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Thermodynamics of the one-dimensional six-vertex ferroelectric model
with proton tunneling
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We study a one-dimensional model of ferroelectrics with proton tunneling on the hydrogen bonds.
The inQuence of tunneling on the thermodynamics of the model is considered in the approximation
of Nagle [exp( —w/T) = 0j and for energies of the forbidden configurations w much larger than the
tunneling constant I'. The rearrangement of the energy levels due to the inclusion of proton tunneling
is investigated by secular perturbation theory, using I'/w as a small parameter. Exactly solvable
six-vertex one-dimensional models with tunneling are obtained as the first nonvanishing orders of
this theory. The phase transition from the disordered to the polar phase is found to be first order as
in the case of I' = 0, but the transition temperature T, and the entropy jump AS decrease with the
increase of the parameter 6 = I' /ew, where e is the energy of the excited configurations obeying
the ice rule. When p = (1 —6) -+ 0, T„AS, and the energy gap, separating the ground ferroelectric
state from the excited states, tend to zero as 2e/1n(1/7), (7/2)ln(1/p), and ep, respectively. The
results are compared with the experimental data on the ferroelectric, K(H Di )PO4.

I. INTRODUCTION

Crystals with a two-minima potential for the protons
on the hydrogen (H) bonds at low temperatures undergo
phase transitions (PT) induced by ordering of these pro-
tons. The nets of H bonds in these crystals may be
three dimensional as well as two dimensional ' or one
dimensional. Despite this variety, PT in crystals with
proton ordering are specified by the same ice rule of
Pauling which forbids the so-called charged configu-
rations of protons on H bonds at the anion part of the
constituent molecule, called a vertex. It means that the
strong electrostatic short-range correlations exclude ver-
tices with one, three, and four neighboring protons. The
energies of the forbidden configurations, m, are much
higher than the energies of the configurations allowed

by the ice rule. The thermodynamics of these systems
is usually investigated by means of exactly solvable six-
vertex models which take into account the contributions
from the vertices with only two neighboring protons,
or by approximate cluster methods ' including also the
energies of the charged vertices. The nets of H bonds
in the exactly solvable six-vertex model (io ~ oo) may
be either one ' or two dimensional. Whether the low-
temperature phase is ferroelectric or antiferroelectric is
determined by the choice between the two vertices with
the lowest energy. The remaining four vertices have their
energies higher by e than the lowest-energy vertices. It
is known from the exactly solvable two-dimensional six-
vertex models that the first-order PT from the disor-
dered high-temperature to the ordered low-temperature

phase occurs at the temperature T = s/In 2. A PT does
not occur in the one-dimensional model with finite m, in
contrast to the case of infinite m, but the thermodynamic
free energy of the system has a sharp anomaly ' in the
vicinity of T = s/ ln 2 causing an anomaly in heat capac-
ity and a Gnite entropy jump. These results suggest that
the main factor determining the PT with proton ordering
is rather the ice rule than the dimension of the H-bond
net of the considered system.

For real three-dimensional crystals, e.g. , the ferro-
electrics KH2PO4 and PbHPO4, tunneling of the pro-
tons through a barrier between the two minima is very
important, because the tunneling constant I is of the
same order of magnitude as the energies z inducing the
PT. ' ' Therefore investigation of the influence of pro-
ton tunneling on the thermodynamics of the PT should
be of great interest. This paper considers this problem
for one-dimensional systems.

In Sec. II we formulate the Hamiltonian of our one-
dimensional model. Because an exact solution of this
model is not known, in Sec. III we develop a secu-
lar perturbation theory with a small parameter I'/io.
The second order of this theory provides us with the
secular Hamiltonian for the one-dimensional six-vertex
model with tunneling. This Hamiltonian accounts ex-
actly for the influence of proton tunneling on the con-
figurations obeying the ice rule. Finally, we obtain the
secular Hamiltonian corresponding to the Nagle model
with I' g 0. In the last section we analyze the influ-
ence of tunneling on the PT thermodynamics using the
approximation of Nagle, i.e. , neglecting all the terms of
order of exp( —io/T).
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II. THE HAMILTONIAN
n
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(2)

We investigate the one-dimensional chain with N ver-

tices bonded by double H bonds as depicted in Fig. 1.
It is assumed that the proton on each of the H bonds
is localized either in the left (L) or right (R) potential
well. Correspondingly, the bond can be found in one of
the two states shown in Fig. 2. We can also describe the
states of the H bond with the localized proton by assign-
ing arrows or Ising spin variables 0' = +1 to each of
the H bonds. Consequently, the enumeration of proton
sites on H bonds (Fig. 2) corresponds to the 4~ different
arrangements of arrows on the 2N bonds.

