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Long-time dynamics of the infinite-temperature Heisenberg magnet
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Infinite-temperature long-time dynamics of Heisenberg model H = ——g . . J,iS, . Si is investi-
gated. It is shown that the quantum-spin pair correlator is equal to the correlator of a classically
evaluated vector field averaged over the initial conditions with respect to the Gaussian measure. In
the continuous limit case, the scaling estimations allow one to 6nd the one-point correlator that
turns out to be C(r = 0; t) oc const x t t All re.sults are obtained by straightforward procedures
without any assumptions of a phenomenological character.

INTRODUCTION

Because of the boundedness of the spin operators the
problem of infinite-temperature dynamics of quantum
Heisenberg model is well defined. For the equilibrium
case it reduces to the computation of correlators as fol-
lows:

C 6(r; t) = Tr[exp(itH)S; exp( —itH)S6].

Here H is the Heisenberg exchange Hamiltonian

H = --) J;,S;.S, , (2)

S; is the o.th spin operator component on the lattice site
i, and r = r, —r~ is the distance between lattice sites
i and j. The thermodynamic limit case (P, 1 = oo) is

supposed.
For fixed r and t i 0 the correlator C ~ = 8 l C(r; t)

can be calculated by the direct temporal expansion of the
evolution operator exp(itH) (see the initial papers, i s

the review of the results obtained by this approach in
the work, 4 and the more recent paper ). Attempts to
investigate the long-time dynamics starting from expres-
sion (1) have been done by a number of authors. ' The
main tool used in these papers was the correlator decou-

pling method. However, it can only work in the case when
the dynamics consists mainly of well-defined propagating
excitations, but this is not correct in our case and may
lead wrongly to obtain whatever is supposed. So, the
most popular theory of such a so-called spin-diffusion
theory ' gives the spin autocorrelation function in the
form C(t) oc t

In Ref. 9 the functional integral representation for (1)
has been derived. The small time t but large r t limit
has been calculated with the use of this representation.
In the present paper we show that under some controlled
assumptions it is possible to extend this approach to a
long-time limit case (Jt )) 1) . The problem reduces to
the averaging of some classical equation over initial con-
ditions [see Eqs. (27)—(29)]. In the continious-limit case
scaling estimates allow one to find a one-point correlator
(see the last section) which turns out to be

C(t) oc const x t

and to prove the validity of our approximation at large
enough time.

PUNCTIONAI REPRESENTATION

We start from the Hubbard-Stratonovich transforma-
tions of the generating functional of the spin correlators

Q[h] = Tr T, exp
~

i dt(H+h, . S;)
~

= N D~ i D~ 2 exp —) ttt'~, .(t')J. .i~.(t')

T, exp
~

i dt'[~, (t') + h, (t')] S, ~, (4)

where % is a normalization factor. Here, T indicates the ordering of operators along the contour c in the t plane and
consists of two oppositely directed branches that pass in the vicinity of real axes. h, (t) is the auxiliary external
field. The indices 1, 2 of the vector-valued fields indicate the upper and the lower branch of the c contour, respectively.
If we define the external field as
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then the correlator (1) is

h,'" = a, h(t) + b, 8(t —T),

h,". = —a, b(t) —b, h(t —T),

1 0 Q(h)
4@a-ab.~ a=b=0

(5)

(6)

Making the translation ~ ~ rp —h and neglecting the terms which do not contribute to (6) we get the expression

qj) I f ~&(&)D+(&)
'

Tr[A;(—oo, +oo)] exp
I

—) dt'[y (t') J,, 'y, ' (&') —y; (&')J,, 'y,. (&')]
(2

Here the operator A( —oo, t) for a given lattice site is
defined as

Ui(t) = gi S, U, (t) =q, S,

t

A( —oo, t) = T exp
I
i (p,. (t') Sdt'

I

t
xTexp

I

—i ~, (&).Sd&
( . (2) ( "

I )

(1)»n I & I
(&&(") &, »n

I & I
&

+—,X x ~("](1—cos I(l)

and T denotes antichronological ordering. This operator
is determined by the differential equation

