z) via the previous func-
tional forms (2.8) and (2.9). The superscript & to the
symbol V on the left-hand side of (3.1) signifies that only
the contributions of long-wavelength modes, with wave
numbers q less than the cutoff A «m. /aj, have been ac-
counted for. %'e expect that, apart from a fixed number
of nonuniversal metric factors, the result will not be sen-
sitive to the precise value of A, and thus the superscript
will not be retained below.

While the above derivation of the form (3.1) from (1.13)
is certainly the easiest in view of the work that has al-
ready been done in I, we present a more systematic
derivation in the next subsection by formally taking the
limit of the lattice spacings a~, a~~ approaching zero in
(2.12). This is just the procedure implemented in the
field-theoretic version of the renormalization group. ' '

If the exact lattice functional (2.12} approaches a non-
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trivial form in this limit, as we explicitly show that it
does, then it is automatically scale invariant and so,
therefore, are all the results obtained when it is used as
the variational principle.

B. Renormalization and rescaling

We start by introducing a dimensional wave vector

q'=q/a (3.2)

which is independent of q, while

gq
=e "=qa~~/sinh(2E~ ) . (3.4)

Note that formally gqj ~0 in the a~~ 0 limit, so freezing
the system in the Td &

=0 state, unless this limit is com-
plemented by the a~~0 limit taken simultaneously. Be-
fore proceeding with the latter we note that the integral

and taking the limit a~~ ~0. (However, the priine on q is
omitted in what follows. ) We obtain [see (2.8) and (2.9)]

(3 3)

fodq/2', giving the free energy per unit site in the y
direction, transforms into f odq /2' giving the free ener-

gy per unit length in the y direction (measured in units of
a~~). The upper cutoff A&sr/a~~ will be set equal to
infinity whenever possible. The (trivial) dependence of
the results on A in the remaining cases can be eliminated
by introducing additive counterterms' in (2.12); but we
will not trouble to do that here.

We now turn to the a~~0 limit. It is convenient to
transform the sum over the rows j ("sites" in the d= 1

representation) in (2.12) into a sum over the row-to-row
bonds k=(j,j+1) (or nearest-neighbor bonds of the
linear chains). One immediately notices that 6 qj is

indeed a bond variable related to the (j,j+1) bond, so
that Cqk ——Aq~, and likewise rqk

——rqj while the M vari-
ables have to be rearranged according to

Mq i, =(Mq J+Mq)+, )/2, AMq k =Mq)+, —Mq),

and each of the row terms L(1+M i) has to be split be-
tween the two neighboring bonds. As a result the sum
over jon the right-hand side of (2.12) transforms into

[L(1 6qk+Mqk)+L(1 6 k M k)+L(@ k+ ihM k)
k

+L(6' k ,'b,M—
k )——

—,'L(1+M k+ ,'AMqt, )
—

—,'—L(1+MI, ,'bMqk )——
—

—,'L(1 —M k+ ,'b,M k) —
—,'L—(l Mk ,'h—M k)+—r—k8 I,

—
—,'(H +H +i)M k], (3.5)

where we recall that L(x)=
—,'x ln(x). The next step is to introduce the continuous coordinate z =kai, so that the sum

over k approaches an integral f dz/ai with corrections vanishing as ai —+0. In the same limit we can
write M k

=M (z=kai)+O(ai), bM & =aiM (z=kai)+O(ai), etc. , where M (z) and 8 (z) are supposed continuous
and differentiable functions of z.

The last step, as discussed before, is multiplicative renormalization: we have to multiply the densities 8, Mq and the
conjugate fields r, H by suitable powers of ai so that the functional (3.5) has a nontrivial ai ~0 limit. It is easily seen
that a proper limit is obtained if we put

6'(z)=6' k/ai (z=kai),

Hq(z):Hqi, la&

gq(z) =—exp[ 2'(z)) =gq„/—ai,

(3.6)

(3.7)

(3.8)

leaving M (z) dimensionless. The result, which is of course identical to (3.1), can be expressed, on dropping the primes,
as

[I(. It "]= min f f dz[ —,'v (z)[ —1 —
—,
' ln(1 —M (z))+ —,

' ln(1 —M /8 )
M (z), @ (z) O 2m. 2 g 2

+(M /@ )tanh '(M /6' )+in(A' /2q)]+6 (z)r&(z) —M (z)Ho(z)],

(3.9)

where now rg(z) =
—,
' ln[sinh(2E (z) }aila } ] (3.10)

Ho(z) =2[Xi*(z=kai) —K "(z =kai)]/ai

and we have broken the temperature field rq(z), defined
via (3.8) and (3.4), into its dominant part —, ln(1/q), which
has been absorbed into the term in(6 /2q), and a residu-
al, position-dependent part

Note that the choice of the scaling dimensions co deter-
minating the powers of a~ multiplying different variables
in (3.6)—(3.8) is not a priori obvious. More precisely, one
knows that (compare with Ref. 12) coM+k~=co@+A.,=d' = 1, since one has to absorb the factor a j

' resulting
after the transformation gk jdz/ai into the prod-
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ucts 6' r and M H . However, the way this factor must
be split between the density and its conjugate field re-
quires, essentially, calculating the scaling dimensions for
the problem. The dimensions co~=0, co@=1, which are
of course well known for the d =1 Ising model, ' can be
illustrated by an appealing physical picture of a near-
critical chain as consisting of large domains of the two
different spin orientations. If l+ and l are the charac-
teristic sizes of the two types of domains near the point z,
then M(z) = (l+ —i )/(I+ + I ) is dimensionless, while
the energy is proportional to the density of the domain
walls, 8(z) =4/(1++1 ), and thus has the dimensions of
inverse length. The dimensions of the fields, A,0=1 and
A.,=O then follow automatically. Note that the rescaling
(3.8) defines an additive renormalization, i.e., a
nonuniversal shift of the temperature field wq, which is
logarithmically dependent on a~. Its appearance can be
justified by recalling the symmetry between the fields H
and g in the scaling limit of the d = 1 Ising chain: see I.
Otherwise this shift in ~ appears to be necessary to
achieve the proper ai, ai ~0 limit of 4 under the natural
condition that the ratio ai/ai stays finite: see also (3.10).

Apart from the formal procedure of taking az, a~~ ~0,
the transformation from (2.12) to (3.9) also requires
neglecting terms O(ai@ ) and O(aiM ) relative to
1 —~M ~. Using the domain picture of the linear chain
criticality one can show that both inequalities

(3.11)

(3.12)

are equivalent to the natural condition that both charac-
teristic domain sizes 1+ and l are much larger than the
lattice spacing ai. To see this, use again 8 =4/(l+ +1 ),
I+M=21+/(I++l ), and note that M cannot change
significantly over scales less than l++I, which bounds

~M~ from above.

C. The incorporation of anisotropy

Ho(z')=Ho(z)ai/a(z)—=2[J *(z)—K"(z)]/a(z),

(3.15)

sinh2E =sinh2E =sinh2E, =1, (3.16)

where E, =
—,
' ln(1+&2). Therefore the residual field

rz= —,'1n[sinh(2K )ai/a i ] is negligibly weak for any lay-

ered model constructed by microscopically weak pertur-
bations from isotropic criticality, i.e., with
~K '~~ —E, ~

&&E,. The transformation (3.14)—(3.15} can
thus be thought of as reducing the problem to that of the
isotropic limit. Henceforth we will work in the vicinity
of isotropic criticality unless stated otherwise. We should
stress again, perhaps, that the condition ~K 'i E, ~

&&1—
is just a convenient limit eliminating irrelevant lattice
effects. It does not imply the weakness of the perturba-
tion from the point of view of scaling theory: owing to
the scale invariance of the critical state any perturbation
by the relevant field t ~ E—K, is "strong. "

Note also that the "total magnetic field" J Ho(z)dz
entering the condition of criticality (2.15) is invariant un-
der the transformation (3.14)—(3.15) and so, therefore, is
the critical manifold of the planar layered Ising model
given by (2.15). This manifold is extended by the group
of conformal transformations (3.14)—(3.15}with arbitrary
a (z})0, into universality classes, which are natural gen-
eralizations of the critical manifold K *=K~~ of the uni-
form model.

where z' is related to z by (3.14). The similar rescaling of
may be omitted from (3.9), since b~ is just a variation-

ai field that disappears after the minimization has been
performed. Since the transformations (3.14) and (3.15)
are analytic whenever K (z) is smooth and positive, the
critical properties of all models related via (3.14) and
(3.15} are equivalent to one another. It will be sufficient
therefore to consider the simplest representative of each
class, namely that with ~&

=—0.
We note further that at the critical point of the isotro-

pic homogeneous model a ~
=a

~~

one has ' "

In this subsection we will use the conformal covariance
of the one-dimensional form (1.13) (see I) to incorporate
the residual position-dependent temperature field rz(z) in
(3.9) into a position-dependent rescaling of the coordinate
z. The easiest way to present the transformation is by
noticing that the microscopic length a~ involved in the
rescalings of the previous subsection need not be taken
equal to the actual lattice spacing. We employ this free-
dom by using, instead, a z-dependent length

D. Scaling form of the functional

Having eliminated the position dependence of the tem-
perature field r (z) in (3.1) and (3.9) we can readily per-
form the minimization with respect to e (z } which yields

(zq)=E~(E~, E,q)—= [—,'E~+q (1—E )]', (3.17)

where M (z) has been renamed E~(z) and remains dimen-
sionless. Substituting this into (3.9) we obtain

a(z)=ai/sinh[2E (z)], (3 13) Vg 2[IC (z),K "(z))

chosen so that rz(z) vanishes everywhere. The price one
has to pay is the nontrivial dependence

=mink&T f f dz[X (e,e ) —t(z)e&],
A dq

c (z) 0 27T

z'(z)= f a(z)dz/ai, (3.14) & (E,s )= —E (e,E )+—,'eqtanh
Eq

2E
(3.18)

of the basic coordinate z' of the new model on the natural
coordinate z =ka~ of the original model. Corresponding-
ly, the rescaling (3.7) then changes the field to t(z)= H( o)z=2[K i,i, —K)i,i, ]/ai, (3.19)

where t (z) is just a new name for the basic thermal field



388 LEV V. MIKHEEV AND MICHAEL E. FISHER 49

(sz)=k sT f s (z)/a,~dq
o 2' q

(3.20)

thus identifying each c,
q

as the contribution to the energy
density from the Majorana or Onsager fermions with
wave vector q.