Let us consider a site with four adjoining H bonds (ver-
tex). Depending on the different arrangements of the
protons on the four adjoining H bonds, 2 types of ver-
tices, presented in Fig. 3, can be obtained. These vertices
can be divided into seven symmetry classes, hereafter de-
noted by roman numerals, under the action of the group
G = (e, o i, o 2, o i cr2 j generated by the reHections o i
and 02 along the vertical and horizontal axes crossing
the site. Only six vertices, belonging to classes I, II, and
III, obey the ice rule. Our model is based on the fol-
lowing assumptions: (1) the configuration energy of the
system, depicted in Fig. 1, is a sum of the configuration
energies of all its vertices; (2) the configuration energies
of vertices, belonging to the same symmetry class, are
equal; (3) the configuration energy of a vertex is the sum
of the energies of the protons and vacancies, localized on
the adjoining H bonds and coupled with each other by
pairwise interactions. These conditions completely deter-
mine the Ising Hamiltonian, which describes the energies
of system configurations, and has the form

0' =+1

FIG. 2. Two states of a proton on the H bond, correspond-
ing directions of the arrows, and values of the Ising variable.

1 1
Vl (Wl + W3)r V2 (Wl + W2)r

4 2

1
V3 ———(lU2 + W3),

4

(4)

which relate the parameters v; to the configuration ener-
gies m; belonging to symmetry classes I, II, and III, and
obeying the ice rule. The configuration energies of the
charged classes IV—VII can be expressed as follows:

w4 = ws = 0, ws = wy = —(wl + w2 + w3).

In model (1) the separation of neutral and charged ver-
tices can be performed by introducing the new variables
m, e1, and c2 in the following way:

tU1 = —QJ) Ql2 = —GJ + E'1) 6)3 = —tU + E'2)

w4 =ws =0, ws =w7 =3w —(El+F2). (6)

~1 — &2) ~2 —&1 2) 6)3 = 0.

The separation is described by the condition
~s2~ && w. At w/T ~ oo the set of neutral vertices forms
an autonomous thermodynamic subsystem. Then only
the difference in energies (6) has a physical meaning, and
one can choose arbitrarily the value of m. Taking m = c2,
we obtain the parameters of the generalized Nagle model
in the form

Here 'Rp(i) is the configuration energy of the vertex
formed by a site bonding of ith and (i + 1)th pair of
H bonds. The Pauli matrices 0,'. 1 and o.,'-2 depict the lo-
calization of protons on the H bond. The Ri(i) is the
energy of the proton tunneling of the ith pair of the H
bond. According to the enumeration of H bonds by spins,
introduced in Fig. 2, the following equations can be ob-
tained:

IV

V

IV IV IV

1I 1 r 1r lF3XXK 2K VI VII

FIG. 1. One-dimensional chain with N vertices bonded by
double H bonds.

FIG. 3. Sixteen types of the vertices divided into the seven
classes of symmetry.
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The Nagle model is obtained from (7) at zi ——0 and
c2 ———c ( O. I.e., in that model the vertices of class III
have the lowest energy. The erst-order PT to the low-
temperature ferroelectric phase occurs at T, = s/In 2.
This transition is related to the particular topology of
the one-dimensional six-vertex model, i.e., a transition
from the ground (ferroelectric) state to any of the ex-
cited states cannot occur without the violation of the ice
rule by changing the configurations of a finite number of
vertices. Consideration of the states with energies of or-
der m, violating the ice rule, restores the one-dimensional
character of the model and leads to smearing of the PT
at T, = s/ln2. Outside of the approximation of Nagle
(ur )) T, ) the thermodynamic functions have anomaliesip
in the vicinity of T„and the terms of order exp( —ip/T)
have to be taken into account to describe those anoma-
lies. But at exp( —ip/T) 0 the region of the PT shrinks
to a point, and the Nagle model roughly describes the
anomalies.

Below we investigate the in8uence of the tunneling on
the thermodynamics of the one-dimensional model (1) for
the case

1~ii«~ ls21«~, r«m, exp( m/T) —0. (8)

The last condition corresponds to the approximation of
Nagle in our problem.

