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Symmetry-breaking transition in a two-level system coupled to an Ohmic bath:
A squeezed-state approach
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Displaced squeezed states are proposed as variational ground states for phonons (Bose fields) coupled
to two-level systems (spin systems). We have investigated the zero-temperature phase diagram for the
localization-delocalization transition of a tunneling particle interacting with an Ohmic heat bath. Our
results are compared with known existing approximate treatments. A modified phase diagram using the
displaced squeezed state is presented.

Introduction. Quantum-mechanical-tunneling systems
(e.g., two-level systems) subject to many-particle interac-
tions (e.g., when interacting with their surroundings)
have been studied in various branches of condensed-
matter physics and it still continues to attract a great deal
of attention. ' These studies include the relaxation and
tunneling of atoms or groups of atoms in glasses ' which
plays an important role in the low-temperature proper-
ties, defect motions in alkali halides, charged-particle
motion in metals, ' and molecular transitions in liquids.
Pfeifer has explained the existence of chiral molecules by
a superselection rule which originates from the ever-
present coupling of the molecule to the radiation fiel.
Here the two states are nothing but the left-handed and
right-handed configurations of molecules. In recent years
these models have been applied extensively to the macro-
scopic quantum tunneling of quantized magnetic Aux

through superconducting quantum interference devices.
In all of these systems it is now well established that the
coupling of phonons to a tunneling system causes the tun-
neling motion to occur less frequently, i.e., it reduces the
effective tunneling matrix element, sometimes termed the
Debye-Wailer factor. This reduction stems from the or-
thogonal properties of many-particle wave functions with
different local potentials and is known as the Anderson
orthogonality theorem. '

Hamiltonian. In this paper we confine ourselves to the
study of the ground-state properties of a two-level system
coupled to a phonon bath. The Ohmic dissipation case
has been considered here. We examine a model in which
the particle is tunneling between two equivalent minima.
Such a model can be represented by a two-level system
coupled linearly to a phonon coordinate. The Hamiltoni-
an for the system takes the form (A= 1)

~0( C 1C2 +C2C1 ) +g~k bk bk
k

+ggk(C, Ct —C2C2)(bk+bk) . (2.1)
k

The coefficient ho( )0) in (2.1) represents the bare tunnel-
ing matrix element, gk the coupling constant, and cok the
phonon frequency. C; and C; with i =1,2 are the annihi-
lation and creation operators for the tunneling particle to

be at position i; bk and bk are the annihilation and
creation operators representing the phonon mode. Since
we are dealing with a single tunneling particle here it
does not matter whether it is a boson or a fermion. Al-
though the Hamiltonian (2.1) itself is quite general, we re-
strict ourselves to an Ohmic dissipative bath, i.e., one for
which the spectral density S(co) is assumed to be propor-
tional to the excitation energy, '

S(co)=ggk5(to —cok)= —,'aco, for co~0,
k

(2.2)

where a is the dimensionless dissipation parameter.
Using the renormalization-group procedure it has been

shown' that for the Ohmic dissipation case at zero tem-
perature, a tunneling particle undergoes a sharp transi-
tion from a delocalized state to a localized state as the
dissipation parameter a is monotonically increased. This
is a symmetry-breaking transition. This localization
phenomenon is associated with the infrared divergence
induced by low-energy phonons, i.e., the phonon field
keeps the particle localized at the expense of generating
an infinite number of low-energy phonons. It has also
been shown that when the tunneling matrix element 60 is
small compared to the upper phonon cutoff frequency m„
the effective tunneling matrix element is given by'
b.,tt=b, o(2eb, olto, )

" '. At a= 1 there is a transition
to a localized state. The renormalization-group results
have been obtained based mainly on the assumption of a
dilute instanton gas or the dilute Rip-gas approximation.
In recent studies on dissipative quantum tunneling out of
metastable states it has been shown that this approxima-
tion breaks down due to the condensation of the instan-
ton gas. "

