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Numerical and analytical studies of several models of correlated electrons are discussed. Based on ex-
act diagonalization and variational Monte Carlo techniques, we have found indications that the two-
dimensional z-J model superconducts near phase separation in the regime of quarter-filling density, in
agreement with previous results reported by Dagotto and Riera [Phys. Rev. Lett. 70, 682 (1993)]. At this
density the dominant channel is dxz_yz, but a transiton to s-wave superconductivity is observed decreas-

ing the electronic density. In addition, the one-band z-U-¥ model has also been studied using a mean-
field approximation. An interesting region of dxzayz superconductivity near phase separation is ob-

served in the phase diagram, and its implications for recent self-consistent studies of d-wave condensates
in the context of the high-T, cuprates are briefly discussed. Finally, the two-band Hubbard model on a
chain is also analyzed. Superconducting correlations near phase separation exist in this model, as it
occurs in the ¢-J model. Based on these nontrivial examples it is conjectured that electronic models tend
to have superconducting phases in the vicinity of phase separation, and this regime of parameter space
should be explored first when a new model for superconductivity is proposed. Reciprocally, if it is estab-
lished that a model does not phase separate, even in an extended parameter space, then we believe that
its chances of presenting a superconducting phase are considerably reduced.

1. INTRODUCTION

The study of high-temperature superconductors con-
tinues to attract much attention.! On the experimental
side, steady progress is being made in the preparation of
single-crystal samples of high quality for several com-
pounds. The common features of the cuprates are experi-
mentally well established, especially the ‘‘anomalous”
behavior of several observables in the normal state like
the dc resistivity, optical conductivity o(w), Hall
coefficient, and others.? New compounds have been re-
cently discovered with a critical temperature of ~133 K,
increasing our expectations that the cuprates may be-
come technologically relevant in the near future.® On the
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theoretical side, considerable progress has also been
achieved in recent years in the study of models of corre-
lated electrons. Powerful numerical techniques have
shown that some of the anomalous properties of the cu-
prates may be explained by simple one-band Hubbard
and t-J models.*> The midinfrared band of o(w) ob-
served in La, ,Sr,CuO, and other compounds® may be
produced, at least in part, by the spin excitations that
heavily dress the hole carriers.* The temperature depen-
dence of the magnetic susceptibility’ can also be ex-
plained by models of holes moving in a strong antiferro-
magnetic background.® The appearance of states in the
charge-transfer gap upon doping’ can be mimicked using
the one-band Hubbard model.'© Mean-field theories of
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the ¢-J model'! have contributed to the understanding of
the incommensurate peaks observed in La,_,Sr, CuO,,'?
and they are in good agreement with numerical studies of
the same model.!* Unfortunately, other anomalous prop-
erties are still unexplained, like the linear behavior of the
resistivity with temperature, and the pinning of the
chemical potential with doping in some compounds.'*
Nevertheless, the theoretical progress described above
should be considered as an important step towards the
development of a microscopic theory of the high-T,. cu-
prates.

In spite of this progress in the description of normal-
state properties, the presence of superconductivity in the
ground state of models of correlated electrons is still a
subtle and much debated issue. Numerical studies of the
t-J model on large enough lattices have shown that holes
in an antiferromagnetic background tend to form bound
states in the dxz_yz channel.!” Similar results have been

obtained in the context of the one-band Hubbard model
using self-consistent approximations which suggest the
existence of d-wave pairing at very low temperatures. '°
However, no convincing quantum Monte Carlo numeri-
cal evidence has been found that the model indeed super-
conducts at low temperatures and hole density.!” These
numerical results can be interpreted in two ways. On the
one hand, it may occur that the Hubbard model indeed
does not superconduct. This negative result is not at all
excluded. On the other hand, it may occur that present
day numerical techniques are not accurate enough to find
out the (weak) signals of a superconducting condensate in
this model. It is clear that analyzing a two-hole problem
is simpler than searching for a condensate, where the sub-
tle coherence and overlap effects between pairs is crucial
for its existence. In particular, note that for a finite lat-
tice of, e.g., 16 sites, a realistic electronic density of
{n )=0.875 corresponds to only one pair of holes, which,
of course, cannot produce a superconducting signal
alone. Then, it may simply occur that close to half-filling
the clusters accessible to numerical studies do not have
enough pairs to produce a clear signal of superconduc-
tivity as an output. Actually, Monte Carlo studies of the
attractive Hubbard model'® (which has a well-established
superconducting ground state) have shown that in the re-
gime of low electronic density (and thus low pair density)
it is difficult to observe a numerical evidence of supercon-
ductivity in the ground state. A similar situation may
occur in the t-J and repulsive Hubbard models near half-
filling where the density of pairs is small.

Based on these ideas, two of us'® recently started the
search for indications of superconductivity in the ground
state of the two-dimensional ¢-J model in a novel regime
of parameter space, namely {n)=1 (which by analogy
with the Hubbard model, it will be called ‘“‘quarter-
filling” in this paper), and large coupling J /¢. The main
motivation for such a study in a region of parameter
space which is not realistic for the cuprates is that in this
regime the number of carrier pairs is maximized (closer
to half-filling there are fewer holes, and near the empty
system fewer electrons). In addition, it is well known that
there are attractive forces operating in this model since
the system phase separates at large J /t. Also note that at

3549

low electron density, two electrons on an otherwise emp-
ty lattice minimize their energy by forming a tight singlet
bound state.”’ Then, densities of quarter-filling or less
and couplings close to phase separation seem the most
optimal regime to search for superconductivity in the
two-dimensional (2D) ¢-J model, as reported by Dagotto
and Riera.!” A strong indication of superconductivity
was found by these authors in the equal-time pairing
correlations, with a signal which is maximized in the
dxz_yz channel in agreement with the results for two

holes close to half-filling,'* and with the self-consistent
approximations. '¢

One of the purposes of this paper is to discuss in more
detail the results found in Ref. 19 for the 2D #-J model.
We provide numerical evidence showing that the region
of d-wave superconductivity near quarter-filling is robust
and likely to survive the bulk limit. In addition, we
found a novel transition from dxz_yz-wave to s-wave su-

perconductivity as a function of density. This transition
was expected in order to make compatible the results of
Emery, Kivelson, and Lin® suggesting s-wave supercon-
ductivity at very low density (based on the presence of
two-electron s-wave bound states on an empty lattice),
and those of Dagotto and Riera'® at quarter-filling, sug-
gesting a dxz_yz condensate. The numerical evidence for

these results is based on a variational Monte Carlo calcu-
lation on large clusters, and it is consistent with the re-
sults obtained with the Lanczos approach on smaller
clusters. The success of this search for superconductivity
in the #-J model opens the possibility for the existence of
superconductivity in the realistic regime of small J /¢ and
{n)~1, as discussed below in the text.?2!