III. THE SECULAR HAMILTONIAN

A. Zeroth order

If conditions (8) are satisfied, the main contribution
to the thermodynamic properties of the system is due to
configurations with neutral vertices. In this case proton
tunneling leads to a rearrangement of the system of 2+2~
eigenvalues of 'Ro, which is described in terms of secular
Hamiltonians. We assume that the Hamiltonian 'Ro has
the set of quasidegenerate eigenvalues E, (i = 1, 2, . . .,

M), and this set is separated from the other eigenvalues

I

of Ho by a gap which is considerably larger than the
perturbation, described by Q1. In the general case, linear
spaces of eigenfunctions of Ho correspond to each E, . Let
us introduce the projection operators on these spaces, P, ,

and define P and Q as

M

P f'XP P/ hq

Taking into account the terms including the second order
of perturbation, the secular Hamiltonian in P space has
the form

H = PHOP+ P'H1P+ ~g,

Q

+P*
I
&i

( q
E, —'Rp

(10)

Introducing the projection operators P~ and Pl„acting
on the one-dimensional subspaces I and R, and the oper-
ator PI, acting on the 2 -dimensional space, created by
the N pairs of bonds, depicted in Fig. 4, we can describe
the projection of 'Rp on the P space from (10) as

In our case P is the projection operator on the linear
space created by the set of 2 + 2 eigenfunctions of
Rp which correspond to the neutral vertices. Then Q
projects on the eigenfunctions for which the ice rule is
violated at one vertex at least.

The basis of P space consists of the states of the sys-
tem of neutral vertices. Two states, L and R, depicted in
Fig. 4(a), are polarized contrary to the remaining, nonpo-
larized states. These can be distinguished by the two di-
rections of arrows on N pairs of H bonds, as in Fig. 4(b),
which may be related to the spin variable ~,' so that the
energies of the four vertices in classes I and II are de-
scribed by the Hamiltonian

1
H(x) = —(ipi —ip2)~,' ~,'+, + —(uri + u)2).

PApP = N(s2 —u))(PI, ~~PR) ~~PI ——ci) ~,' r,'+, —N
l

ip ——si
l

PI,
)

(12)

where

p p /' hp /hpkJ zkJ
Now we can directly obtain the partition function for P'RpP from (12). At si ) 0 we have

(p) r'N(ip —s2) l - N
Z~ ——exp

l
2+ exp

I l
1+ exp

) T ) T (14)

It is evident from (12) that the energy Nf, where

—&2)

E1 —8'2, E1 ( 0)

when @ ) 0, is the width of the gap between the low-

energy ordered states I and R, and the 2 disordered
states of the PI space. If the gap does exist, i.e., @ ) 0,
then the equation

exp ——= 1+ exp
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L:
&L = &( —1*) Pit = &(1')

(18)

R:

I/

XK 2E
(a)

Let us define the operators SP (~ = +1) acting on the
four-dimensional linear space of the functions (16)

(19)

r =+&

FIG. 4. Polarized states of a system of the neutral vertices

(a) and corresponding eigenvalues of the spin operators v,
*

(b).

where 9+ are the spin flip operators in the two-
dimensional space of spinors g . Using (19), we define

the operators S,+. that change the direction of arrows

from left to right and vice versa [see Fig. 5(a), where
the index i = 1, 2, . . ., N is omitted for simplicity]. The
index r = +1 is the eigenvalue of the Pauli matrix w

corresponding to the particular direction of arrows [see
Fig. 4(b)]. Now all the 2~ basis functions (17), which
belong to the excited configurations obeying the ice rule,
can be written in terms of S,+ acting on PL, . The per-

turbation operator 'Ri (3) can be expressed as

has a unique solution T,. At e1 ——0 and e2 ———e & 0,
we obtain the result of Nagleio T, = s/ln2. The first
cause of the PT is the macroscopic nature of the gap 1VQ

and the exponential number (2N in the case of Nagle)
of disordered states above this gap. The second cause
is related to the approximation of Nagle, for which all
charged excited states of Q space with excitation energies
of the order of m are neglected. It is those states, located
inside the gap, that smear the PT.