It has been rigorously shown that the ground-state
properties of two-level systems coupled to Ohmic baths
can be mapped onto the one-dimensional Ising model
with a 1/r interaction. ' ' In particular the
delocalization-localization transition is related to the ex-
istence of a ferromagnetic phase transition. In the Ising
case it is known that the spontaneous magnetization
jumps at the critical point. However, since the correla-
tion length diverges, the transition is not first order. On
translating this observation back to the two-level system
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we should expect a discontinuous jump in the effective
tunneling matrix element at the critical value of a=a, .
Moreover, provided that g(gk} is finite, in the limit
60~0, a, is bounded between 1 and 2 and a, increases,
as ho increases, i.e., a, is a monotonic function of ho.
However no such discontinuous behavior has been shown
in theoretical studies on two-level systems. Silbey and
Harris' and independently Tanaka and Sakurai' have
succeeded in rederiving the renormalization-group results
by a simple variational procedure which amounts to a
kind of mean-field theory.

Variational waue functions Le.t us initially consider
the simplest case when 50=0, i.e., when the system is just
an oscillator. Since the net effect of the tunneling system
being in one of the two levels amounts to the oscillator
being displaced in a particular direction (and the effect of
it occupying the other level results in the oscillator get-
ting displaced in the opposite direction), the ground state
of the many-boson system can be represented by a prod-
uct of independent wave functions of displaced oscillators
as

2

P, =g exp —— exp (
—1)' bk .l0), i =1,2 .1 gk;gk

2 Cok Cok

(3.1)

Here l0) represents the vacuum state. This wave func-
tion is localized. In the other case when the coupling
constant gk =0 (i.e., when the tunneling system and the
phonon modes are decoupled} the eigenstates of the tun-
neling particle are given by the symmetric and antisym-
metric combinations of the two-level states, the sym-
metric combination being the ground state. These two
cases show that in general (for arbitrary parameters) the
system exhibits a competition between the localization re-
sulting from the phonon mode and the delocalization due
to the tunneling. Motivated by these facts Tanaka and
Sakurai' and independently Silbey and Harris' have
constructed a variational wave function for the ground
state of the coupled system, namely

1
% (uk ) = +exp( —

—,
'

1 uk I }exp( ukbk )Ci-
%

++exp( —
—,
'

I uk I }exp(akbk }C2

(3.2)

where uk is a set of variational parameters. For a choice
of uk = —gk/cok, (3.2) describes a linear combination of
two degenerate ground states.

It should be noted that when a particle tunnels from
one state to another it has two distinct effects on the pho-
non wave function; one is that of displacement and the
other is of deformation. High-frequency phonons (o» b.o)
follow the tunneling particle adiabatically. Hence the
displaced-phonon approximation gives the correct result.
However, in the case of low-frequency phonons nonadia-
batic effects dominate, which in turn (apart from dis-
placement) produce strong deformations in the phonon
wave function. The variational wave function in Eq. (3.2)

treats the displacement effect in the wave function
correctly but completely ignores the deformation aspect.
To include the phonon wave-function deformation
effects, Chen and co-workers proposed a displaced
squeezed variational wave function'

2
1 1 gkq'(rk} ' +expV2 k 2 Cdk

Xexpl Yk(—bkbk bkb—k }]C'
2

1 gk++exp
2 COk

gk
k

Cok
exp

Nk
exp bk

COk

Xexp[ y„(—b„b„btbt—)]Ct 'l0),

(3.3)

where yk is a variational parameter. When the parame-
ter yk takes a finite nonzero value then the corresponding
phonon state (or a two-photon or two-boson state) is
squeezed. ' ' The squeezed state represents a nonclassi-
cal state which has an uncertainty less than that of the
coherent state in one of the quadrature phases. More-
over, the uncertainty product of the two quadrature
phase Huctuations (variances} takes on a minimum value
given by the Heisenberg uncertainty relation. For a finite
nonzero yk the uncertainty in one of its quadrature com-
ponents is given by exp( —yk)/2 and in the other by
exp(yk)/2, which means that one of the quadrature
phases is squeezed at the expense of the other.