. dA( —oo, t)
dt

(2)»n I&l (& &(") &, »n I() I
&

——X & ~"'](1-cos I&l) (14)

t

A(t) = p I
[~"(t') —

) "(t')] S«'
I

(1o)

where p( )(t), p(2)(t) are some new vector fields. Differ-
entiating this equation with respect to time we obtain

. dA( —oo, t) dr exp(irg S)dt

x(p( ) —p )) Sexp[i(1 —r)( S]
= U, (t)A(t) —A(t) U, (t). (11)

Here we introduce notations of the following type:
t

&(t)= «'l~" (t') —P"'(t')]
0

1

Ui(t)= dr exp(ir(. S)p( )S . exp[i(1 —r)( S],
0

1

U2(t) = dr exp(ir(. S)p( ) . S exp[i(l —r)(.S].
0

(12)

Jl

and by the initial condition A( —oo, —oo) = 1. Let us
perform the ansatz (see also Refs. 9 and 10)

and

+oo
Tr[A( —oo, +oo)] = exp g, I

(p( ) —p( ))dt ).
('sin[(S + 1/2)z] )

sin(z/2)
(15)

where S is the spin magnitude. Comparing Eq. (9) with
Eqs. (11)—(14) we conclude that the parametrization

&"(t) = & (t) &"'(t) = &2(t) (16)

(i) (2)
. »n I&i (& &) I&,

»n I&I &

I&l )

I&l »n I&I

gives the explicit form of Eq. (15) for Tr[A( —oo, +oo)].
It is more convenient to rewrite equalities (14) in terms
of the Q, g fields:

~()+~()

Noting that the operator of the spin rotations appears in
the integrands of (13), we get immediately (17)
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We can consider Q, g as the new integration variables in
Eq. (7) . This allows us to write down an explicit func-
tional representation for the generating functional Q[h].
Let us note that the essential difference with Ref. 9 is
that the transformations (17) are nonlinear only in the
subspace of field configurations. Indeed, one of the new
integration variables, the field vP, is connected with the
old integration variables y~ ~ and g~ ~ linearly. The Ja-
cobian of transformation (18) has the "ultralocal" form

J = const x 1+ —tan f/)/2 (

6 (2 tan )Q)/2

).
(20)

g( —oo) = 0,

where

t

0 = P'"+P"', (,
' = [P"'(t') —~'"(t')]«' (»)

~(i) + ~(2)

V'" —V" = (.'+ —[0 x (,']

J=1.
(22)

(23)

The approximation for Tr[A( —oo, +oo)] is

This assumption is based on some facts. First of al1,
the action does not contain even with respect to g(t)
terms. It leads, in particular, to the zero value of all the
correlators containing field (', (t) at least once. Second, all
physical [not containing the field (,'(t)] correlators must
be close to zero as t goes to oo due to absence of the
spreading excitations at infinite temperature. But in any
case, to check the validity of assumption (21) we have to
estimate the neglected terms (see the last paragraph of
the next section).

Expanding the right-hand side of (17) in a series of
(,'(t) and keeping only the first nontrivial term, we write
down the approximate form of the map (17)—(20)

EFFECTIVE EQUATION OF MOTION

t

IC(t) I

= [~"'(t') —&"'(t')]«' «1 (21)

The effective action that is obtained after the substi-
tution [(15) and (18)] into (7) is rather complicated and
some approximations are necessary. It seems to be rea-
sonable to assume that for the long-time dynamics the
relevant field configurations obey the inequality

( D
Tr[A( —oo, +oo)] = exp

~

——g (+oo) ~,2 i
where D = ~g, (0)~ [see (15)]. Substituting (22) into (7)
and introducing the field ()5 (t),

&' = »v&~ (25)

that directly corresponds to the spin on the lattice site i,
we note that the Dg integration can be easily performed.
The classical equation of motion for the field P averaged
over the "initial" data at the far future is obtained