Actually, this paper has a more general purpose. We
will argue that for a given electronic model, the region in
parameter space where superconductivity has the highest
chances of being stable is in the neighborhood of phase
separation.”? Moreover, we believe that the attractive
force responsible for phase separation also leads to the
strong pairing correlations in its neighborhood (similar
ideas have been recently discussed by Emery and Kivel-
son, see Ref. 23). In this regime it is energetically favor-
able to form pairs of holes rather than larger clusters of
holes, due to the gain in kinetic energy obtained by giving
mobility to those pairs. Reciprocally, if the model does
not have phase separation, not even in an extended pa-
rameter space (without explicitly changing the repulsive
or attractive character of the potential), then it is difficult
to imagine that it will present a superconducting phase.
This is a conjecture that is presented and discussed in this
paper. As with any conjecture, we do not have a rigorous
mathematical proof of its validity, but here we provide
several examples that illustrate the main ideas behind it.
This conjecture has practical implications since it is well
known that establishing the presence of phase separation
for a given model is usually simpler than finding a super-
conducting ground state. Then, once phase separation is
found, the region to search for pairing is considerably re-
duced. To support our ideas, in addition to the two-
dimensional ¢-J model, in this paper we also discuss the
attractive Hubbard model which naively seems a
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counter-example to our conjecture, i.e., it superconducts
but does not phase separate. However, it can be shown
that in an extended parameter space (i.e., including at-
tractive density-density correlations which are usually
spontaneously generated by any renormalization group
procedure), the regime of s-wave superconductivity of the
negative U Hubbard model is in contact with a robust re-
gion of phase separation. As a bonus of this study, an in-
teresting region of dxz_yz superconductivity in the ex-

tended r-U-V one-band Hubbard model was observed.
This phase may have important implications for recent
efforts to describe the cuprates with effective Hamiltoni-
ans based on the interchange of magnons. 16 Finally, we
briefly present results for the two-band Hubbard model in
a one-dimensional chain showing that also in this case
strong superconducting correlations appear near phase
separation. All these examples give strong support to our
conjecture. In addition, note that recent experimental
work?* has shown that in some cuprates with an excess of
oxygen there is phase separation and is not caused just by
a chemistry problem (the oxygens are very mobile).
Theoretical ideas by Emery and Kivelson?® have been
presented linking phase separation and superconductivity
in the cuprates, and thus the type of studies described in
this paper may have implications for real materials.

The organization of the paper is the following: In Sec.
11, the ¢t-J model in two dimensions is studied at different
densities. The interesting transition from dxz‘yz—wave to

s-wave superconductivity is discussed. In Sec. III, mean-
field results for the t-U-V model are presented, and its
rich phase diagram discussed at half-filling. In Sec. IV,
we briefly discuss results for the two-band Hubbard mod-
el on a chain. Conclusions are presented in Sec. V, and
finally in the appendices we discuss measurements of the
superfluid density for the one-band Hubbard model, and
the influence of the fermionic statistics on the phase dia-
gram of the 2D ¢-J model.

II. ¢t-J model in two dimensions

A. Density (n)=1

As discussed in the Introduction, recently it has been
suggested by two of us'® that the #-J model in two dimen-
sions may have a superconducting phase near phase sepa-
ration, and at density (n)=1. The numerical evidence
for these conclusions was based on an exact diagonaliza-
tion study of finite clusters, analyzing the equal-time pair-
ing correlations, the superfluid density (discussed briefly
in Appendix A), and the anomalous flux quantization.
For completeness, in this section some of those results are
reproduced from Ref. 19. New information for other
cluster sizes and parameters is provided. The ¢t-J model is
defined by the Hamiltonian

H=J ¥ (S8;—imn))—t 3 (e +Hec), (I
(ij) (ij),s
where c‘-{s denote hole creation operators; n; =n; ; +n; |

are number operators for electrons; and the rest of the
notation is standard. In the numerical studies of this
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model described below, square clusters of N sites have
been used (with periodic boundary conditions). In order
to search for indications of superconductivity in the
ground state, let us define the pairing operator

Ai=cipleiy  Heis T 1 T6 5, ) s

where + and — corresponds to extended-s and dxz_yz

waves, respectively, and X,J are unit vectors along the
axis. Note that the pairing operator is constructed using
electronic operators (not hole operators). The pairing-
pairing correlation function defined as
C(m)=(1/N)3, (AlA,,.), and its susceptibility
Xsup= 2m C (m) have been calculated (where a=d corre-
sponds to the dxz_ » wave, and a=s to the extended-s

wave). ( ) denotes the expectation value in the ground
state, which is obtained accurately using the Lanczos
method. Note that the pairing operator used here is not
strictly a spin singlet but actually the sum of a singlet and
a triplet. This operator allows us to study the two spin
sectors at the same time. Once a large signal in the pair-
ing correlations is observed in some region of parameter
space, it is trivial to implement rigorous spin singlet or
triplet operators to find out which one carries the strong-
est correlation. In practice, we found that the results ob-
tained using the operator A, defined above at all distances
larger than zero, are quantitatively very similar to the re-
sults obtained using a spin-singlet operator. Even at zero
distance the difference is only about 15%. Then, the re-
sults below using A; should be considered approximately
equal to those obtained using the proper singlet operator
AS (where AS=A,—TA,, and T is the operator that inverts
the z direction spin projection for each electron).
Working on a 4X4 cluster, and density (n)=1, the
numerical results are shown in Fig. 1. The d-wave sus-
ceptibility presents a sharp peak at coupling J /t=3, sug-
gesting that strong pairing correlations exist in this re-
gion of parameter space [Fig. 1(a)]. We have verified ex-
plicitly that the abrupt reduction of the signal after
J/t=3 is caused by a transition to the phase separation
region which is expected at large couplings® (this con-
clusion was obtained studying numerically the compressi-
bility). However, it is important to remark that a large
superconducting  susceptibility (or rather, zero-
momentum pairing correlation function) is not sufficient
to guarantee the presence of long-range order, but an in-
crease of )(‘s’up with the lattice size is required. Unfor-
tunately, it is difficult to study lattices much larger than
the 4 X4 cluster, and thus such an explicit analysis is not
possible with present day computers. Nevertheless, we
can study the existence of long-range order in this model
by explicitly calculating the pairing correlations as a
function of distance. A robust tail in the correlation
would suggest long-range order (or at least a correlation
length larger than the lattice size). The results for the -J
model are shown in Fig. 1(b), both for the dxz_yz- and

extended-s wave correlations. Similar correlations are
also shown in Fig. 1(c) for the d-wave channel, paramet-
ric with the coupling J/t. These results indicate that
most of the signal in the susceptibility does not come
from the on-site correlation, but from its tail. Although
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FIG. 1. (a) Superconducting susceptibility Xfup corresponding
to dx2—y2 correlations (defined in the text) as a function of J /¢
for the 2D ¢-J model, at quarter-filling density. The results are
obtained on a 4X4 cluster; (b) pairing correlations C(m) as a
function of distance m, at J/t=3 [i.e., where Y&, peaks in (a)],
(n )=%, using a 4X4 cluster. The full squares are results for
dx 2,2 symmetry, while the open squares correspond to extend-
ed s wave; (c) same as (b) but for different values of J /¢, and us-
ing only the dxz—yz correlations. The full squares correspond to
J/t=3, the triangles to J/t=1, and the open squares to J /t=4
(region of phase separation). These results are taken from
Dagotto and Riera [Phys. Rev. Lett. 70, 682 (1993)], and repro-
duced here to make the paper self-consistent.

this is not a rigorous proof, such a result strongly sug-
gests that long-distance pairing correlations are develop-
ing in this region of parameter space. Further studies at
other densities and couplings show that the results of
Figs. 1(b) and 1(c) are indeed robust, and in regions where
no superconductivity exists, the pairing correlations de-
cay very abruptly with distance, typically being compati-
ble with zero at about two lattice spacings. This is pre-
cisely the case of the repulsive Hubbard model in two di-
mensions studied with quantum Monte Carlo tech-
niques.'” Then, the reader should notice that the correla-
tions shown in Figs. 1(b) and 1(c) are perhaps the strong-
est numerical signals of superconductivity reported thus
far in the literature of the 2D -J and Hubbard models,
using unbiased numerical techniques.