More precisely, we can define separate energy densities
for the two types of bonds [see (1.7)]: E '~'(z)= —BV/
BK ~'(z). Along the relevant direction, K =K", the two
densities are equal, e =s'~=2e(z), so that the total singu-
lar part of the energy density e +e" differs from E(z) by a
factor of 4. This factor will, however, difFer for general

which carries dimensions of inverse length. The "La-
grangian density" L is measured per unit length parallel
to the layers. The expressions (3.17)—(3.19) together with
(3.13)—(3.15) to specify t(z') —=Ho(z'), constitute the main
result of this paper.

The reason for renaming Ho t, M c. is clear.
The results of Sec. IIC show that Ho provides a natural
measure of deviation from the critical manifold in the
[E (z),K'~(z)] functional space. In the vicinity of isotro
pic criticality, K =K~~=K„a~=a~~=a, of the uniform
model, the relevant direction taking the system away
from criticality is along the diagonal K =K~~ while an-
isotropy represents a marginal perturbation: see
Fig. 3. Since BK */BE = —1 at K =E„our t =HO
=2[K ' —K"]/a differs from the conventional
t =(T T, )/T—, for the case of a small overall change in
the temperature T of the system, by only a constant
nonuniversal factor, i.e., t =4K, t /a. Correspondingly,
the energy density of the system defined as
s(z)= —BV/Bt(z) is seen from (1.2) to be, up to a
nonuniversal factor, given by

anisotropic systems where its calculation must involve
analysis of the transformation (3.13)—(3.15).

IV. BASIC PROPERTIES OF THE CONTINUUM
FUNCTIONAL

A. Equations of motion and thermodynamics

=
—,'sinh '[e /2q(1 —E )'~ ] . (4.1)

The classical energy in the absence of the field t, namely,

In this section we explore the basic properties of the
functional (3.18) pointing out its formal equivalence to
the classical action' of a system of classical particles,
whose one-dimensional "coordinates" c evolve in "time"
z. The particles do not interact with one another, but are
subject to an external field t(z) Not. e that the mean-field
approximation to the free energy functional, quadratic in
the spatial derivative of the order parameter density, is
equivalent to the Newtonian limit of classical mechanics:
the Lagrangian is X(m, m)= —U(m)+T(m), while the
"kinetic energy" is T(m ) ~ m . This analogy has been
extensively explored previously. " Here we see that the
nonclassical statistical mechanics of the planar layered
Ising model leads to a non-Newtonian form of the La-
grangians L~ in (3.18). We can still apply, however, the
general theorems and ideas of Lagrangian mechanics.

The canonical momenta p conjugate to the coordi-
nates c are given by

p =BE /Be, =
—,'tanh '[s /2E (e, e )]

[
& E

2 +q
2

( 1 e2
) ]

1 / 2 (4.2)

appears then equal to E as defined in (3.17). We note in

passing that the canonical Hamiltonian of each of the q
particles has the rather elegant form

g J
k~T & (E,p )=q(1 —c. )' cosh(2p ), (4.3)

1.0
but we will not use this here.

The variational equations of motion given by the stan-
dard Euler-Lagrange formula'

y BX

dz gq Bc
q

are found to be

(4.4)

4 Eq Cf Eq Eq ( Eq E'q )t ( Z )

'0 0.5 1.0

E = J /k~T

However, instead of directly taking the derivatives en-
tailed in (4.4), these equations of inotion can be more
easily obtained from the equations

FIG. 3. Critical manifold of the homogeneous rectangular Is-
ing model. The arrows near the isotropic critical point,
K,~~=K, =Jlk~T, =

2
ln(1+&2), indicate the relevant direc-

tions along the isotropic axis K =K, . The crosses on the criti-
cal locus indicate the marginal character of the anisotropy
(measured by E II —E near isotropy).

Gf E = —E t(z), (4.6)

describing the dissipative balance of energy in the
mechanical analogy: the product "velocity" times
"force" on the right-hand side expresses the dissipation
of the energy E .
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The set of equations (4.5) constitute the main result of
this subsection. If a solution, say e o(z), is available for
every q then the energy-density profiles e(z) are obtained
via a single integration over the wave numbers q: see
(3.20). The basic thermodynamic potential V[t] is given
by substituting E o(z) into the right-hand side of (3.18).
The latter can be simplified by integrating the second
term in (3.19) by parts and using the equations of motion
(4.5) satisfied by e»o(z). After a few cancellations the re-
sult takes the simpler form =C exp[+2a(q)z], if ~I»~=jr(q) . (4.14)

plane corresponding to the unstable evolution of a
Newtonian particle of mass —,R with coordinate x in

the potential U(x ) = —x . The complete set of solutions
is given by

x (z)= A ~ sinh[2K(q)(z zo)], if ~I»~)K(q),

=+~ A ~' cosh[2a(q)(z —zo)], if ~I»~ (a'(q),
(4.13)

1 —
e»o z

(4.7)

—
—,'e o(L )tanh '[ —,'s o(L )/E ] . (4.8)

Note that as the conditions used in deriving the scaling
form of the functional (3.18) are almost certainly violated
at sharp boundaries, there are in general further bound-
ary contributions to V beyond the V, given here. These
will be considered in Sec. V.

One should perhaps also stress that the simplified ex-
pression (4.7) for the free energy V using the components

Eqo of the energy density by no means replaces the origi-
nal form (3.18): it is useful only provided one has already
solved the variational equations (4.5) following from the
variation of the latter.

B. Uniform systems

The equations of motion (4.5) can be explicitly solved
in the important case of a locally homogeneous system,
t(z)= cnots. In this case (4.6) immediately gives an in-

tegral of motion

provided the spatial derivatives Be»o/Bz vanish at the
boundaries of the system, as they will do in the case of an
infinite system with a localized perturbation t (z). Other-
wise, for a system confined between two boundaries,
L &z &L+, one must add the extra boundary contribu-
tion

V, =
—,'s»o(L+ )tanh '[—,'e o(L+ )/E» ]

Evidently the second integration entails an arbitrary
choice zo of the origin of z. In the case of the separatrix
solutions e* "', one arbitrary constant C accounts for
both the choice of origin and for the overall amplitude
and sign.

When shifting the variables back from xq to
e»=x»+I t/(t +q ) one must notice that since (4.11)
involves only I, each solution corresponds to two values
of I difFering in sign. The shift splits each function
(4.13)—(4.14) into two, so the set of solutions is overcom-
plete. This degeneracy goes back, of course, to the two
choices of the sign of the square root in (4.9): indeed, it is
removed by invoking the inequality

I —tE, &0, (4.15}

The (e, e ) phase plane in this domain, Fig. 4, is divided
into four different regions by the straight separatrix lines,
~e»~/2a. =~E» —t/a(q)~, corresponding to I =1 and the
solutions

e =C exp[+2K(q)z]+t/R(q) . (4.17)

In the domains I and III, where
~e»~/2R(q)) ~e» t!K(q)(, th—e constant I exceeds unity

as discussed above. The picture is simplified further by
recalling that the variables E are equal to the magnetiza-
tions M of the virtual linear chains and thus are restrict-
ed by

(4.16)

[q (1—s )+—,'e ]'i +te =I (4.9)
1.0

for each q. Note that one always has to choose the posi-
tive branch of the square root here since [see (3.17)]
E =

—,'6 is equal to the density of domain walls in the
corresponding one-dimensional chain and thus must be
positive. Remembering that, we may transfer tE. to the
right-hand side and square both sides arriving at a quad-
ratic form in E and E . After a shift to the variables

Eq

0.5

x =8 I t/(t +q ), — (4.10) —0.5

this reduces to

[x»/2a(q)] x=[I /I» (q) 1]—q /a (q}=3», —

where we have introduced the inverse length scales

R( q) = (/t +q
2 .