The variational wave function given in Eq. (3.3) is
found to be more stable (i.e., energetically favorable}
when compared to the variational wave function in Eq.
(3.2). For an Ohmic bath gk can take either of the forms
(i) gk =fiV to, rok or (ii) g„=%co,+to, /cok The.
delocalization-localization transition is predicted to occur
at a value of a, =2 in case (i) and a, =4 in case (ii), re-
spectively. ' ' When (b,o/co, ) «1, the expressions for
the effective tunneling matrix elements are

(g /~ )a/(a —2) and g (g / }a/(a —4)

gk =Qcok and gk = I /Qtok, respectively In both . these
cases co, is the upper cutoff frequency of the boson excita-
tions. a is the exponent of the overlap integral of the
wave functions of the tunneling particle centered at two
different sites. It appears as a reduction factor in the ex-
pression for h,z. Since the width of the displaced
squeezed phonon state is much larger than the width of
the displaced-phonon state, the value of h,z is enhanced
(favoring tunneling) and this in turn contributes to the
enhancement of a, beyond unity.

Although the variationa1 wave function in Eq. (3.3)
treats the deformation part of the phonon wave function
correctly, it also assumes at the same time that phonons
of all frequencies are displaced by an amount proportion-
al to gk/cok. This is true only for high-frequency pho-
nons, i.e., gk/cok &1, while for low-frequency phonons
this assumption breaks down. Hence to account for this
fact we propose the following variational wave function '
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1~("k &k) = ~ . IIexP[ —
l ~&k ~'] e»[ —&kbk]exP[ —)'k(bkbk —bkbk)]C

k

+II exp[ —
—,'~~k~'lexpl~kbk]exp[ —}k(bkbk —bkbk}]C2 ~» (3.4)

X exp( —4y k ) + cok )

e "=1+(8boexp[ —2uk[exp( —4yk)j]} . (3.6)

We identify the factor multiplying the tunneling matrix
element b,o as the tunneling reduction factor (or Debye-
Waller factor) Z, which is given by the expression

Z=expg{ —2u„exp( —4yk)J .
k

The reduction factor Z has to be evaluated self-
consistently using Eq. (3.6). In our analysis we restrict
ourselves to the case of Ohmic dissipation, ' for which

Qgkf (~k }=f ggk5(~ ~k )f(~)d~
k

=—f cof(co)den . (3.7)
2 0

This can be used in evaluating summations of arbitrary
functions f(cok) over many modes multiplied by the
square of the coupling constant gk. co, is the upper cutoff
frequency of the boson excitations. The proportionality
constant a is of the second order in the coupling constant
gk and also reflects the density of low-energy excitations.
Here o,'is a dimensionless coupling constant representing
the strength of Ohmic dissipation. In our treatment the
effective tunneling parameter Z is very sensitive to the
frequency dependence of the coupling constant gk. ' To
this end we restrict ourselves to the two special cases re-
ferred to earlier, viz. :

(i) gk =fin), (COk/CO, )'
(3.8)

(11) gk —%CO~(CO~ /COk )

where yk and uk are both treated as variational parame-
ters. This variational wave function ' has a ground-state
energy that is lower than the ones obtained by using the
wave functions in Eqs. (3.2) and (3.3). By setting the vari-
ational parameter yk =0 in Eq. (3.4} we can recover Eq.
(3.2). Similarly by setting the variational parameter uk

equal to a constant (i.e., equal to —
gk /cok ), we can recov-

er Eq. (3.3). Using the properties of squeezed states and
Bose operators' ' we can readily evaluate the expecta-
tion value of the total ground-state energy. Using the
Hamiltonian in Eq. (2.1) and the variational wave func-
tion in Eq. (3.4) we obtain '

E("k Xk)= b,oexpg[( —2u„)exp( —yk)]
k

+grok[uk+(sinh2yk) ]++2gkuk . (3.5)
k k

The variational conditions BE/Buk =0 and BE/Byk =0,
determine the variational parameters, namely,

uk = —gk(2boexp[ —2u„[exp( —4@k )]]

Numerical studies. In this section we outline the nu-
merical technique used to investigate the behavior of the
reduction factor Z as a function of the parameter a and
the bare tunneling matrix element hp. The effective or re-
normalized tunneling parameter is given by the expres-
sion h,z=bpZ. For a displaced squeezed state this can
be rewritten as

lnZ = —0.
xE'

2
dX

o (2bZI'+x)
(4.2)

where x =~/co„k=kp/N„and %=1. In the process of
evaluating the summation in (4.1), the variational param--4r, .
eter e ' is replaced by the variable I. An iterative
scheme may now be employed to calculate ln Z in a self-
consistent manner.