What is the physical reason for the presence of strong
pairing correlations in this region of parameter space?
To begin with, note that there are attractive forces be-
tween electrons operative in the t-J model which are re-
sponsible for the existence of phase separation. Such
forces can be roughly described in the two limits of low
and high electronic density. For example, it is well
known that two holes in an antiferromagnetic back-
ground at large J /¢ tend to bind in a dxz_yz-wave bound

state in order to minimize the number of antiferromag-
netic missing bonds.!* This force leads to clustering of
holes at a finite hole density. In the other limit of low
electronic density, it can be shown that two electrons in
an otherwise empty lattice form a bound state at coupling
J/t>2, since the Heisenberg term acts like an explicitly
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attractive force. Increasing further the coupling and
working at finite density, phase separation occurs.? This
special case is interesting since it shows that at low elec-
tronic density there are bound states whose kinetic ener-
gy forbids the clustering effect until a large coupling is
reached. We believe that a similar scenario holds at
quarter-filling (n )=1, namely, that the force that pro-
duces phase separation for J/t> 3 also produces pairing
at smaller coupling. The gain in kinetic energy of the
mobile pairs forbids phase separation in this regime.
Another qualitative argument to help understanding
the presence of pairing is the following: suppose a repul-
sive density-density interaction V 3 ;) n;n; is added to
the Hamiltonian of the t-J model. Such a term has been
analyzed by Kivelson, Emery, and Lin® in the large V /t
limit, and by Dagotto and Riera?® numerically for all
values of V' /t. These authors showed that at large V /t a
tendency to form an ordered arrangement of dimers (spin
singlets formed by two electrons at a distance of one lat-
tice spacing) exists. Analytic calculations, supported by
numerical results, show the existence of this dimer lattice
very clearly. The introduction of a hopping term ¢ in-
duces superconducting correlations.?> The exact diago-
nalization results?® suggest a smooth connection between
large and small ¥ /¢, and thus some remnants of dimers
may exist in the pure t-J model at this density (although
now in a spatially disordered state). The phase diagram
obtained numerically in the plane V/t-J/t is shown in
Fig. 2 (the points represent the position of the maximum
in the superconducting susceptibility evaluated on a 4X4
cluster). However, a more subtle issue forbids a com-
pletely smooth connection between the two regimes: at
large V /t there is a robust spin gap in the spectrum due
to the formation of dimers, and thus the s-wave correla-

v/
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FIG. 2. Phase diagram of the #-J-¥ model at quarter-filling.
The full squares denote the positions of the peaks in x;’up ob-
tained using a 4X4 cluster. The other boundary of the super-
conducting regime (dot-dashed line) should not be considered
quantitative, but only schematic.



3552

tions dominate. However, at V' /t=0 the dx 2_,2 correla-

tions are dominant and the presence of nodes in the spec-
trum (in the bulk limit) allow for the possibility of creat-
ing low-energy spin triplets (i.e., zero spin gap). Then, if
our numerical results are valid in the bulk limit, a transi-
tion between s- and d-wave ground states should exist as
a function of V' /t, near phase separation (the verification
of this idea certainly deserves more work). The closing of
the spin gap as a function of this coupling has indeed
been observed by Troyer et al. in the one-dimensional
version of the t-J-V model.?’ In the next section, it will
be shown that a transition from d- to s-wave condensates
also exists as a function of density in the pure 2D ¢-J
model.

It would be important to study larger clusters in order
to verify that the strong tail of the correlations as a func-
tion of distance shown in Figs. 1(b) and 1(c) are not a
mere finite-size effect. Unfortunately, such a study is
difficult with present day computers since the memory re-
quirements needed to carry out a Lanczos study of the z-J
at quarter-filling grow exponentially with the cluster
size.?® In spite of this problem we managed to study a
tilted cluster of 20 sites®® as that shown in Fig. 3(a). Al-
though not obvious to the eye, it can be shown that this
cluster is invariant under rotations in 7/2 about a site,
and thus it can be used to explore the presence of super-
conductivity in the d channel.® However, the 20-site
cluster has a disadvantage for the particular problem
studied in this section. The trouble is schematically
shown in Fig. 3(a): considering the #-J-¥ model in the
limit of large V /¢, the five dimers that could, in principle,
be formed in the cluster do not have space to minimize
the energy unless a ¥ energy larger than 5 V is paid. This
is purely an artifact of the shape of the cluster that does
not occur in square L XL lattices. Since on the 4X4
cluster a smooth connection was observed between large
and small V /¢, the lack of a proper V /¢t limit for the 20-

@ l/ l (b) t-d
L 08} .
i \",\ 2D
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o) N=16
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| zb </ 02 N=20
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FIG. 3. (a) Cluster of 20 sites used in this paper. The sites
are numbered such that the neighbors can be identified once
periodic boundary conditions are applied. The four thick links
represent dimers formed in the large V' /¢ limit as discussed in
the text; (b) dx2_y2 pairing correlations (normalized to one at
distance zero), as a function of distance for J/t=3 and (n)=1,
obtained on a 4 X4 cluster (full squares) and on a 20-site cluster
(open squares).
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site cluster implies that the signal for superconductivity
in the other limit of ¥ /t=0 may be spuriously reduced
compared to that of the 16-site cluster. This conclusion
was verified by an explicit numerical study of the N=20
cluster. The normalized signal for d-wave pairing corre-
lation shown in Fig. 3(b) is reduced by approximately a
factor of 2 when the lattice size is increased from N=16
to 20 sites. Rather than considering this as a negative re-
sult for our scenario, we believe the reason for this reduc-
tion is the topology of the N=20 cluster as explained be-
fore. In spite of this problem, note that even for the
N=20 lattice, there are no indications that the correla-
tion will decay to zero at large distances since the signal
is fairly flat. Of course, studies on larger clusters that
satisfy the proper V /¢ limit would be important to verify
our assumptions, but we believe that the evidence dis-
cussed in this section suggesting the existence of super-
conductivity in the quarter-filled 2D ¢-J model is strong,
and may survive the bulk limit. Finally, we would like to
remark that “dynamical” studies of this condensate
would be very important. Actually, we have already car-
ried out studies of the dynamical pairing correlation in
the d-wave channel. It shows a sharp peak at the bottom
of the spectrum, as expected from a d-wave condensate.
Other dynamical properties are currently being analyzed
by Maekawa et al.’!

B. Low electronic density, {(n ) <1

It is interesting to extend the results obtained in the
previous subsection to other densities. Here, the region
(n) <1 will be explored. In this regime the problem as-
sociated with the lattices of 20 sites does not hold
anymore since four or less dimers can be accommodated
in the cluster of Fig. 3(a) without trouble at large V /¢,
and thus results for a lattice slightly larger than a 4X4
cluster become available. In addition, there is a physical
motivation for the study of low electronic densities: from
the work of Emery, Kivelson, and Lin?®3? it is known
that at J/t=2 a bound state of two electrons appears due
to the attractive spin-spin interaction in the Hamiltonian
that favors the formation of a spin-singlet state. Then, it
is natural to expect that a finite (but small) density of
these bound states may Bose condense at low tempera-
tures in the s-wave channel.?>?® This argument is very
persuasive, but the numerical results in favor of a d-wave
condensate at quarter-filling are also fairly strong.'®
Thus, the only solution to this apparent paradox is that
the ground state of the 2D ¢-J model exhibits a transition
from s wave at low densities to d wave at higher densities.
Here, evidence based on exact diagonalization and varia-
tional Monte Carlo (VMC) studies is presented to support
this conjecture.>®> Then, the phase diagram of the z-J
model seems very rich indeed showing d- and s-wave su-
perconducting condensates, phase separation, antifer-
romagnetism, ferromagnetism, and paramagnetic phases
in the {n }-J /¢ plane.

Consider a 20-site cluster with eight electrons (i.e.,
(n)=0.4), and let us evaluate in its ground state the
same pairing correlation functions studied at quarter-
filling in Figs. 1(b) and 1(c). The results for the dxz—y2
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and extended-s symmetries are shown in Figs. 4(a) and
4(b). At this density, it is clear from the figure that the
d-wave pairing correlations are still dominant over s
wave, i.e., the d-wave correlations at a distance of ap-
proximately three lattice spacings are robust and do not
show indications of reduction with distance. In Figs. 4(c)
and 4(d) similar correlations are shown at a lower density
(n)=0.2 (four electrons on the 20-site cluster). The
qualitative results are similar to those obtained in Fig.
4(a) although now the correlation at a distance of two lat-
tice spacings in the s-wave channel is larger than at
(n)=0.4. This suggests a tendency towards the forma-
tion of a competing s-wave condensate, but it is not
enough to show that such a condensate will become
stable upon further reduction of the density. Unfor-
tunately, on this cluster the next density available corre-
sponds to only two electrons which we know cannot be
representative of a finite density of particles. Thus, from
the exact diagonalization analysis we can only roughly
say that the transition from d- to s-wave superconductivi-
ty may occur at an electronic density (n ) <0.2.