(4.11)

(4.12)

Equations (4.11) describe hyperbolas in the (x,x ) phase

—1.0—1.0 —0.5 0.5 1.0

FIG. 4. Flows in the phase plane (e„e ) generated by Eq.
(4.5) for constant t=0.3 and q=0. 5. There is only one fixed

point at c,~": the separatrices Rowing to and from this are de-

scribed by Eqs. (4.17) and (4.28).
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and is conveniently parametrized by an imaginary angle
via I =tr(q)cosh/&. The complete set of solutions in

these domains is then given by

= (sino )[q /K(q) ]cosh[2K(q)(z —zo) ]

+(cos8 )t/k(q), (4.19)

e~
= (sinh1f )[q /R(q)]sinh[2K(q)(z —zo) ]

+ ( cosh/ )t /K(q ), (4.18)

with |9 spanning the interval

—
—,'vr —tan '(t/q) &8 & —,'vr —tan '(t/q)

with g~ spanning the whole real axis. (Note that g &0
corresponds to the domains I and III, respectively; see
Fig. 4). In the domains II and IV one has

I E, I /2K(q) (
~ e, —t IK(q) ~

and a convenient representa-
tion is then I =R(q)cos8 so that the complete set of
solutions is

(while 8 )&0 corresponds to domains II and IV, respec-
tively).

Equations (4.17)—(4.19) represent the complete general
solution to the equations of motion (4.5) for constant
t (z). In order to use (4.7) for free energy calculations we

present corresponding expressions for the energy, name-

1y,

Eq/q =q lt~(q) C(t—/q )exp[+2K(q)z ],
=(cosh/~)qIR(q) —(sinhg )[tlat(q)]sinh[2R(q)(z —zo)],
=(cos9 )qltr(q) (sin8—)[t/K(q)]cosh[2R(q)(z —zo)],

(4.20)

(4.21)

(4.22)

[q'(1 —E')+ —,'8']'~'&&(I —IE, I)a~ ' (4.23)

This inequality reduces to (4.16), however, in the formal
limit a~ ~0, corresponding physically to q, t ((a

At C~ =0, /~=0 and 8~ =0 all three solution sets
(4.17)—(4.19) yield the unique fixed point of the fiow,

namely

e =e"= tlat +q— (4.24)

which correspond, in turn, to (4.17)—(4.19). One should
keep in mind that although the functional (3.18) and, cor-
respondingly, the flow generated by (4.5) display no
singularities on the lines ~e~~ =1 where the inequality
(4.16) breaks down, the conditions under which the tran-
sition to the scaling limit (3.1) and (3.18) has been
achieved entail, in fact, the stronger inequality (3.11). In
the present notation that reads

in agreement with Onsager's solution.
In a semi-infinite domain, z )zo, the profiles eq(z)

should approach equilibrium values: c. ~c. as
z-~+ ~. This z=+ ~ boundary condition is satisfied
only by the separatrix solutions (4.17): these yield

E (z; T) =E"(T)+(e —E" )exp[ —2R(q)(z —zo)],
(4.28)

which describes the relaxation of the energy-density com-
ponents from their surface values to the bulk ones. While
the detailed behavior of the energy profile E(z) = f ~ e~(z)
depends on the q dependence of the surface value c and
will be considered below, the exponential decay at large
distances from the wall is always governed by the low-q

limit of the exponential factor so that

which corresponds to Onsager's solution of the homo-
geneous Ising model. Indeed, integrating z" over q, fol-

lowing (3.20), yields

ln~e —E"
~

= —2R(0)z+O(lnz)

= —2~t~z+O(lnz) . (4.29)

e"(T)=J E~"dq/2m=(2~) 't ln(2A/~t ), (4.25)

for ~t~ (&A, reproducing the famous logarithmic singu-
larity of the energy, namely,

E,";„(T)= A ~ t ', a =0( log ), (4.26)

8 p 2= A =—K, = —[In(1+V2)]2,
7T

(4.27)

so that the specific heat C ~ Bc/Bt diverges as 1n t.
To compare the values of the critical amplitudes 3+

with those known for the isotropic model one must recall
that our definition of t differs from the conventional
t =(T T, )/T, by a c—onstant factor: t =4K, t la
+O(t ), with K, =

—,
' ln(1+&2); that also alters the

definition of the energy density E=B9/Bt. Taking this
factor into account we obtain E = 2+(+t )' with

On general grounds (see Ref. 3 and Sec. IV C below) one
expects the rate of exponentia1 decay of the energy per-
turbations to be identical to that of the energy-energy
correlation functions. Therefore, we identify 2~t~ with

the inverse correlation length of the energy, which in

turn is expected to be 2(b ', where gb is the convention-

al bulk correlation length defined via decay of the spin-

spin correlations. We therefore conclude that

(4.30)

confirming the standard hyperscaling relation' for the
exponent v= (2 —a)/2= 1. The critical amplitudes in the
law g„=g+~t~ ', are equal to unity, g+=g =1, under

our definition of t, and also check against the standard re-
sults after the rescaling t =4K, (T T, )/aT, . —

We close this section by noting that substitution of the
separatrix solution (4.17) or (4.20) into (4.7) and (4.8)

yields an extra contribution to the free energy per unit
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length in the y direction, namely,

0 1 E'q 0
1 +gqV'= —(1—s )ln +(1+E )ln

4 q
1

oo oo
Cq E,

q

(4.31)

C. Energy-energy correlations in the uniform case

If we knew the full microcanonical functional S[s(r)],
the energy-energy correlation functions would simply fol-
low from the functional derivatives' ' of S. Unfor-
tunately our result (3.18} is a functional of s~(z} rather
than s(r). Still there is an easy way of calculating the pair
energy-energy correlation function

G„(r)= (s(r, )e(r, +r) ) (4.33)

in our formalism if we may assume that in the scaling
limit of the isotropic model G„(r) does not depend '
on the direction of r. In that case the Fourier transform
6„(k) also depends only on the absolute value of k.
Therefore knowing C„(k} for k along one particular
direction is sufficient. We can calculate G„(k) for k
parallel to the z axis within our formalism by computing
the linear response of the energy profile s(z) to a probe
temperature field 5t = tke' ' superimposed on the uniform
field t(z)=t.

Linearizing (4.5) around the uniform solution
s~" =t/'(/t +q, one obtains

—,'5'E (t +q )—5s = q(q +t )
'~ fi—t(z) . (4.34)

Substituting 5t =tke' ' yields

in addition to the q component of the free energy density,

f~, of a homogeneous system which is

f~(T)= +t—+q (4.32)

The latter expression agrees, of course, with that ob-
tained from (4.24) via f(T)= —ft s(t')dt', where we

adopt the convention that the free-energy density and the
energy density of the uniform critical state, t=O, are
equal to zero.

G„(r)=f C„(k)JO(kr) .
0 2i7'

(4.38)

where Jo(x) is the standard Bessel function.
In accordance wjth general prjncjples ' ' the ljmjt

G„(k=O)=ln(2A/et)/2m. is equal to the specific heat
C =Be"/Bt with e" given by (4.25). For t « k « A the
form (4.37) reduces to G„(k)=ln(2A/k )/2'. The corre-
sponding real-space dependence is obtained from (4.38)
using a smooth cutoff leading to

1 2Q)G„(r)= r '= r2' 2iT
(4.39)

This describes the critical part of the correlation function
valid for a «r « t '. The long-distance part at tWO is
determined by the behavior of C„(k) for k &t W.hile

G„(k) is a smooth function of k at k =0, it lacks a simple

pole in the complex k plane which would yield the
K T 12Ornstejn-Zernjke form r ' e ' in real space. In-

stead, G„(k) has a branch point at k =2it, leading to'

KG„(r)= r e ' = r e
8m 8n

(4.40)

V. BOUNDARY CONDITIONS
AT SHARP INHOMOGENEITIES

A. Formulation and the scaling ansatz

~d ln~t /dz~ «a (5.2)

used in taking the scaling limit in Sec. III are violated. In
this paper we restrict ourselves to the case of a sharp
boundary between two distinct regions which includes
the important limit of a free surface.

The simplest realization of a boundary is a stepwise
variation of the basic field t, namely,

We now derive the boundary conditions supplementing
the scaling form (3.18) at locations where the two ine-
qualities

(5.1)

2 2 2q/ q+t
q )k2+ 2+ 2 k

4

so the response of the energy density is

5E(z) = f 5e~(z)
dg

Aq /+q +t dq
'k'+t'+ ' 2~-
4

which leads to

(4.35)

(4.36)

t(z)=t 8( —z)+t+8(+z), (5.3)

e (0—)=E~(0+),

r. (0—)=E~(0+),

(5.4)

(5.5)

where 8 is the Heaviside step function: see Fig. 5. If
both t+ and t satisfy (5.1), i.e., the scaling limit is valid
on both sides of the boundary, then the discontinuity can
be realized as a limit of a sequence of continuous func-
tions. Using any of those sequences in (4.5) leads to the
natural conditions

6„(k)= ln(2A/t )—1

27'
sinh '(k /2t )

tanh[sinh '(k/2t)]

(4.37)

The correlations in real space can be determined by in-
version via

of continuity of the basic densities c. and their first spa-
tial derivatives at the jump. This is, of course, the stan-
dard situation for second-order differential equations, as,
for example, in Schrodinger's equation.