For case (i) mentioned above we have chosen

gk =+toke@, . Using (3.6), which determines the varia-
tional parameters, and making the identifications

4&A
uk ~V„, e ~A„, we arrive at the set of self-consistent
equations

A„=(1+8bZV„)
2b,ZA „)+x (4.3)

These may be iterated and then finally integrated to yield

lnZ„= —0;
n

dx
o (2bZA„+x)

(4.4)

with the initial conditions AD= 1 and VO=O. The corre-
sponding self-consistent set of equations for case (ii) are

1

25ZA„, +xA„ X V =—
Qx +86,ZV„

(4.5)
Qx +86ZV„

lnZ„= —a J„dx,
(2hZ++x +86,ZV )

with initial conditions identical to those for case (i). The
criterion used to decide the order up to which the self-
consistent set of equations should be iterated is deter-
mined by demanding that ln(Z„+, /Z„}&& 10

Results and conclusions. For a given value of 4 ex-
pressed as a function of a we have observed that the
efFective tunneling parameter Z decreases monotonically
and at a particular critical value of a=a, (depending on
b, ) Z drops to zero discontinuously. The value of a,
signifies the transition from a delocalized state (tunneling
state) to a localized state (broken symmetry state). For

in', ,&=in', o
—g[2gke "(250Ze "+cok ) ] . (4.1)

k

Using Eq. (37) ln Z is evaluated to be
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FIG. 1. Phase diagram for the delocalization-localization
transition in a two-level system coupled to an Ohmic bath for
case (i) where gq =V coq.

FIG. 2. Phase diagram for the delocalization-localization
transition in a two-level system coupled to an Ohmic bath for
case (ii) where gi, = 1/V'coi, .

the case (i) Fig. 1 shows the phase boundary between the
localized and delocalized states for various values of h.
It should be noted that in the limit 6~0+, the phase
boundary is located at a value of a, =l and increases
monotonically as a function of b, . Our results for the
phase boundary are quite different from the results ob-
tained earlier. The results based on variational wave
functions (3.2) and (3.3) predict the phase boundary, as
b, ~0+, at values of a, =1 and 2, respectively. In these
cases, for small values of 5, a, (h) is independent of 6
and the transition is continuous, in the sense that there is
no discontinuity in Z across the phase boundary. We
have observed discontinuous jumps in Z across the phase
boundary for all values of b, . This fact has not been ob-
served in earlier studies. However, the magnitude of the
discontinuity decreases monotonically to zero as we ap-
proach 6~0+. Our results are consistent with the
known results on the discontinuous nature of this transi-
tion. ' ' Figure 2 shows the phase boundary for case (ii).
Here again our results are different from those obtained

earlier. Variational wave functions (3.2) and (3.3) predict
a, = 1 and 4, respectively, for 6~0+. For case (ii) we
find that a, =2 as 6~0+.

In summary, we have obtained through a displaced-
squeezed state variational wave-function treatment the
phase boundary of the symmetry breaking transition in a
two-level system coupled to boson excitations. For the
Ohmic case we have shown that the nature of the phase
boundary depends very crucially on the frequency depen-
dence of gk. In our treatment we have restricted our-
selves to two specific cases, namely gk

—grok and

gk = 1/+co„. It would be interesting to study the tunnel-

ing reduction (or efFective mass) factor in other physically
relevant systems. In such cases one would have to choose
the proper spectral function. This would include the
sub-Ohmic and super-Ohmic frequency spectrums. '
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