It would be very important to verify this result by some
other independent calculation. For this purpose, we have
implemented a simple VMC simulation, using trial wave
functions with an s and d symmetry superconducting
condensates, and also states representing a Fermi liquid,
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FIG. 4. Pairing correlation C(m) as a function of distance,
for the 2D -J model on a 20-site cluster. The open triangles,
full triangles, open squares, and full squares are results at cou-
pling s J/t=2.1, 2.7, 3.0, and 3.5, respectively. (a) corresponds
to de—y2 symmetry and density (n)=0.4, while (b) is for
extended-s and the same density. (c) and (d) are the same as (a)
and (b), respectively, but at a density (n ) =0.20.

3553

and the phase-separated regime. From the energy com-
petition between these states, we should be able to extract
qualitative information at low densities. The states we
have used are a Gutzwiller state, which becomes stable at
small values of J /¢, and is defined as

IGW)= 3

[STRRRES § ¥4
e

Pddettdetlﬂrioic Ii,,i o), (2)

where P, =II;(1—n;; n;, ) projects outs states with double
occupancy, det, are Slater determinants of a filled Fermi
sea corresponding to spin o, and the sum in front denotes
all possible electronic configurations (with the spin index
omitted). N, is the number of electrons, while the rest of
the notation is standard, and follows the recent work of
Valenti and Gros on variational wave functions. 34

As superconducting condensates we use the states pre-
viously introduced by Gros et al.** For the a-wave con-
densate (a=s or d) we define

N, /2l

la)~P; [ 3 ayefretyy 0), A3)
K

where a,=A,/(e,+V €+A2), and €,=—2t(cosk,
+cosk,)—p (p is the chemical potential). The parame-
ter Ay,=A, corresponds to an s wave, while
Ay=Ay(cosk, —cosk,) is a dx’—yl wave. A, is a k-
independent variational parameter [note that this state
can be rearranged in the form of a resonating valence
bond (RVB) state, see Ref. 35]. Finally, a variational
state for the phase-separated region was used, which sim-
ply has all the electrons clustered in an antiferromagnetic
state (whose energy density can be easily obtained from
Monte Carlo calculations of the spin-; Heisenberg model
in two dimensions*¢).

The actual variational calculations have been carried
out using the Monte Carlo technique on an 8 X8 cluster,
and for 10, 26, 42, and 50 electrons (that correspond to
closed-shell configurations). About 10000 Monte Carlo
sweeps for each density and coupling were performed.
The results for the energy of each one of these variational
states are shown in Figs. 5(a)-5(c). At low electronic
density (n ) =0.156, Fig. 5(a) shows that the s-wave state
is energetically better than the corresponding d-wave
state approximately in the interval 4<J/t<5.5. For
smaller values of the coupling, the Gutzwiller state dom-
inates, while for larger values of J /¢ the phase-separated
state is stable, as expected. The dominance of s-wave
correlations near phase separation at low fillings is com-
patible with the ideas discussed before, namely, that elec-
trons in an otherwise empty lattice bound in s-wave
states, and thus at least for {(n) <<1 and low tempera-
tures we would expect a Bose condensation of these s-
wave pairs. 2037

Figure 5(b) shows results for a higher electronic density
(n)~0.406. In this case, the s wave is no longer stable,
and the d wave minimizes the energy in the region
2.5<J/t<3.8. This result is to be expected based on our
exact diagonalization analysis near quarter-filling. Then,
as a function of density a transition from s-wave to d-
wave pairing has been observed. Increasing further the
filling to (n ) =0.656, the d-wave state still dominates be-
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FIG. 5. Results obtained using the variational Monte Carlo
technique on an 8 X 8 cluster applied to the 2D ¢-J model, as de-
scribed in the text. GW corresponds to the energy of the
Gutzwiller state Eq. (2), while the energies of the s and dey 2
states are denoted by “s wave” and “‘d wave,” respectively. The
energy of the phase-separated state is labeled PS. (a) corre-
sponds to density {n)=12~0.156; (b) (n )= 2 ~0.406; and (c)
(n)= %z0‘656; (d) rough phase diagram of the 2D ¢-J model
predicted by the VMC approach.

tween 1.5<J/t<3.0. A rough and qualitative phase dia-
gram obtained with the VMC method is shown in Fig.
5(d). Results at densities close to half-filling are not
shown since the variational energies for different states
are very close to each other in this region, and thus
corrections to each state cannot be neglected.

C. High electronic density, (n ) > 1

After analyzing the region of small electronic density,
it is important to study the more realistic regime of high
densities. It is clear that the #-J model was originally in-
troduced to qualitatively mimic the behavior of the high-
T, cuprates, and thus the physically interesting regime
corresponds to small hole density (i.e., {n) slightly
smaller than one), and small values of J /¢ (since the cu-
prate compounds are known to be in the strong-coupling
regime, and if the one-band Hubbard Hamiltonian is used
to model the materials, we should work in the region
U/t >>1, which corresponds to J/t <<1). Then, it is
quite important to carry out a numerical study for densi-
ties {(n)>1. The results for four holes on the 16-site
cluster are shown in Figs. 6(a) and 6(b), where they are
compared with the results for eight holes. The suscepti-
bility at {(n ) =0.75 is much flatter than at quarter-filling,
and the actual correlations as a function of distance are
very close to zero already at a distance of two lattice
spacings. Then, our numerical results do not show indi-
cations that the interesting superconducting region ob-

served at (n) S% can be extended towards the realistic
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FIG. 6. (a) d-wave pairing susceptibility as a function of J /¢
for the 4 X4 cluster. The full squares correspond to {n ) =0.50,
while the open squares are for {(n)=0.75; (b) d-wave pairing
correlations at J/t=3 and (n ) =0.50 (full squares); and J /t=2
and {n )=0.75 (open squares); (c) similar results as those shown
in (a), but for the 1D chain at J/t=3. Full squares denote re-
sults at {n)=0.50, open squares at {n ) =0.75, and triangles at
(n)=0.875; (d) shows explicitly the pairing correlation as a
function of distance for the 1D ¢-J chain, at J/t=3. The nota-
tion is as in (c).

regime of densities closer to half-filling.

However, we would like to point out that this negative
result is not definitive. There are many arguments sug-
gesting that a calculation similar to that of Figs. 6(a) and
6(b), but carried out on a larger lattice may show more
positive signals of superconductivity. To begin with, note
that the VMC calculation described in the previous sec-
tion on a larger lattice still predicts the dominance of a
d-wave condensate over other states. Although varia-
tional calculations are generally uncontrollable (since it is
difficult to judge how accurate the trial states are), the in-
teresting qualitative agreement found with the exact diag-
onalization results at other densities suggests that the
wave functions we used may be quantitatively accurate.
The “size” in real space of the pairing operators is anoth-
er possible reason for the small correlation found in Figs.
6(a) and 6(b). In a typical BCS condensate, the size of a
pair depends on the density of carriers, even with a
strong local attractive potential. The lower the density,
the larger the pair size to maintain the coherence among
pairs. Then, it may occur that the local operator used in
our study does not have a large overlap with the actual
more extended pairing operator that may exist in this
model.
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Finally, we would like to point out an analogy between
our results for the 2D lattice, and those obtained for the
1D t-J chain. As it is well known, a numerical analysis of
the #-J model in one dimension has shown a region where
superconducting correlations are dominant*® in the sense
that they decay the slowest as a function of distance.
This region is a strip bordering phase separation (very
similar to that found in our two-dimensional study), and
it covers a wide range of densities between small {n ),
and (n ) as large as 0.875. Although no long-range order
can occur in 1D at any temperature, and even the statis-
tics of the particles is not important in one dimension,
since fermions and hard-core bosons produce the same
phase diagram (in two dimensions the situation is drasti-
cally different, see Appendix B), the results on a chain are
still very instructive to guide our intuition in the more
realistic 2D problem. The 1D results are based on a
study of K, which is a parameter based on conformal
field theory, that controls the decay of the correlation
functions with distance. This quantity can be obtained
from a study of spin and charge velocities, and it is be-
lieved to be affected by finite-size effects less severely than
actual pair correlations. In Figs. 6(c) and 6(d) we show
the pair susceptibility and correlation function for the
case of eight, four, and two holes on a 16-site one-
dimensional chain. The case of two holes corresponds to
a nominal density {n )=0.875, i.e., where superconduc-
tivity should still be dominant. However, Fig. 6(d) clear-
ly shows that for this density an analysis of the pair
correlation shows no indications of the superconductivity
dominated ground state implied by K, (this is not
surprising since two holes can form only one pair). This
example tells us that a superconducting ground state can-
not be identified easily using finite clusters when only a
few number of pairs is available. It may occur that the
regime of {n)=0.75 in 2D is analog to {n)=0.875 in
1D.