However, a closer look into possible microscopic reali-
zations of a boundary in terms of the underlying layered
Ising model shows that the simple jump (5.3) does not
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{a)

z

FIG. 5. Sketch of the local thermal field,

t(z), and the corresponding profiles of the
energy-density components, cq(z), in two con-
tinuum models of a boundary at z =0 between
two domains as in Fig. 2: (a) is appropriate if
the couplings, I{ ' and I{ ~~, in both domains lie

near the same point on the critical locus in Fig.
3 and so have comparable local anisotropies;
(b) contains an extra 6-function contribution of
strength g [see Eq. (5.7)] needed to allow for
disparate anisotropies on the two sides of the
boundary: this induces a discontinuity in

iq(z) —=Bcq /Bz.

provide a description of the general situation in which
the two adjacent regions are near diferent points of the
critical locus K~~ =K *; see Fig. 3. In this case the jumps
in the absolute values of the coupling constants K, K ~~

are large, even if both t+, t are small: unless the
variation of K and KI is correlated in a very special way
that keeps Hp small everywhere, the latter wi11 take
large, noncritical values in the interfacial zone, so violat-
ing (5.1) and (5.2).

The simplest model displaying this feature is sketched
in Fig. 2. We will refer to it as model A. It is composed
of two uniform Ising half-planes, rows j=1,2, . . . , + ao

orz&0and j=—1, —2, . . . ,
—~ orz(0, characterized

by the parameters K+, K g, a~+, a ~~+, and
t+ =2(K+' —K'+~ )la~+ with subscripts + corresponding
to j&0. The two half-planes are coupled via vertical
bonds of strength Kp= Jp/k&T and length b. It is clear
now from (2.8) that the

(5.6). For the particular model described above this
means

g=2Ko —K~* —K '+O(t~b, t b) . (5.7}

This result represents an intuitively appealing limit of the
microscopic model when both a ~+, a ~ and the interface
width b approach zero. However, we cannot be sure it is
correct until the boundary conditions obtained in the
frame of the macroscopic representation (5.6) are com-
pared with the long-wavelength limit of those appearing
in the analysis of the exact lattice functional (2.12). This
will be done below.

Variation of the basic functional (3.18) with t (z) given

by (5.6) is readily achieved by separating each integral
over z in (3.18) into three pieces:

f dz[X ts ]=f— dz[X t sq]—

H p ~)=Kp +Kg) —2K~) =aj~t~+Kp —Kg*
+ —t+c —gc 0

p
(5.8)

are not small, unless the two half-planes are indeed simi-
lar so that K+ ——K and the boundary is then
"coherent", i.e., Kp ——K+.

The natural temptation now is to try to account for the
anomalously large values of the field H p in the bound-
ary region by adding a 5-function feature to the model
(5.3) to obtain

t(z)=t 8( —z)+t+8(+z)+g5(0) . (5.6)

See Fig. 5. As we have seen in Secs. II C and III B, the
zeroth moment of the field, Q~Hq o i = f t(z)dz, plays a

special role in the theory. We conjecture further, there-
fore, that the strength g of the 6 function is fixed by the
requirement that the zeroth moment is correctly given by

l

Variation of the first and second pieces gives the usual
bulk equations of motion (4.4) with t =t or t+ plus the
boundary contributions

+f 5E~(0)=+pq(0+ )5E~(0),
BE z~+p

which appear after the integration of f (BX/Bs~)5E~dz

by parts. ' Here the p are the canonical momenta given
in (4.1). Combining these contributions with —g5Eq(0)
from the third term in (5.8) results in the following pic-
ture: see Fig. 5. Each component E (z) is continuous
through z =0, so that (5.4) still holds, but the slope Eq(z)
is discontinuous with a jump in the canonical momentum

p (z) equal to the strength of the 5 function, that is

E (0+ }+[ E (0+ )+4q [1—E (0) ] j
'~

p (0+)—
p (0—)=—,

' ln
E (0—)+ [a (0—)+4q [1—c, (0)]]'~

(5.9)

Note that the constancy of t(z) for z&0 has not been
used; the derivation still holds if t+ and t in (5.6) are al-
lowed to vary continuously with z in their respective
half-planes. In summary, Eqs. (5.4) and (5.9) specify the
necessary conditions at a boundary modeled by a jurnp in

t(z) plus a 5-function contribution.
These boundary conditions are obviously invariant un-

der the transformation z~z/k, q~qk, c ~E; thus

they leave the formulation scale invariant. Note that in
the general case of different anisotropy on the two sides
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E (0+)=+2R+(q)(s~ —
s~ ), (5.11)

which when substituted into (5.9) yields the only remain-
ing unknown as

so =tanh[g+ —,
' tanh '(s~ )+—,

' tanh '(s~ )],
=tanh[g+ —,

' sinh '(r+ /q)+ —,
' sinh '(t /q)] .

(5.12)

The same result can, in fact, be obtained by minimizing
the total free energy of the interface, namely,

V"(s )=V'(c, s+)+V'(E~, E~ )—gs (5.13)

where 9'(s, c."=s+—
) denotes the contributions of the

two exponential pieces in (5.10), as given by (4.31). The
advantage of this approach to the problem of the bound-
ary is that the minimization automatically yields the qth
component of the excess free energy of the interface as

[1 (s0)2]2
7,"=—ln

4 [1—(s,')'][1—(s, )'1

= —
—,
' ln[Q (g, t+, t;q)q /K+(q)K (q)]

Q—:cosh g+ —sinh +—sinh
t+

2 q 2

(5.14)

The results (5.10), (5.12), and (5.14) represent the com-
plete solution of the problem within the phenornenologi-
cal approach for the thermal field (5.6}. In the following
sections we analyze two physically interesting limits of
the lattice model A using the full lattice representation
(2.12)—(2.14), to confirm that our procedure is correct,
i.e., that the solution just obtained precisely reproduces
the scaling limit of the lattice model.

of the boundary, the coordinate transformations (3.14) re-
quired on the two sides also di8'er. While the original
units of length can be restored at this point, leading to
nonuniversal factors multiplying s (0—

) and s~(0+) in
(5.9},it is more convenient to postpone this step until the
explicit solution has been obtained. Note also that the
definition (5.7) of the strength of the 5 function, g, based
on the zeroth moment of the temperature field, is invari-
ant under transformation with (3.14).

For the case in which t+(z) and t (z) are both con-
stant in (5.6), which should represent the scaling limit of
the lattice model A in Fig. 2 when the thicknesses L+
and L of the + and —domains are infinite, we can go
further and solve explicitly for the energy-density com-
ponents sq (z) and their contributions V~ to the free ener-

gy. Each component takes the form (4.28) on both sides
of the boundary so that

s (z) =s +—+(s —s +—)exp[+ 2R+(q)z], z~~0, (5.10)

where s+— and R+(q) denote s~" and R(q) of (4.24} and
(4.13) on the respective sides, z~~0, of the boundary.
Thence follows

B. Analysis of the boundary in the lattice representation

The reason we expect the boundary conditions follow-

ing from the model potential (5.6) to correctly represent
the scaling limit of the problem can be understood quite
simply on the basis of the lattice representation (2.12) and
the underlying mapping onto the linear Ising chains. The
point is that for any given variation of the bond strengths
Ej Ej across the boundary, the d = 1 fields, H, stay
finite while the d = 1 bond strengths, ~ = —

—,
' lnq,

diverge when q —+0. Therefore, whenever the deviations
from the scaling-limit conditions (5.1) and (5.2) are
confined to a boundary layer of finite thickness, say b,
there is always a finite wave number qb, such that for

q «qb the variation of c.
q Mqj across the boundary lay-

er is negligible. Furthermore, it is easily seen that when
the probability of encountering a d =1 domain wall (i.e.,
a pair of antiparallel neighboring linear-chain spins)
within this boundary layer is negligible, the leading con-
tribution to the free energy from this region is just

QH, M, =so QH„=gs, ;

J J

here the sum is taken over the boundary region in which
the values of the field H might get large, and the
definition in the previous subsection of the strength g of
the 5 function in (5.6) has been used. Note that despite
the absence of domain walls within the boundary layer,
c, does not have to equal +1: the linear-chain spins of
the boundary layer can still coherently fluctuate within
domains of size I ))b. Thus, although the continuum
representation (3.18) cannot describe the variation of s
across the boundary layer, there is no need to do this. All
that matters in the long-wavelength limit, q «qb, is the
value c, and its interaction with the local excess, g, of the
temperature field, as given by (5.7). Outside the bound-
ary region, c will match smoothly on to the extremal
solutions of (3.18): see Fig. 5.