The complete linear space of 'Rp + 'Ri has as its basis
the eigenfunctions of 'Ro, which correspond to the 4
arrangements of arrows on the H bonds (see Fig. 1). Let

be the eigenfunctions of S', corresponding to spin
1/2: S'@ = (o/2)g, o = kl. Then there is a one-
to-one correspondence between each pair of H bonds and
the vectors

SI+ S+I =0

S+ =0 S+,

(a)

2
'

It follows from Fig. 5(a) that 'Ri, acting on each of the

r
2

The vectors @(o') form a basis of a complex four-
dimensional linear space. Each of the 4 arrange-
ments of arrows on the H bonds is described by a set
(O.i, o2, . . . , tT~). Every member of this set is in a one-to-
one correspondence with a function

(17)

p2 (1+p;}

r2= —, {&+'p}

(c)

These functions are the eigenfunctions of Qp. They form
an orthogonal basis of a 4 -dimensional complex linear
space for all the operators considered. For example, the
configurations L and R correspond to the functions of
the basis (17) of the form

p p.

FIG. 5. Action of the operators (a) S+, (b) 'R(i), (c) 'R (i),
and (d) 'P, on the direction of an arrow.
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2 + 2 functions of the P space, transforms them either
to zero or to functions of the Q space. As a consequence, w. (r) ='- ) (s, .+s;.)

H1 = P'R1P = 0. (21)

B. Second order

To calculate Hz (10), we use expansion (13) and basis
(17) in the 2~-dimensional Pi subspace. Now only the
sum of the diagonal terms p2

PIH2PI ——— ) (r,*+1) . (24)

on the PI states can be depicted as a fiipping of the
arrows which correspond to the ith pair of the H bond
[see Figs. 5(b) —5(d)], where P, is the spin-flip operator.
'P,. can be expressed in terms of the Pauli matrices as
'P, = r,*. Using Fig. 5(c), Eq. (23) is rewritten as

H2 = PI H2PI 4p HL PL 4JPRi X (22)
From the definition of Hl, and (10) we obtain

is not equal to zero. We took into account in (22) that
PLH2PL ——HLPL, PRH2PR ——HRPR, and HL ——HR
due to the one-dimensionality of PL and PR. Then, for
c1)0,

2 2
PIHzPI = — PI (Ai—Q'Ri) PI = ——) Pl'8 (i)PI.

(23)

In deriving (23) the relations 'Ri(i)Q'Ri(j) = 0, fori g j,
and PI ('RiQ'Ri) PI = PI'Ri PI, as well as the condition
c1 « m, were taken into account. The action of

p2
HI. = (4L, IH21&L) = —&

Substitution of (24) into (22) leads to the expression

Hr = —&—I'r
l

—) ri'+ r I'r
r & pRr &pr)

/1
(N

(25)

Assembling (12), (21), and (25), we obtain the secular
Hamiltonian in the form

H = HP+H1+H2

rx r'
PI si r' 'r' ri +

l
s2 si

l
PI 0' PR Pir + =+irU s2i i+i a ( 2 ) i J

i=1 i=1
(26)

The last term in (26), proportional to P, defines the position of the P levels. The second bracket of the direct sum
is related to the polarized states $1, and PR, which do not mix with those of PI type. Nevertheless, the energy gap
between PL„PR, and PI states changes due to the tunneling. To analyze this effect, we consider the particular case
of this model at si ——0, sz —— s& 0, a—nd I' g 0. Then the secular Hamiltonian (26) has the form

N p2
H~ = PI ——) 7;*+X~ PI ~+~+0 PR ~+~PL, —X

QJ
+m+~ P. (27)

The lower boundary of the energy spectrum of the first
term corresponds to w,

* = +1 and is equal (per site) to
the value of the energy gap between the PI„PR, and the
PI states

the Nagle model with tunneling (sz ———s & 0, I' g 0),
those with r1 ——0 and c1 ) 0.

A. e& ——0
g = e(1 —b), (28)

where b = I' /@AU. The gap decreases with increasing I'
and disappears at b = 1. The same is true for si g 0.

The partition function for the Hamiltonian (27) is ex-
pressed as

Z~ = 2+ f(z), f(z) = 2exp( —z) cosh(bz), (29)

IV. THE NAGLE MODEL WITH TUNNELING

All contributions of the Q states to the partition
function are neglected in the approximation of Nagle
[exp( —m/T) = 0]. The thermodynamics is defined by
the secular Hamiltonian (26). We consider two cases of

where z = e/T. The thermodyn'amic behavior differs in
the regions with (0 & 8 & 1) or without (1 & b & oo)
a gap (28). In the first case, the function f(z) decreases
monotonically from f (0) = 2 to f (oo) = 0. Therefore the
equation f(z) = 1 has a unique solution z, = e/T, The.
free energy per site is
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(—T/N) ln2, T & T„
T—ln f(z), T & T, . (3o)

1 dq
g(0) = —si —s2 — —s(q).