Thus, we conclude that due to the limitations of nu-
merical studies based on exact diagonalizations, the re-
gime of small hole density is difficult to analyze (unfor-
tunately, there are no stable quantum Monte Carlo tech-
niques to study the 2D ¢-J model at low temperatures).
Then, we believe that in order to make further progress
closer to half-filling, it would be important to develop a
good variational wave function to describe the regime of
quarter-filling (where results can be compared with the
exact diagonalization predictions), and then carry out
calculations with the same wave function at densities
closer to half-filling.** Note also that other terms in the
Hamiltonian like a ¢’ hopping may shift the d-wave re-
gion towards even smaller densities.

D. Phase diagram of the 2D ¢-J model

Based on the numerical results discussed in the previ-
ous sections, we believe that the phase diagram of the
two-dimensional 7-J model is schematically as shown in
Fig. 7. Clearly there is a large region of phase separation
at large J /t for all values of the density. The boundaries
of this phase are in good agreement with results from
high-temperature expansions.** The novel result dis-
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FIG. 7. Phase digram of the 2D ¢-J model. “d wave” denotes
the phase where the d_ 2,2 correlations were found to be strong

in the numerical study presented in this paper. *“s wave”
denotes the regime where the VMC approach showed the pres-
ence of a stable s-wave condensate. The dashed line separating
d wave from s wave is schematic since we only have results at a
small number of electronic densities. AF denotes the antiferro-
magnetic region close to half-filling. In this regime we do not
have enough accuracy in our analysis to complete the phase dia-
gram. The d-wave superconducting phase may or may not ex-
tend into the small J /¢ region. Finally, PM denotes a paramag-
netic state.

cussed in this paper, and before in Ref. 19, is the ex-
istence of a region of d-wave superconductivity (in the
dxz_yz channel) that extends from low to high electronic

densities, with a numerical signal that is maximized at
quarter-filling (where the numbers of pairs is also maxim-
ized). Numerically it is difficult to find the boundary of
the d-wave phase at large electronic densities, i.e., close
to half-filling. Even the phase-separated region boundary
is controversial (and thus we only write “AF” in Fig. 7 in
that regime, to show that antiferromagnetic correlations
are important but we do not know the details of the
phase diagram). However, we have presented arguments
suggesting that it may be possible that the d-wave region
survives as a narrow strip following phase separation,
even in the regime close to half-filling. After all, two

holes in an antiferromagnetic background form a dxz_yz

bound state, !> and thus the most economical hypothesis
is to link the numerical strong signals at quarter-filling
with the bound states at half-filling. Of course, the
verification of this hypothesis needs, and deserves, more
work.

In the other limit of low electronic density, an interest-
ing change in the symmetry of the condensate is observed
(which was unknown to two of us in a previous publica-
tion'®). This is compatible with the observation that two
electrons on an empty lattice form an s-wave bound state
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for J/t >2.%° This region of condensed dimers may be
similar to that found at large density-density repulsion
V/t>>1 in previous work.?>?® We believe that in the
three-dimensional parameter space J/t, V/t, {n ), the s-
wave region of the pure 7-J model at low electronic densi-
ty, and the s-wave region at quarter-filling of the ¢-J-V
model may be analytically connected. A similar behavior
may occur in one dimension where a spin-gap
phase®®442 was observed at low densities for the t-J
model, and at large ¥/t and quarter-filling for the ¢-J-V
model.?>?6 Such a rich phase diagram certainly deserves
more work. The d-wave region found in this work seems
disconnected from those two limiting cases with s-wave
symmetry, and should be considered as a new phase. Fi-
nally, the paramagnetic PM region resembles much a
noninteracting gas of particles (and thus a Fermi liquid,
at least at low densities), but a careful study of the wave-
function renormalization Z is needed to clarify this issue.

It is important to remark that the region of s-wave su-
perconductivity at small electronic density shown in Fig.
7 may be larger than what is shown in the figure. In con-
structing the boundary of phase separation in Fig. 7 we
used the discrete version of the second derivative of the
ground state with respect to density. However, the error
bars at small {n ) are large using this procedure. Then,
in the region {n ) <<1 we used the results obtained from
the high-temperature expansions® to complete the
boundary of phase separation. Although with this tech-
nique the study of pairing correlations has not been ad-
dressed yet, their predictions for the phase-separation
boundary seem accurate at intermediate densities where
the results can be contrasted with exact diagonalization
predictions. Nevertheless, here we want to warn the
reader that if the formation of a bound state of four elec-
trons on an otherwise empty lattice is used as a criterion
for phase separation, then the critical value near the emp-
ty system becomes J /t=4.85 as claimed by Lin, 3? instead
of a number slightly smaller than four as shown in Fig. 7.
In addition, using exact diagonalization methods we have
evaluated the energy of the ground state at a fixed and
low electronic density, and from there calculated numeri-
cally the second derivative with respect to the coupling
J /t to search for indications of a phase transition. Our
results suggest that phase separation may start at J /¢ as
large as ~5.5. Then, the error bars at small density of
the phase diagram Fig. 7 may be large. More work is
needed to obtain quantitative results, but nevertheless we
believe that the qualitative features of the phase diagram
are properly captured by our prediction Fig. 7.

III. STUDY OF THE ¢-U-V MODEL

To continue our study of electronic models and the
presence of superconductivity near phase separation, let
us consider the #-U-V model on a square lattice. This
model is the standard one-band Hubbard model extended
to include a nearest-neighbor density-density interaction
(in the study below we will analyze both an attractive and
repulsive V term). There are several reasons to consider
this model in detail. First, it will illustrate the conjecture
presented in this paper, namely, the rule that supercon-
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ducting phases of purely electronic models typically ap-
pear near a regime of phase separation. Actually, we will
discuss below that even for the attractive Hubbard mod-
el, which naively seems to superconduct without phase
separation in its phase diagram, a small negative ¥ term
is enough to induce an instability towards phase separa-
tion. Thus, even the attractive Hubbard model, and thus
the BCS model satisfies the rule described above in an ex-
tended parameter space (keeping the attractive character
of the potential). In addition, we have found that one of
the superconducting phases of this model corresponds to
a dxz_yz condensate. The possible existence of d-wave su-

perconductivity in the high-temperature superconductors
has recently received considerable attention.*>»'® Then, it
becomes important to have a toy model with a conden-
sate in this d channel for further studies of its dynamical
properties. ** Finally, we believe that a possible effective
model to describe holes in the ¢-J model will include an
attractive density-density interaction at distance of one
lattice spacing, and a strong repulsion on site. Such an
effective interaction is natural at least in the large J /¢
limit where two holes form a tight bound state at a dis-
tance of one lattice spacing (and of course, they cannot
occupy the same site). Then, the 7-U-V model in strong
coupling, with <0 and U >>1 is a natural candidate for
such an effective theory.*’ The fact that indeed it pro-
duces a dx2~y2 condensate gives more support to this