C. Free surface limit

The only case in which this reasoning may be invalid is
when the definition of the model entails singular limits in
which certain bonds vanish or become infinitely strong.
However, this does arise in the physically interesting situ-
ation (which we will call model B) of a half-plane Ising
model with surface spins subject to a surface magnetic
field h

&
(in the original, real planar meaning). This model

may be obtained from model A (Fig. 2) by taking the lim-
it J,J —++ (x), and, again, L+ ~ ao. That freezes the
spins of the z & 0 half-plane in one of the uniform states
s =+1. Correspondingly, the frozen spins induce a field
hj—&:A ]

=+Eo which acts on the spins of the surface
layer j=+ 1. As the basic free energy V(h, , t+ ) must be
an even function of h

&
(in the absence of any bulk field),

the lack of information about the sign of the surface field
merely adds a term kzln2. That is obviously negligible in
the thermodynamic limit. This device reduces the origi-
nal problem with nonzero field to a layered problem in
zero field tractable by available methods. Note that be-
sides taking the limit K,K ~~ ~+ ao, necessary to freeze



394 LEV V. MIKHEEV AND MICHAEL E. FISHER

the spins of the (z &0) half-plane, we wish to allow

Ko ~0 in order to obtain the important free surface limit,

h, =0. In all these cases one cannot reasonably expect
that M - changes by only a small amount between j= —1

and j=+1: thus it is appropriate to resort to the lattice
formulation.

Substituting the values of the bond strengths K,E~~

into (2.8) and (2.9) we determine the fields H
=exp( —2r ) entering the functional (2.12). For

q ((a ' we obtain

H i
=E *+Ko —2E (5.15)

gq 0
—= e ' =

gz I » ~
=q /[sinh (2KO )+q ]', (5.16}

(5.17}

of the field, g &, the second and the third terms represent

one half of the first and the second terms, respectively, in

the brackets in the first, j=1, member of the sum in

(2.12). These two pieces represent the O(1) correction to
the approximation of the sum in (2.12) by the integral in

(3.18), as the a~~0 limit is taken. This kind of term

does not appear in (5.6) since the sum, being converted
into an integral in model A, is taken from j=—~ to

j=+ ~ rather than from j=+1 to j=+ ~ as in the
present case.

The derivation of the boundary conditions proceeds
now exactly as in Sec. VA, the difference being the ab-

sence of the first piece on the right-hand side of (5.8) and

the more complicated form of the surface term. Corre-

spondingly, (5.9) becomes

g~, =(~+ ——q/sinh(2K~+ ), j & 2 .
(5.18)

p~(0+)= —,
' sinh '[e (0+)/2q[1 —(E ) ]I

= —g, + —,
' in[1 —(E ) ], (5.22)

[Recall that for notational convenience the j=0 row is

dropped in our definition of model A: see Fig. 2; instead
we use 0 to label the quantities related to the (

—1, +1)
bonds. ] Being interested in the critical behavior of the
(z &0) half-plane, we suppose H +, g + «1. Note also

that for Ko ((1 one has

which, just as before, applies equally when t+ is a con-

tinuous function of z )0. If, however, t+ is constant, as

in model B, we can go further and, substituting (4.28) into

(5.22), actually solve to obtain

E, =tanh[g, + —,
' tanh '(E,")]

K,* = —
—,
' lnK, »+1 . (5.19) =tanh[g &

+ —,
' sinh '(t /q ) ], (5.23)

+ —,'(1 —E )ln(l —E )]6(z), (5.21)

added to the Lagrangian Lh. While the first term in the
brackets accounts for the interaction with the local excess

We proceed to analyze (2.12)—(2.14). In the language
of the d =1 analogy, the infinite negative fields H for

j & —1 freeze the j= —1 linear-chain spin so that
M~= —1: compare with (5.15). Note that the linear-

chain spin-density maps onto the real, planar energy den-

sity, so the result Mqj 1 for j ~ —1 indicates the ab-

sence of domain walls in the z (0 half-plane, rather than
the actual freezing of the planar spins in the "down"
state. Minimization with respect to c. o leads to the ex-

pected result: the linear-chain bond of strength

r~ 0= —
—,
' lug~0, connecting the d =1 spin at j=1 to the

one frozen in the down state, adds an effective magnetic
field M &~ 0= —~ o to H +, . The problem is thus re-

duced to that of the uniform (j &+1) half-chain, the
effects of the anomalous fields and bonds for j ( + 1 being
accounted for by an extra d = 1 magnetic field, namely,

gi(q T)=H, i
—~i, o

—H, +

=Ko —K+*+—,
' lnq —

—,'[sinh 2Ko+q ], (5.20)

acting on the first spin of the chain. Analysis of the fur-

ther variational equations (2.13) and (2.14) down the
chain confirms that the reasoning of the previous subsec-
tion is applicable at this stage: the correct scaling
description is provided by the continuum functional
(3.18) defined on the half-space z &0 with an extra 8-
function piece

X, =[—g, E + —,'(1+E )in(1+v )

+ —,'(1 —E )ln(1 —E~)]

= —,
' in[[1 —(E ) ][1—(e") ]

= —
—,
' in[cosh [g, + —,

' sinh '(t/q)]q/R(q)[, (5.24)

where we have omitted the subscripts on K(q) =Ir+(q) and
t—:t+ .. compare with (5.13) and (5.14).

Note the striking similarity of (5.23}and (5.24) to (5.12)

and (5.14). Indeed, we will see in Sec. VII that most of
the features of model 8 can be obtained directly in the

appropriate t ~—~, Eo~0 limit of the scaling equa-

tions (5.12) and (5.14) which describe model A.

VI. WALL FREE ENERGIES AND PROFILES

In this and the following section we analyze some of
the applications of the formalism and methods presented
above. We start with the classical problem of a semi-

infinite system subject to a surface magnetic field ' h, ,

named model B in the previous subsection. First we re-

cover in a very simple and straightforward manner the

previously known results regarding the surface magneti-

zation m, and the surface specific heat C„specifically,
the surface exponents 6, and P&, and the exact scaling

forms for m, (t, h, ) and C, (t) Then the energ. y-density

profiles E(z; t, h, ), which follow naturally from the formu-

lation, are analyzed. It is found that the decay of the sur-

where E"=E =t+ /(t +q )'~ . Again we can obtain

the same result, together with the excess surface free en-

ergy, by minimizing

P =min[9'(E, E" )
—

g&E + —,'(1+8 )ln(1+8 )

E
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face perturbation, b e(z), with distance from the wall,
which has not been studied previously, closely reflects the
renormalization-group flow of the surface thermodynam-
ic quantities.

B. Surface magnetization and specific heat

This subsection will analyze the derivatives of

V, (t, h, )=f 9' (t,g, }, (6.4)

A. General solution: Surface scaling

h
&

=(2a~~ )
' Epexp( K+' )—

=(2a) )
' Kpexp( E'+' )— (6.1)

where we have used K'+ K+' =O(—ta~) &&1. Then the

scaling limit, a~~ ~0, of (5.20) can be taken and yields

g& = —,
' ln(q/h f)=ln(q '/lh~ l), (6.2)

Formally the surface free energy 9', and the energy
profile e(z} follow directly from (5.23), (5.24), and (4.28)
by performing the integration over q: see (3.18} and
(3.20}. However, the scaling of those quantities is not im-

mediately apparent owing to the complicated q depen-
dence of g, (q; I}which is given by (5.20). [Note by con-
trast that the dimensionless constant g in (5.12) and (5.14)
does not depend on q, so the scaling in model A is easily
seen. ] Now, from (5.21) we see that the scaling dimension
of g& must be zero. But, by (5.20), the only way g &

can be

kept dimensionless in the all ~0 limit after introducing a
dimensional wave vector via q'=q/a) [see (3.2)], is by as-

signing a finite value to a new scaling field: recall (5.19).
We thus introduce

7 (t,h&)= —1n[(l+s~")' +(1—ez")' hf/q]

+const, (6.5)

where 7 (t,g, ) is given by (5.24) while g, now takes the
simple form (6.2). A closer look reveals, however, that
the result becomes singular in the important limit
h&-To~0. The reason is simply that we have so far
neglected some trivial, t-independent contributions to the
free energy arising from Eo, which nonetheless are singu-

lar when Kp —+0 (upon which the lattice decouples into

two independent halves). These contributions are the fol-

lowing: (i) The Cp= —
—,
' lnKp term in (2.10) and (2.12);

see (2.11). This represents the free energy per Jp bond

(see Fig. 2) and it contributes doubly, 2Cp= —lnKp to
each q component of the free energy. (Recall that

fpdq/2n =
—,'.) (ii) The energy KpM—s,=Kp

= —
—,
' lnEo of interaction between the Eo-dependent part

of the (d= 1} field Hq &
in (5.15) and the "frozen" layer

of spins at j=—1 with M &= —l. (iii) The energy

rz p= —,
' lnKp/q+ const representing the M + &-

independent part of the term r~p@sp=r&p(1+M&+]) in

(2.12}. The equality 8 p= 1+M +, is an obvious conse-

quence of the spin at j= —1 being frozen in the s = —1

state. Summing all these pieces and adding the result to
(5.24) we obtain

4~ —co~ /co (6.3)

in agreement with the established results.
Now we can substitute (6.2) into (5.23) and (5.24) to ob-

tain universal expressions for the scaling parts of the en-

ergy profile and the surface energy, respectively.

which defines the scaling dimension co, =—,
' of the surface

field h, . The formal approach of taking the a~~
—+0 limit

we have followed here in order to determine co, has, in

fact, a simple meaning which is clear from (5.20) and

(5.23): when t~0 we expect the important contributions
to come from the integration over q=O(t), so that we
have sinh (t/q)=O(1) in (5.23). The important depen-
dence on h, comes from those values that also yield

g&(q;h& )=O(1). The latter, as we have seen, is possible

if and only if h, =O(q'~ )=O(t' )=O(t '), where by
the last equality we have introduced the surface gap ex-
ponent

where, as previously, e~" =t/R(q) while the constant
stands for the parts of the free energy independent of t
and h, .