(, ), . I'.
q(e b) = J Dpexp — ) P;(+ee) —2e;P;(k) 2b'A(0) I

~ 4 ) ~'e(4' Ae'I
2D - * );.; ~, )

(26)

[Fourier-like integration with respect to the field ((t') in
an intermediate time moment gives the b function prod-
uct in Eq. (26), while the Gaussian integration with re-
spect to g(+oo) produces a probability distribution for
()I)(+(x)).] It is important to note that the P2 term defin-

ing the weight of averaging is the integral of motion of
classical equations given in (26). Let us mention that
&om the ergodicity consideration it is natural to obtain
the averaging over the distribution of the motion integral
that is the only nonstochastical variable in the system.
Thus in our approximation the quantum spin correlator
(1) is equal to the correlator of the classically evaluated
vector field P, (t),

with respect to the Gaussian measure

(fpj exp — ) p~ i
~ (29)

SCALING ESTIMATIONS

Here the conservation of the phase space volume element

dP, during the evolution (27) has been taken into ac-
count. Note that Eq. (27) is only the spin-operator equa-

tion of motion with the changing S to the classical eval-
uated field P.

averaged over the initial conditions

(27) It is natural to suppose that the long-time evolution
is determined by the long-wavelength Quctuations. Thus
we can use the continium version of (27),

4'(0) = p.- Q(r; t) = n[A@ x P], (30)
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and (29), Thus the correlator C(r; t) = (K(r; t)) should be invari-

ant with respect to the transformations (33) and (36):

Dp(r) exp
~

— d rp (r) ~

.
)2D

Here D = a D, a is the lattice spacing, and a is defined
in terms of the Fourier transform J(k) of the exchange
integral J;i = J(r; —r~. ) as follows:

J(k) = J(0) —to,„(ak), n = tv,„a / .

C(r; t) = A'C(Ar; A'/'t)

Consequently, it has the form

C(r; t) = t '/7 -f (r/t'/7)

and the one-point correlator is finally

(37)

(38)

Equations (31) and (32) can be studied in principle
with the use of the Wyld diagram technique. ~s However,
all the terms of the perturbation theory suffer &om in-
&ared singularities. On the other hand, in the infrared
region the scaling arguments can work. Indeed, Eq. (30)
is invariant with respect to the following continuous set
of the scale-transformation group:

C(t) = C(r = 0; t) = const x t (39)

To estimate the contribution of the neglected terms let
us return to the functional integral with respect to Q, (
fields from the substitution (22). The suitable action is
invariant with respect to the following scaling transfor-
mation:

r-+ Ar, tm A~i,

Q(r;t) m A~ P(Ar; A~t). (33)

r ~ Ar, t ~ A'/'t, @(r;t) ~ A'/'@(Ar; A'/'t),

((r;t) m A '((Ar; A 't). (40)

Here P is an arbitrary real number. The quantity

K(r;t) = Q(r;t) p(r) (34)

obtained after averaging the desired one-lattice site spin-
spin correlator transforms as

So, we can compute scaling indices for all the correc-
tions to the correlator C(r; t). For the first nontrivial cor-
rection arising &om the nonlinearities of the third-order
nonlinearities in (18) with respect to the small parameter
(21) we obtain

K(r; t) w A (~ K(Ar; A~t). (35)
C(3) (

. t) t —12/7f (1)
( (t2/7) (41)

The requirement for the weight of averaging to be scaling
invariant gives us the unique value of P:

(36)

The invariance (33) means that if some initial conditions

P(r;0) = p(r) transform to A/ 2p(Ar) then for any fur-

ther moment P(r; t) transforms by (33). For P = 7/2 all

points on each orbit generated in the functional phase
space by the scaling group (33) have equal probabilities.

and it can be neglected comparing with Eq. (38) in the
limit t ~ oo and especially for r = Q. Every next or-
der correction to the correlator gives an additional factor
t ~ and does not affect the long-time behavior. Here
we have assumed that the ultraviolet divergencies cannot
affect drastically the long-time behavior.
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