conjecture.
The t-U-V model is defined as

H=—t (2) (C:cha+C}0Cia)+UE (nn "'%)(”il —%)
ij i
(ij)
where the notation is standard. It is assumed in this sec-
tion that we are working on an N X N cluster with period-
ic boundary conditions. The study will be limited to the
half-filled density, which is enough to illustrate our main
results. In this regime, the mean-field approximation
used to describe the spin-density-wave (SDW) state of the
repulsive Hubbard model is expected to provide reliable
information also for the #-U-V model.* Since our
analysis goes beyond the Hubbard model to include a
density-density V interaction, new phases are expected to
appear in parameter space, and thus in addition to a
mean field for the SDW state, we will discuss a generali-
zation for a charge-density wave (CDW), an s-wave BCS
superconducting state (SS), and a d-wave superconduct-
ing state (DS). The appearance of SDW, CDW, and SS
orders are natural since they can be obtained by perturba-
tion theory starting from the atomic limit (#=0) in the re-
gimes V=0, U>>1; U=0, V>>1; and V=0, U<QO,
|U| >>1, respectively. On the other hand, the d-wave
phase is more difficult to predict intuitively.*’ Finally, a
regime with phase separation (PS) exists when V<0 and
|V >>1. In this region, the energy is minimized by form-
ing a large cluster of double occupied sites. Of course,
numerical techniques like those presented in the previous
sections are important to verify the accuracy of the rough
mean-field predictions. For example, it is clear that the
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region of phase separation will not present such a sharp
division between the region with double occupancy and
the empty part of the lattice, especially at finite V. How-
ever, the computer work for this model is highly nontrivi-
al, and such an analysis will be postponed for a future
publication.

Here, we will briefly describe the mean-field approach
for the case of the SDW and CDW states.* For more
details see Ref. 48. First, let us rewrite exactly the in-
teraction term of Eq. (4) in momentum space as

HUV=UzniTnu+V 2 n‘-nj
i (ij)

U zZ .2z
=-4W %(nqn_q—a'qa_q)+ % vigingn_g, (5)

where we have introduced the standard definitions of the
density and spin Toperators, namely, n = Ekock+anko
and 0= 3y, 0Cy1q,Cr,- The potential in the density-
density interaction is of the form
V(q)=(V/N)(cosq, +cosq,), and we have used the
definition ¢}, =(1/VN)S i e™®Ic], in the Fourier trans-
formation. For the mean-field approximation corre-
sponding to a SDW state, we introduce the ansatz
(ni,)=1[1+0S(—1 )l"+"] [where S is a parameter
whose value will be fixed by energy minimization, and
i=(iy,i,)], which after some straightforward algebra can
be shown to be equivalent to (aé) =SN8yq Wwhere
Q=(m, ). In addition, the constraint that in mean value
there is only one particle per site in the ground state at
half-filling, can be formally expressed as {(n,)=N8§ .
For the CDW, the proposed ansatz is
(ny)=1[1+p(—1)* "], which is o independent, and
p is a mean-field parameter similar to S for the SDW.
Such an ansatz is equivalent to requiring that
(ng)=NB8,4+pN8 o, and (o§)=0, in the mean-field
ground state.

Neglecting higher-order terms in the corrections to the
mean-field values, the interaction Eq. (5) becomes

HEE == 3 (g (n_q) = (o) {0% )
q

U z z
+W§(nq(n_q>—aq(a_q))
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Specializing now for the SDW state, the whole Hamil-
tonian Eq. (4) is given by

US’N
Hyp= 2 ekclocka —A 2 UC£+Qacka+

, (7
ko ko 4

where €,= —2t(cosk, +cosk, ), the gap A=US/2, and
o=+1(—1) for spin up (down). After a standard Bogo-
liubov diagonalization of Eq. (7), the ground-state energy
is
ERY
N

A2

U (8)

=—%2\/e§+A2+
k

from which we obtain the self-consistent equation,

g 1 _1 o
IN% arta U’
which has a solution for U> 0 (note that this equation is
independent of V at this level of approximation).

The procedure to obtain results for the CDW case is
very similar to that followed for the SDW state, and thus
we will not repeat it here. The ground-state energy is
given by

ESOV

N

A2
U—8sv’

——Lsyara- (10)
N4
where we have defined A=p(U —8V)/2. The self-
consistent equation for the CDW state is equal to Eq. (9)
if U is replaced by —U +8V. The same occurs for the
energy, and thus it is clear that the SDW and CDW
states will cross at the line U =—U + 8V, i.e., if U =4V,
where both U,V are positive. Note also that the results
for SDW in the V=0, positive U axis are identical to
those of the CDW state in the V=0, negative U axis, if U
is replaced by — U. This symmetry is correct even in an
exact treatment, since the repulsive Hubbard model can
be exactly mapped into the attractive Hubbard model. '3
Now, let us consider the possibility of superconductivi-
ty in the phase diagram. While it is well known that in
the V=0 and negative U axis, an s-wave condensate ex-
ists, other channels may become stable when the on-site
attraction is not too strong. The formalism to handle su-
perconductivity at the mean-field level is very standard,
and thus we will describe it only schematically. To begin

+Sv@(—{n n_Y+2{n_dn.). (6) with, it is important to exactly rewrite the interaction
% 1 g 4 a7 term defined in Eq. (5) as
1
U vV , ,
HUV: 2 ﬁﬁa_a,+—1\7[cos(p —-p )x+COS(p —-p )y] c;acT-p+qv’c-—p’+qa'cp’a . (1n
pp'qoo’

In Eq. (11) it is convenient to further separate the interac-
tion in two pieces. One of them corresponds to q=0, and
o'= —o, which will lead to the interesting superconduct-
ing properties of the ground state. The other terms cor-
responding to g0 can be rewritten in the mean-field ap-

r

proximation, and after some algebra they become
—UN/4—2NV +(U/2+4V)N, where N is the total
number operator (in order to implement the constraint of
working at half-filling we have explicitly used
(ng)=N8). Remember that once the Hamiltonian is
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written in a particle-hole symmetric form as in Eq. (4),
there is no need to introduce a chemical potential to im-
plement the constraint of working at half-filling. Adding
together the potential and kinetic energy of ¢-U-V Hamil-
tonian we arrive at

. f tot o
H= 3 CyoCroT X Cpo€p—oC—p—oCpof PP,
ko pp'o

(12)

where

ry — U V ’ ’
fp—p )_EV—+—1V[COS(P —p')xtcos(p—p'), 1.
To proceed with the mean-field treatment, we make the
standard ansatz (c;r,fctpl )= (cgp.lcpt ) =6¢,, where ¢ %s
a real function. The superconducting order parameter is
introduced as

Ap=—2§k‘,f(p—k)¢k. (13)

A, is also real, although a generalization to a complex or-
der parameter is very simple. With these assumptions,
the Hamiltonian Eq. (12) can be written in the mean-field
approximation as

- 1 t ot
Hye= 3 Ckclocko—z 2 0B (C ko Cho T ChoC —k—0)
ko ko

+ 3 Ay - (14)
k

The diagonalization of Eq. (14) is performed following
standard techniques, and thus we simply present the re-
sults. The ground-state energy is

E 1 —
gs _ 21 A2
——=Y Ad—— +A;, 15
N % kP N 5;‘, \/Ek (15)
and the self-consistent equation obtained from minimiza-
tion of the ground-state energy is

X Veg+a

Now, let us specialize the generic results, Egs. (15) and
(16), to the particular case of an isotropic s-wave conden-
sate (SS). This symmetry is certainly relevant for the at-
tractive Hubbard model (V=0, U<0). For an s wave we
can assume A, to be p independent, and the self-
consistent equation formally becomes again Eq. (9), re-
placing U by — U. The s-wave ground-state energy is

By _ A 1

21 A2
N =10l N%\/ek+A . (17
Note that this energy, and thus the self-consistent equa-
tion derived from it, are independent of V, as in the case
of the SDW state. As explained before, it is also interest-
ing to notice that for the purely attractive Hubbard mod-
el (F=0, U<0) the energy of the CDW state and the su-
perconducting SS state are degenerate. This is to be ex-
pected since by a simple transformation the attractive
and repulsive Hubbard models can be mapped into each

other. The CDW (SS) correlations become the spin
correlations in the Z (XY) direction. By rotational in-
variance, the Z and XY spin correlations are identical in
the repulsive Hubbard model, implying the degeneracy of
the CDW and SS states for the attractive case, even in an
exact treatment of the problem.