We can now calculate the magnetization of the first

surface layer. Up to the metrical factor in (6.2), it is

given by

m, = —aV/ah, =- Ad ~~q

o 2m. Bh,

h& ~ dq/q
(h f /q )+exp[sinh '(t /q ) ]

=hgA1$(lhgl/ltl ')=hgAlg (lhgl/ltl'") . (6.6)

Here + corresponds to t~0, and the scaling functions

Af,+, Al, , ar, e conveniently calculated by introducing a
new integration variable w according to q = ltlsinh w.

Note the corresponding change of the cutoff
A wz =ln(2A/lt

l
). Then we find

1 ~ coshwdw
At, y, =—

cosh w+1+y f
(6.7}

1 (1+y f )sinh '(y, /v'2)
JK,+(y, )=—ln(2A/t )—

(1+y, /2)' y, /v 2
(6.8)
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(1—y, )cos '(y, /v 2)
In(2A/I tl )+

(1—y! /2)' 'y! /v'2

(y, —1)cosh '(y, /v'2)
In( 2A/~t~ )—

( 2/2 I)!/2

y (Q2

y, )g2
(6.9)

It is not hard to check that At, (y, ) is analytic through

y, =v 2 despite first appearances. Various asymptotic
limits can be readily elucidated. In the disordered phase,
t )0, as y, ~0, one has

m, = ln(—2A jte )h, +O(h, ),1
(6.10)

and the system is characterized by a finite surface suscep-

tibility y» =Bm, /Bh, —t ", which actually diverges
logarithmically when t ~0+ (y» =0). On the low-

temperature side, when y, ~0 one finds

A! = —[In(2A/~t~)+ —,'my, '], (6.1 1)

so that the surface magnetization varies as
' 1/2

1 2A
m! =sgn(h! ) + —h, ln +O(h! ) .

2 m
'

/tfe

(6.12)

while g» still diverges logarithmically when t ~0—.For
large surface fields, y, &&1, one finds

In other words, the system is characterized by a spontane-

ous surface magnetization m, = m, (h, =0+ ) —
~
t~ ', withPI

(6.13)

I

who presented an asymptotic analysis of the exact solu-
tion of the semi-infinite lattice model obtained by McCoy
and Wu. We believe that our method provides a much
simpler way to obtain these results, the basic advantage
being that the scaling limit is taken on the level of the
variational functional rather than being derived from the
fully detailed expressions. In fact, we operate with a field

theory representing the scaling limit of the model, which
is much simpler than the original lattice representation.
Note also that the expression quoted for the scaling func-
tion for m, ( t „h, ) in Ref. 5 is quite incorrect for
0 & h, & ~, even though it reproduces correctly the two
limits h, =0 and h, =!!!!.Our expressions (6.8) and (6.9)
agree precisely with the exact lattice-based calculations of
Au- Yang and Fisher.

C. Scaled energy profiles

Consider now the energy profiles E(z), or rather
&E(z)=c(z)—E", for different values of t and h, ; these

profiles have not been studied previously. Substituting c,

from (5.23), and g, from (6.2), into e (z) as given by
(4.28), and integrating over q yields

b, e(z)= J
q [tanh[ —,

' ln(q/h, )+—,'sinh '(t/q)]~dq

—tanh[sinh '(t /q ) ] ] exp[ —2K(q)z ],
m! = —h! ln(A jh! ) .

1
(6.14) (6.16)

Consequently at the critical temperature, t =0, the sur-
face susceptibility F11 varies as lnh, .

The surface specific heat, C, = —8 V, (t, h, )/dt, can
be obtained similarly. For h1=0 the result is especially
simple, namely,

where the q-dependent inverse correlation length
K(t, q)=(t +q )' was introduced in (4.13). The ex-

ponential factor e "ensures convergence of the integral
at large q for any z )0. Thus the limit A~ ~ may be
taken straightforwardly. The result obviously satisfies
the scaling law

1 1 1
C (t h =0)= — t ' 6(t) . ——

s 1& 1 4
(6.15) b,e(z)=t ' Y (zt', h, /~t~ ')

Recall that the surface specific heat need not be positive.
Although the "latent heat, " contributed by the 6-
function term looks unusual in the context of a continu-
ous transition, it does not violate scaling: indeed, both—a
terms in (6.15) scale as t ' with a, =l. All the surface
exponents thus obtained can, of course, be derived via the
usual hyperscaling relations' from the scaling dimen-
sions ~, =v '=1, co, =v '5, =

—,
' of the bulk tempera-

ture and the surface magnetic fields, respectively, and the
dimensionality d' = 1 of a boundary surface of the planar
model. Thus one has a, =2—d'v=1, /3, =(d' —co, )v
—2 —cz, =5,= —,', y»=2 —a, —251=0, etc.

Both the exponents and the amplitudes of the critical
power laws in (6.10)—(6.14) agree fully with those ob-
tained in the pioneering study of Binder and Hohenberg,

=tY , (zt, h, j~t~'"), . (6.17)

where Y+ and Y correspond again to t)~0, respectively,
and are given explicitly by

Y+(x,y! )= I exp[ —2x(1+u )'~ ]V+(u;y, ),
0 77

(6.18)

V+(u;y, ) =tanh —,'[ln(u /y, )+sinh '(1/u )]

+(1+u')'" (6.19)

The function Y+ (x,y, ) describing the spatial variation of
the energy density in the scaling regime above T, is

shown in Fig. 6 for various fixed values of y, =h1/t'
The qualitative behavior of the profiles can be seen from
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1.0
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0 0.1 0.2 x = zt 0.4 0.5

FIG. 6. Net energy-density profiles in the scaling regime at
fixed T & T, near a wall which is subject to a surface field h &.

Note that all profiles are nonmonotonic and display minima ex-

cept when h&=0, which characterizes the ordinary surface
phase transition, or when h, —++(x), corresponding to the nor-

mal (equivalently, extraordinary) surface transition.

various asymptotic results for Y+ available in analytical
form. Generally, the profile crosses over from the univer-
sal power-law decay at criticality with h t =0, namely,

EEo (z) = I /4m. z, (6.20)

valid also for z « ~t~ ', h i, to the noncritical exponen-
tial decay laws

z
—1/2e —2tz

+ ) for t)0, (6.21)

As ~(2~t —h )z e " for t &0 (6.22)

and to the alternative universal critical-point decay law

heso (z) = 1/4rrz (6.23)

This behavior should also be observed on the intermedi-
ate scales z « t ' for large values of the surface field,

y, »1. Furthermore, the scaling functions Y+ in (6.17)
can be expressed explicitly for h, =0 and h, large in
terms of the standard Bessel functions, K,(z), as

2vrY+(x, O) =Ki(2x)+Ko(2x),

2nY+(x, ~)= —. K,(2x)+Ko(2x) .

(6.25)

(6.26)

In fact, Y+ (x, O) and Y+ (x, ~) bound the profiles in Fig.
6.

The most remarkable feature of these profiles is their
nonmonotonicity. From (6.20)—(6.23) we see that above
T, the profile b, e(z) must exhibit a minimum for any

when hi40. Compare the nontrivial power-law prefac-
tors in (6.21) and (6.22) with the energy-energy correla-
tion function (4.37). The crossover at t=0 between
beo(z) and DER(z) is described by

1 2 1 ~u —w z„be, (z) =—W, (w =h iz) = e "du .
z ' ' 2~z o u+w

(6.24)

h, &0, as also below T, when hi &2~t~: see Fig. 6. To
understand this effect, note that owing to the exponential
factors exp[ 2(—q +t )'~ z] in (4.28) and (6.17), the
dependence of b,s(z) near a given value of z is determined

by the behavior of the prefactor (s~ —E") for q -z
when zt «1, but for q &(z/t) '~ when zt &1. There-
fore increasing z in the argument of hc is similar to a
Wilson momentum-shell renormalization-group opera-
tion in that the short-wavelength fluctuations are pro-
gressively eliminated. We thus expect the profiles b,e(z)
to exhibit all the crossovers characteristic of surface criti-
cality. ' At short wavelengths the weak fields h, and t
are unimportant, so the behavior is dominated by the
strong disordering effect of the bonds broken at the sur-
face which increase the energy density: the correlations
transmitting this effect into the bulk are those charac-
teristic of the critical state. [Compare with (4.36).] Thus
hc, (z) is positive and decreases according to the power
law (6.20) corresponding to the ordinary surface critical
behavior ' which occurs in the absence of a local
symmetry-breaking field.