2 2K
(36)

At T = T„a first-order PT occurs with the entropy
jump (per site) ES = z, [1 —btanh(bz, )]. An increase
of the tunneling parameter I' leads to a decrease of the
gap (28) and of the transition temperature T, . When

p = (1 —b) ~ 0, the temperature T, and the entropy
jump b, S tend to zero as 2s/ln(1/p) and (p/2) ln(1/p),
respectively.

In the case with no gap, we obtain f (z) ) exp[—z(1—
h)] in the interval 0 & z & oo. Then the equation
f(z) = 1 has no solutions, and the main contribution
to the partition function is given by the second term of
(29). The thermodynamics is determined by the behav-
ior of &ee Ising spins in the field h = F2/ip = hs. In
this case the tunneling completely destroys the singular
behavior of the thermodynamic functions characteristic
of the Nagle model with I' = 0.

B. eg &0

A comparison of (36) to (26) shows that

N4(0) ) 0 (37)

p(TI = (T/N)lcZ —=
( ~

'
~ ~" ($8)

The entropy jump is expressed as

is the energy gap. Therefore, the inequality (37) is the
condition of existence for the gap. For c1 ——0, c2 ———c &
0, h = I'2/ip, we get expression (28) from (36) directly.

Consider the thermodynamics of the system when con-
dition (37) is valid. It follows from (35) that, with the
decrease of T from infinity to zero, the function Q(T)
increases monotonously from Q(oo) = —oo to Q(0) ) 0.
Thus, if condition (37) is valid, the equation g(T) = 0
has a unique solution T, g 0, where T, is the tempera-
ture of the first-order PT. The &ee energy per site has
the form

The partition function for the Hamiltonian (26) has
the form

N ( 1X=2+exp —
~

sz ——si
~).

dq r 2s(q) )
AS = —ln 1+exp ~—2' g T, )

+T, —1 —tanh (39)

where Zh is the partition function of the one-dimensional
Ising model in a transverse field 6 with the Hamiltonian

N N

Hg = —J) ~,' ~,'~i —h) (32)

where J = si/2 and h = I'2/ip. The Hamiltonian (32)
was diagonalized by Lieb et al. The partition function
1S

When the energy gap (36) disappears (Q(0) & 0), then
the free energy per site is y(T) = Q(T). Because Q(T) is
an analytic function of T, the thermodynamic functions
have no singularities.

Let us investigate the influence of I' on the behavior of
T, and g(0) at si & 0. From (34) and (35) we obtain

1 dq(
cP(0) = c ——cc —

~
gl+ 2cccsq+ cc —l),2x &

Nys(T) l
Za = exp

)
2I'

& 0.

where

dq
V'~(T) = — —s(q)2'

dq ( 2s(q) lT —ln 1+—exp ~—
2ir ( T )

(34)

the free energy per spin, and c(q)
= gJ2 + 2Jh cos q + h2. Substitution of (33) into (31)
yields

t' Ng(T) l

I.e., with the increase of z &om zero to infinity, the
free energy g(0) decreases monotonously from s to —oo.
Therefore the equation g(0) = 0 has the unique solution
xp = zp(y), where y = si/2s, which defines the critical
value of the tunneling constant I'zp(y) = curyxp(y). The
energy gap Ng(0) vanishes at I = I'p(y). The depen-
dence of bp ——I'p(y)/sip on y is depicted in Fig. 6. In
Fig. 7 the dependence of T on b is shown, together with
the cluster approximation results for K(H Di )PO4
crystals. '

1
Q(T) = —si —s2 + (ph (T).

2
(35)

The thermodynamic behavior of the Nagle model with
tunneling is determined by the behavior of the &ee energy
of this model at zero temperature

V. CONCLUSIONS

In the approximation of Nagle [exp ( w/T) = 0] only-
the thermodynamic contribution &om the 2+ 2 states,
for which the ice rule is valid, is taken into account. Of
these states, 2 states are related to the disordered phase
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