The gap equation, Eq. (16), also admits solutions in
channels other than s wave. Let us consider the ansatz
Ay =Aq(cosk, —cosk,) that corresponds to a dxz_yz su-
perconductor (A, is assumed to be momentum indepen-
dent, and will be obtained by self-consistency). After
considerable but straightforward algebra, we arrive to the
self-consistent equation for Ay:

cosk, (cosk, —cosk, )

1
v Ng \/6,2(+A(2)(cosk,:—cosky)2 '

(18)

This equation can be solved iteratively for A, The
ground-state energy for this condensate is

Epe _ A% 1
L % \/eﬁ—i-A(z,(coskx-—cosky 2. (19)

N vl N

Whether this d-wave state becomes stable or not in some
region of parameter space depends on its energy competi-
tion with the other possible states. Finally, in the region
¥ <0 (and for large | V]), there is phase separation, i.e., it
is energetically preferable to separate the lattice into a re-
gion mostly without electrons, and a region where every
site is doubly occupied. In this way, the dominant V
term of that regime is minimized. Including fluctuations,
the separation between the two regions will not be sharp
and it may occur that the two dominant states have den-
sities (n)=1+8 and 1—9§, with the parameter &
different from 1 for a finite value of |V|. Preliminary
quantum Monte Carlo results support this scenario.
However, for our rough mean-field approximation, we
will assume a “‘perfect” phase separation with §=1 (i.e.,
where electrons are simply not allowed into the empty
part of the lattice), and thus the ground-state energy is
simply
E® _U
N 4 +2V . (20)

The phase diagram of the z-U-V model in the mean-
field approximation is obtained by comparing the ener-
gies of the SDW, CDW, SS, DS, and PS phases given by
Egs. (8), (10), (17), (19), and (20), respectively. The results
are presented in Fig. 8, showing that the phase diagram
at half-filling is very rich. In the purely repulsive Hub-
bard regime and its neighborhood, the SDW state has the
lowest energy, as expected. Increasing V a transition to
the CDW regime is found at U =4V, as was explained be-
fore. This CDW phase is very robust and is stable also in
the presence of a negative U term. Actually, in the pure-
ly attractive Hubbard model axis, the CDW state is de-
generate with the superconducting state SS. If a small
and negative V term is introduced, then this SS state be-
comes stable, and the CDW-SS degeneracy is broken.
However, decreasing further the strength of V (towards
more negative values), induces another transition into a
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FIG. 8. Phase diagram of the ¢-U-V model in the mean-field
approximation, at half-filling. SDW denotes a spin-density-
wave state, CDW a charge-density wave, PS corresponds to
phase separation, while SS and DS are superconducting states
with s and dx2—y2 symmetry, respectively.

phase-separated regime. Thus, in this model we also ob-
serve the feature discussed in the Introduction, namely,
that a superconducting phase appears in the neighbor-
hood of phase separation, as it occurs in the 2D ¢-J mod-
el. In this case it is necessary to extend the parameter
space beyond an on-site attractive U/t term, to include
further attractive interactions at a distance of one lattice
spacing in order to observe this behavior. Such an exten-
sion is natural, since a strictly on-site force is somewhat
pathological and physically difficult to realize.*’ Phase
separation is very robust in this model as shown in Fig. 8,
and it exists even for large and positive values of U /t.
Finally, it is interesting to observe the presence of an “is-
land” in parameter space where the dx 2, State is stable.

This occurs for small values of |U|, and negative V.
Again, increasing further |V| leads to an instability to-
wards phase separation. Note that for large values of
U /t, there is a direct transition from SDW to phase sepa-
ration. Then, finding phase separation in a given model is
not sufficient to guarantee the presence of superconduct-
ing in its vicinity. More details about the interesting
phase diagram shown in Fig. 8, especially regarding the
d-wave condensate, will be presented in a future publica-
tion.

IV. TWO-BAND HUBBARD MODEL ON A CHAIN

The presence of superconductivity near phase separa-
tion is not restricted to one-band models. The same
phenomenon occurs in the ground state of multiband
Hamiltonians, and in this section we analyze a particular
(and physically relevant) case in detail. The model we
will study is the three-band model proposed by Emery,*’
and Varma and collaborators,® which is believed to con-
tain the basic ingredients to describe the behavior of elec-
trons in the CuO, planes of the high-T, superconductors.
Using the hole notation, where the vacuum is defined as
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having all the d orbitals occupied in the copper sites and
the p orbitals occupied in the oxygen sites, the Hamiltoni-
an is

H=—1t, (z)p}(di+n.c. )te; Snite, 3 nk
ij i i

+U; 3 nind +U, 3 nbink, +V(2)n;‘n1; , @1
i j ij

where p; are fermionic operators that destroy holes at the
oxygen sites labeled j, while d; corresponds to hole an-
nihilation operators at the copper sites i. (ij) refers to
pairs of nearest-neighbors i (copper) and j (oxygen) sites
(and 2,; is the corresponding hybridization between
copper and oxygen). U; and U, are positive constants
that represent the repulsion between holes when they are
located at the same d and p orbitals, respectively. ¥V cor-
responds to the Coulombic repulsion when two holes oc-
cupy adjacent Cu-O links. The importance of this term
has been remarked by Varma and collaborators.”® In
principle, interactions at larger distances should also be
included in the Hamiltonian, but such an analysis will not
be carried out in this paper.’' €, and €, are the energies
of each orbital (with the charge-transfer constant defined
as A=¢€, —¢€y, which for the cuprates is a positive num-
ber). The doping fraction is defined as x =n, /N, where
n,=(N, —N) is the number of holes doped away from
half-filling, N, is the total number of holes, and N is the
number of Cu-O cells. At half-filling N, =N, as in the in-
sulating parent cuprates. Below, only the region 0<x <1
will be explored which is relevant for hole-doped materi-
als.

It is generally accepted that U, is the largest parame-
ter of the model. In particular, U; > A, which is con-
sistent with the charge-transfer character of the copper
oxides. It is also generally accepted that in the undoped
case there is one hole in each Cu site, while upon doping,
additional holes are introduced into the oxygen sites.
Under ' these assumptions (supplemented with V=0),
Zhang and Rice*? derived the z-J model as an effective
low-energy Hamiltonian of the more general three-band
model. In the region of parameter space where this
derivation is valid, the conclusions we reached for the ¢-J
model in the previous sections will also apply to the more
general Emery-Varma Hamiltonian Eq. (21). However,
the three-band model is more general than the ¢-J model
and thus it is worth exploring the behavior of its ground
state in regions of parameter space that cannot be
mapped into a simplified one-band Hamiltonian. For ex-
ample, in the particular case U;= 0, an interesting re-
gime of phase separation was studied with the slave-
boson approach for finite ¥V, and superconducting insta-
bilities were observed in its vicinity.?> Then, phenomena
similar to those described in Secs. II and III also take
place in the multiband Hubbard model.

Recently, a more detailed study of superconductivity
near phase separation in the Emery-Varma model was
discussed using exact diagonalization techniques>>~>° ap-
plied to the one-dimensional version of Eq. (21) (i.e., for
the “two-band” Hubbard model). Part of the results of
these studies (which go beyond the mean-field approxima-
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tion) are summarized in Fig. 9. In this figure, the copper
(oxygen) sites are represented by large (small) circles.
The ground state at half-filling (n, =0) is shown in the
atomic limit #,; =0 in Fig. 9(a) (where the direction of the
spins is arbitrary). There is one hole per copper site. Fig-
ure 9(b) shows the ground state introducing two holes
(n,=2) and assuming V' <A+3U,. In this case the
holes populate the oxygen sites. However, if
V> A+%Up, the ground state drastically changes to the
one shown in Fig. 9(c), where in addition, it is assumed
that U, >3(U,+2A), otherwise doped holes would
prefer to be located in copper sites in the limit ¥=. In
this case, the electrons tend to occupy the oxygens depo-
pulating the coppers.