However, when t ~ —h
&

the surface magnetization m
&

exceeds the bulk magnetization, implying that at large
scales the surface is more ordered than the bulk. Indeed,
h

&
is a relevant perturbation, its effect increases as q ~0,

as is clear from (6.17). Hence, for t & —
—,'h, and q & h2i,

the surface energy-density component c becomes smaller

than cq". The large-scale fluctuations are then suppressed

by the surface field, which is reflected in negative, i.e.,
lower values of b,e(z) at large z. When t =0 the final des-

tination of the renormalization-group flow is what might
best be called the normal surface fixed point (since the
lack of field symmetry when h~@0 is generic). This,
however, is known to be asymptotically equivalent to the
extraordinary surface fixed point in which h, =0 but the
surface spontaneously orders above the bulk T, owing to
enhanced surface couplings. ' This is reflected in the
profile (6.23).

Of course, a nonzero bulk thermal field, t, is also a
relevant perturbation. The typical effects of t can be seen
from the explicit forms (6.25) and (6.26) describing the
crossover from the power laws at small z to exponential
decay for z & I/K(q =0):—gb(t).

Note that nonmonotonic profiles of e(z) are also pre-
dicted to occur close to the special point in d =4—e di-

mensions by means of operator-product-expansion tech-
niques. (The special point is equivalent to the condition
of weak surface field in our d =2 case. ) These nonrnono-
tonicities were felt, however, to be limited to the critical
region,

~
t

~
&& h „since the massive, i.e., noncritical,

behavior cannot be obtained directly from the critical
operator algebra. Interpolation between our d =2 results
and those for d =4—e, however, indicates strongly that
nonmonotonicity should also be a generic feature in d =3
dimensions.

VII. DOMAIN BOUNDARIES OR INTERFACES

Our interest in the critical behavior at the fixed inter-
face or boundary between distinct domains (see Fig. 2) is
twofold. Besides the importance per se, especially in
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view of the planned studies of criticality in multilayers,
we would also like to check the extent to which the sur-
face model (model 8} considered in the previous section
correctly reproduces the phenomena occurring when one
of the two half-planes goes critical, say as t+ ~0, while
the other remains noncritical, t =const. Most of the
work on surface critical behavior" has been based on
the assumption [see hypothesis 0, of Refs. 1(b) and 1(c)]
that the response of the "spectator" phase""' to the Auc-
tuations in the near-critical phase can be neglected, the
only significant feature being the presence or absence of
local symmetry breaking at the interface. More
specifically, we expect for ~t+ ~

&& ~t
~

the diIFerence be-
tween the interfacial model (A) and the surface model (8)
to be insignificant beyond a surface layer of thickness
z &(b (T)=~t

~

'. The efFect of symmetry breaking in
the spectator phase when t & 0 should be equivalent to a
surface field h i &0. Correspondingly, an interfacial
boundary with a disordered phase, t » t+ & 0, should

be correctly modeled by symmetric boundary conditions
with h& =0. We expect matters to be more complicated
and interesting, however, when the spectator phase is
close to criticality, ~t

~

&& ~t+ ~, so that the fiuctuations
in the z & 0 region are correlated near the surface over
distances much longer than in the bulk owing to the prox-
imity of the critical phase. Finally, when t =t+ we ob-
tain the limiting case of a defect line of altered bonds in
the planar model, which has independent interest (see,
e.g. , Ref. 8).

A. General Expressions

We will focus on the incremental energy-density
profiles he(z) for z & 0 defined with respect to
E+(T)=F.(z~+ ~): see (4.25). In view of the results of
the previous section we expect these profiles to be
representative of the general crossovers in critical
behavior. On substituting (5.12) into (4.28) and integrat-
ing on q we obtain

b E(z) = I [tanh[g+ —,
' sinh '(t /q )+—,

' sinh '(t, /q )]—tanh[sinh '(t /q )] I exp[ —2&(q)z]0 2K

(7.1)

where, we have put t+ ——t, t :=t„the subscript s denoting the spectator phase. Recall also that the field g, defined in
(5.7), measures the strength of the Ko bonds coupling the + and —doinains relative to the couplings within the two
domains. In the second part of (7.1) scaling is obtained by taking the A~ ~ limit as usual: the scaling function is

Y(x,r„g)=j [tanh[g+ —,
' sinh '(1/u )+ —,

' sinh '(r, /u )]—tanh[sinh '(1/u )]Iexp[ —2x(1+u )' ] . (7.2)

However, this limit is not applicable if z A, or if
x ~t/A&(l. In writing these equations we have also
limited ourselves to t &0, which is no real restriction be-
cause of the symmetry relation

bE{z,t, t„g)= —be(z, t, t„—g—) . —(7.3)

B. Reduction to ordinary and normal surface behavior

From (7.1) and (7.2) we immediately see that when
t ~0 with t, =const, the scaling field ~, approaches ei-
ther + ~ or —~ depending on the relative sign of t, and
t; the only exception arises when t, =0, which corre-
sponds to the unstable special multicritical point value
~,. =0 which is discussed in the next subsection. Setting
~,. =+~ in (7.2) leads to

Y{x,+ ~,g ) = — [K,(2x )
—Ko(2x ) ),1

2'
Y(x, —~,g ) = — [K,(2x )+Ko(2x )],1

(7.4)

{7.5)

in one-to-one correspondence to Y+ (x,0) and
Y+(x, + ~) in (6.25) and (6.26). We may thus identify,
precisely as anticipated, t, &0 and t, (0 with the ordi-
nary {h,=0) and the normal {equivalent to the extraordi-
nary) {h,@0) regimes discussed in Sec. VI. Note that the
scaling variable g, now representing the modification of

the surface bonds, is irrelevant in this limit (t~0, t„g
fixed): thus the symmetry relation (7.3) gives

Y (x,0) = —Y'+ (x, + ~ ),
Y (x, + ~ ) = —Y+ (x,O),

(7.6)

just as follows from (6.25) and (6.26}.
The expressions (7.4) and (7.5) for Y(x, +~,g) de-

scribe the profiles when x =0(1), i.e., for z & t ' » t,
which in the language of the surface-field model B corre-
sponds to the limits y, =h

&
/t =+ ~ or 0, for t, (0 and

t, & 0, respectively. To obtain the intermediate scaling re-

gime involving finite y, we may follow the idea behind
model B and try to compensate the strong ordering
effects of a low-temperature spectator phase, with
r, ~ ~, by weakening the surface bonds, KO~0 (see Fig.
2). In this limit (5.7} and (5.19) give g = —lnKO»1,
while sinh '(r, /u ) = —ln(2r, /u). Substituting these
asymptotic expressions into (7.2) one directly obtains
Y+(x,y, ) as found in (6.18) with, however, y, replaced
by ~r, ,

~e . Thus model 8 is recovered with the surface
field identified as

{7.7)

This result is easily understood on recalling (6.12): the
magnetic field hi acting on the first row of spins of
the z & 0 half-space is simply given by m

&
K~
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~( —t, ) 'Eo=( —t, )' Ko (see Fig. 2), where the surfacePi

magnetization m i of the spectator phase should not be
significantly influenced by the weak coupling to the criti-
cal phase.

C. Long-distance behavior

r ~~2(r ~ —r &e 2g)z1

16''~

while for t & 0, t, & 0,

(7.8)

The two different forms of the long-distance behavior,
~z e "and hE, ~z ' e " found for t &0

and t )0 in (6.22) and (6.21), respectively, clearly corre-
spond in this representation to t and t, having the same

or different signs. Indeed, for z » t ', t, ', the integral
in (7.1) is dominated by q &(t/z)' « t, t, W. e can
therefore approximate sinh '(t/q) by sgn[t]ln(2~t~/q),
and sinh '(t, /q) by sgn(t, )ln(2~t, ~/q) in the argument of
(7.1). Depending on the relative signs of t and t, the two

—,
' lnq terms either reinforce or cancel leading to two

different forms, namely, for t &0, t, &0,

( 1 e2g}e 2'/ 163/~z3/2t 1 /2 (7.12)

When g «1 one enters the linear response realm con-
sidered in Sec. IV C and one sees that the forms (7.8) and

(7.12) may be viewed as deriving from the asymptotic
behavior (4.40) of the energy-energy correlation function

G„(r) by integrating over the transverse coordinate ac-

cording to

fG„(y,z)dy ~ f (z +y ) 'exp[ —2t(z +y )'~ )dy

the perturbation, g. By varying g one can smoothly cross
over from the universal amplitude zbe(z)=+ I/4m cor-
responding to ordinary surface critical behavior at

g =+ ~ [see (6.20)] to the universal value zb, s= —1/4m

at g= —~, corresponding to the normal (or extraordi-

nary) form (6.23). Note that, physically, g=+ oo means

breaking the bonds so creating two new free surfaces,
while g = —~ represents infinitely strong boundary

bonds, completely suppressing energy fluctuations in the
interfacial plane.

The long-distance part of the energy profile in the de-

fect layer model is just given by (7.8) with t, =t, which

yields

be= — —t' [1+t ahn[
—g+ —,

' ln( t, lt)])—
43/~ ~ e 2tZ/z—3/2r 1/2 (7.13)

—1/2 —2tzXz e (7.9)

with corrections of relative order (tz) ' in both cases.
For t «

~ t, ~

these results are equivalent to the x ))1 lim-

its of (7.4) and (7.5), respectively.

D. A boundary with a critical phase

Consider now the special case t, =r, =0 in (7.1) and

(7.2). It yields a still different form of long-distance
behavior: at small q the preexponential factor in (7.1)
and (7.2) now behaves as q, rather than as q when

sgn[t] =sgn{t, ], or as q when sgn[t] = —sgn[t, ]. The
integration over q then yields

de(z)

z/~- a~

—1/t
0

(a) t »t+&0

b,s(z) = —e ge "/4m. z . (7.10)

This form also holds asymptotically on intermediate
scales when t ))

~ t, ~.

(b) t » t, —& 0

E. Short-distance behavior

At short distances, in the sense z « t, ~t, j, the integral
in (7.1) is dominated by q&z '))t, ~t, ~. For g&0 the
preexponential factor can then be approximated by
tanh g, which on integration leads to

-1//r
/

—2tiz

b E(z) =(tanhg )/4m. z . (7.11)

This result has also been obtained recently by other
methods; ' ' indeed, it becomes exact for a layer of al-
tered bonds, g&0, in a critical phase, t =t, =0. Simple
power counting shows ' ' that such a layer imposes a
marginal perturbation on the critical phase: in other
words, its scaling dimension co=co, —d', where d'=1 is
the dimensionality of the layer, vanishes identically. The
marginality is revealed in the continuous dependence of
the amplitude of the critical power law on the strength of

FIG. 7. Schematic depiction of the various asymptotic re-

gimes in the near-critical behavior of the energy profiles, Ac(z),
near a smooth or "matched" (i.e., g =0) interface/boundary be-

tween two semi-infinite domains with uniform thermal fields (or
critical-point deviations) t+ and t . (a) The like case
t » t+ &0; (b) the unlike case —t » t+ &0. Note that
hc(z)=c(z;T) —c~(T) where c+ and c", the bulk energy
densities, differ for z~~0: see Eq. (4.25). The total-energy profile,
c.(z, T), varies smoothly through z =0: see Fig. 5(a).
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for zt »1. It is all the more surprising that the long-
range part of the energy profile in (7.9) and (7.10) when
sgn(t, )Wsgn(t) diff'ers qualitatively from the predictions
of linear response theory.

When g =0, which corresponds physically to a smooth
or "matched" boundary between the two half-planes (fol-
lowing the discussion in Sec. V), the divergence of b, E(z)
when z~0 is weaker than (7.11). By using
sinh '(r /q) =r/q, and analogously with r, in place of r,

in (7.1) we obtain

b, E(z) = ln
4m ztmax

t,„=max[t, ~t, ~] . (7.14)

When zA approaches unity the upper cutoff A in (7.1)
can no longer be ignored and Ac approaches a value of
order (t, —t)ln(A/t, „)—(E+ —E"), the diff'erence of the
bulk energy densities as given by (4.25). The logarithmic
law (7.14) can thus be viewed as a precursor of the
smooth behavior across the boundary to be expected for
the total, overall profile E(z) when g =0: see Fig. 5 and
recall that E(z; T) =E+ ( T)+ b,e(z; T) where the bulk
values E+(T) and E"(T), for z~0, differ whenever

t+Wt Howe. ver, the precise form of the profile for

lzl -A is beyond the present scaling-limit considera-
tions.

The results of this section are summarized schematical-
ly in Fig. 7 for the case g=0. The only qualitative
difference appearing when g&0 is that the logarithmic
law (7.14) goes over to the stronger short-distance diver-

gence (7.11).

VIII. SUMMARY AND PROSPECTS

In summary, we have derived a general variational
principle for layered two-dimensional systems belonging
to the Ising universality class and have shown that it can
be applied effectively to solve physically interesting prob-
lems. In place of our original proposal of a functional

1[m, E] of just the magnetization and the energy densi-

ties, we were forced to include in the argument of the mi-

crocanonical functional a whole continuum of variables
E (z) proportional to the densities of the transverse
Fourier components of the energy density. Note also
that the other Legendre transform, from the magnetic
field to the magnetization, has not been performed here:
except for surface fields, our analysis has been confined to
fixed magnetic field h =0. It remains, therefore, to find a

way of evaluating the spontaneous magnetization below

criticality within the present formalism. Luckily, the
contributions of diff'erent e~(z) decouple: this fact is ob-

viously related to the integrability of planar Ising models.
Thus we obtain the set of independent second-order ordi-

nary differential equations (4.5). Reducing the calcula-
tional task to solving these equations represents a
significant gain relative to the traditional matrix
methods, as demonstrated by our analysis here and else-
where. Even if the equations cannot be solved in a
closed form, one may profit from the arsenal of theorems
and numerical methods developed for ordinary
differential equations; in addition the variational charac-

terization opens the door to the use of trial functions.
Another advantage of the present formalism relative to
the matrix method is that the scaling limit can be taken
at the level of the variational functional itself: see the
transition from (2.12) to (3.18). One then automatically
obtains all answers in scaling form, describing thereby
the whole (d=2) Ising universality class. In this respect
our method is similar to those based on the conformal
symmetry of the critical state; "' but, unlike those
methods, it is also capable of describing correctly the
behavior governed by the noncritical, high- and low-

temperature fixed points.
Our study of a linear domain boundary or fixed inter-

face separating two Ising half-planes has revealed a rich
variety of crossover phenomena. The crossovers are
reflected in the energy profiles which in a sense reproduce
the renormalization-group trajectories. A particularly
robust feature, which seems likely to extend to d =3 di-

mensions and which should be experimentally detectable,
is the nonmonotonicity of the energy profiles near a sur-

face subject to a weak symmetry-breaking field, h, .
An encouraging technical result of our work is that,

while the condition of large local correlation length,
((z }= t '(z) )&a, used in justifying the scaling limit
(3.18) (see Sec. III A), is likely to fail at a strong, localized
defect such as a surface or a boundary, a simple, intui-

tively appealing extension of the scaling representatation,
as in our modeling of a domain boundary using a 5-
function contribution to the temperature field t (z), may
make it possible to elucidate correctly the essential
features of the problem without recourse to the micro-
scopic representation.

From a general viewpoint, one may notice that in both
the (d = 1)- and (d =2)-dimensional models with z-

dependent inhomogeneities that we have considered so
far, the local formulation was achieved by invoking as

many independent densities as there are degrees of free-

dom in the hyperplane perpendicular to the z direction.
A formulation very similar to the present one has in fact
been obtained also for d=4 —e dimensions. One may
thus speculate that this is a general feature of the prob-
lem. The integration over a continuum of momenta q al-

lowed us to obtain the nontrivial surface exponent

determining the scaling h, ~ t ' in the surface-field prob-
lem (see Sec. VI). This is an answer to the critique of the
earlier local functional formulations presented in Ref. 31.
Of course, the existence of a set of transverse ~odes giv-

ing independent contributions to the variational function-

al is probably a special feature of the integrable models
considered so far. Whether an interaction between the
modes can be included in the framework of an effective
local formulation in a more general case, remains to be
seen.

In any case, the layered planar Ising model presents a
number of interesting problems which may be ap-

proached successfully using the present formalism.

Apart from the independent interest of these questions,
studying the model further may be useful in developing
more general insights into the way critical phenomena
develop in spatially inhomogeneous systems. Specific
prospective further problems include the following:
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(i) Periodic multilayers. The general solutions of Sec.
IV B reduce the problem to algebraic equations which
turn out to be solvable in an explicit form. A prelimi-
nary analysis reveals a number of interesting, experimen-
tally observable, features.

(ii) Random multilayers It. was recently emphasized'
that while the McCoy-Wu solution of the random lay-
ered planar Ising model remains almost the only exact
calculation available for a nontrivial finite-range random
system, our understanding of it is still incomplete. The
present formalism reduces the problem to analysis of a
nonlinear stochastic differential equation, namely, (4.5)
with a randomly varying thermal field t (z) on the right-
hand side. This opens the possibility of connecting the
problem to other active areas of research. The similarity
between the present formalism and that appearing in the
perturbative treatment in d =4—e dimensions, gives
some hope of progress for d =3, where random multilay-
ers can, in fact, be created by molecular-beam epitaxial
growth techniques. '

(iii) Smoothly varying inhomogeneities To w.hat extent,
say, a smooth periodic modulation, t (z) = to+ t, cos(Qz),
can be accurately modeled by a periodic multilayer with

sharp interlayer boundaries remains to be seen. This
question is relevant both to the general understanding of
scaling in spatially inhomogeneous systems and for a
number of specific physical problems ranging from the

effects of gravity to smooth doping profiles induced by
ion implantation, irradiation, etc. While exact analyti-
cal solution of the equations of motion (4.5) may be avail-

able only rarely, the variational character of our formula-
tion should be particularly useful in such cases.

(iv) Functional renormalization group for the thermal

pro+les T. he realization of a functional renormalization-

group scheme on the space of profiles Ee(z) would be

most useful in classifying the various types of critical
behavior in layered planar Ising models as well as in sug-

gesting approaches for other dimensionalities and univer-

sality classes.
Other possibilities for developing the general variation-

al approach, advanced in Ref. 10 and expounded here, in-

clude (a) working with other integrable systems in d =2;
(b) using conformal invariance principles to study sys-

tems with general (rather than layered} inhomogeneities
t =t(r); and (c}perturbative approaches for d )2.
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