In Fig. 9(c), the minimum energy is obtained by the
formation of “biexcitons” (in the language of Ref. 53),
and thus a charge-transfer instability from copper to oxy-
gen ions occurs. This same phenomenon takes place in
two dimensions as shown in Fig. 9(d) also for the case of
n, =2, and large V. When additional holes are added to
the system, the region of doubly occupied oxygens in-
creases in size. Then, the nearest-neighbor repulsion V'
leads to the formation of tight hole bound states at the
oxygen sites. In turn, this leads to phase separation
which occurs between a phase with a density of one parti-
cle per cell (with the charges on the copper sites), and a
region of density of two particles per cell (with all the
charge on oxygens). However, remember that the results
summarized in Fig. 9 were obtained in the atomic limit.
When tpd#O the actual phase boundaries, and even the
existence of phase separation, depends on the interplay
between the kinetic energy and the Coulomb terms. In
order to study this interplay, exact diagonalization tech-
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FIG. 9. Ground state of the two-band model for different
densities and couplings in the atomic limit. (a)—(c) are in one
dimension, while (d) is in two dimensions. (a) half-filling n, =0;
(b) n,=2 and ¥V <A+2U,; () n,=2 and V>A+1U,; (@
n, =2 and large V.

E. DAGOTTO et al. 49

niques were recently applied®* > to finite chains for par-
ticular values of the parameters of the two-band model.
Indications of superconductivity were observed in a spe-
cial region of parameter space by studying the value of
the parameter K, used in conformal field theory, and by
the analysis of the anomalous flux quantization in the
presence of an external flux through the ring (i.e., closing
the chain with periodic boundary conditions).

In this section, we also use Lanczos diagonalization
techniques to obtain ground-state properties of the one-
dimensional version of Eq. (21), and analyze further the
interplay between superconductivity and phase separa-
tion, according to the ideas discussed in the introduction.
Due to the rapid growth of the Hilbert space of the prob-
lem with the chain size, our analysis is limited to six cells
(12 sites), periodic boundary conditions, and n, =2, 4,
and 6 holes. In order to work in the regime of hole pair-
ing in oxygen sites, we select U; =7, Up =0, and A=1.5,
all in units of the hopping integral 7,,. The parameters
satisfy the relation U, > (U, +2A), and are similar to
those used by Sudbo et al.>* The parameter V is varied
between O and 8, which is large enough to reach the
phase-separated regime. A quantitative indication of the
charge transfer from Cu to O sites, and eventually of
phase separation, is given by the average occupation of
oxygen sites. Alternatively, a more clear indicator of the
crossover from the state shown in Figs. 9(b) and 9(c) is
given by the susceptibility x,,=(n%)—(ng)? (see Ref.
56). This quantity is maximized when a transfer of
charge from copper to oxygen takes place, i.e., at the
phase-separation transition, and then it slowly decays to
zero at large V once phase separation has already oc-
curred, since the fluctuations in the occupation number
of the oxygens vanish in this limit. An independent
determination of the crossover to the phase-separated re-
gime is given by the short-wavelength component of the
susceptibility associated with the correlations of pairs of
holes in the oxygen sites.>’ This quantity (that we called
X) is normalized such that it is equal to 1 for ¥ — oo if
the phase-separated state Fig. 9(c) is reached in this limit.
For details see Ref. 57.

The numerical results for the susceptibility x,, are
shown in Fig. 10(a) for the case of two holes n, =2, and
hopping 1,;,=0.5, and 7,,=1. In the atomic limit
(1,4, =0), the crossover between the two states is sharp,
and takes place at ¥ =A=1.5 (not shown in the figure).
For a fixed A, the value of V at which the crossover
occurs increases with 7,4, and it is located between
2=V =3fort,,=1. The order parameter X has its max-
imum variation also in the same interval, making the re-
sults compatible among themselves and with the simple
picture shown in Figs. 9(a)-9(d). On the other hand, the
results corresponding to n, =4 are very different. The or-
der parameter X does not saturate to 1 at large V, and the
occupation number of oxygen sites is maximized in this
limit (i.e., apparently there is no occupancy of the copper
sites). However, this result is a finite-size effect. To visu-
alize this problem, simply add two more holes to the six
cells chain shown in Fig. 9(c). In the atomic limit the
possible states are five double-occupied oxygens or four
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FIG. 10. (a) x,; (defined in the text) as a function of V, for
U,;=17, U,=0, and A=1.5, on a six-cell cluster with eight holes
(i.e., n,=2). The open squares are results for ¢,; =0.5, while the
full squares correspond to t,,=1. The triangles joined by
dashed lines correspond to the order parameter X used in Ref.
57; (b) is the same as (a) but with 10 holes, i.e., n, =4.

double-occupied oxygens and two single-occupied oxy-
gens, and thus strictly speaking the phase-separated re-
gime defined before cannot be realized due to the particu-
lar size of the chain, and the five pairs of holes have a
finite mobility (as in a doped attractive Hubbard chain).
This effect does not occur on a larger chain (as an exam-
ple consider 20 holes on a 12-cell chain which keeps the
density constant). Then, the results of Fig. 10(b) should
not be considered representative of the bulk limit, and
they are shown here mainly as a warning to the reader
that finite-size effects have to be carefully controlled in
these numerical studies.

In order to study the existence of a superconducting
phase arising from the mechanism of hole pairing at the
oxygen sites, we studied the pairing correlation

Clm=— 3 (A4 na,) 22)
N j

where the pairing operator is defined as A; =c;c 1> and j
denotes oxygen sites. The results for the pairing correla-
tions corresponding to the chain of six cells, and the same
values of parameters as used in Fig. 10(b), are shown in
Fig. 11(a) for n;, =2, at several values of V. It can be seen
that the pairing correlation at the largest distance slowly
increases with ¥ up to =4 (measured with large steps in
V of 2 in units of #,;), i.e., approximately in the crossover
to the phase-separated regime. At V=6, phase separa-
tion has been reached and the double-occupied oxygen
sites are in contiguous sites forming a rigid structure with
very low mobility. Consequently, the pairing correlations
are suppressed at large V. Then, Fig. 11(a) shows a
behavior qualitatively very similar to those reported be-
fore for the t-J model and the ¢-U-V model, i.e., the re-
gion where superconducting correlations exist in the vi-
cinity of phase separation. However, note that the size of
the tail in the pairing correlation is much smaller than
that observed for the ¢-J model in one and two dimen-
sions.?%!®  Actually, we measured the pairing correla-
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FIG. 11. (a) Pairing correlations C(m) (defined in the text) as
a function of distance for the one-dimensional Cu-O model with
n,=2 at U;=7, U,=0, A=1.5, and t,;=1. The full triangles,
open circles, full squares, and open squares correspond to
V=0.0, 2.0, 4.0, and 8.0, respectively; (b) same as (a) but for
ny =4,

tions at the same parameters used before by Sudbo
et al.,> and also in the superconducting region studied
by Sano and Ono> in the U;= o limit. We observed
that the tail in C(m) is negligible in both cases (perhaps
due to a competition with a charge-density-wave state),
and thus only the conformal field theory parameter K, is
left for the analysis of pairing in this region (it is expected
that K, will present smaller finite-size effects than the ac-
tual correlations). This is unfortunate since to study oth-
er properties of the superconducting condensate (special-
ly dynamical properties) it is important to have robust
pairing correlations developed in the ground state of the
clusters that can be studied numerically. Note also that
the superfluid density does not exist in one dimension
since for its definition a careful two-dimensional limit in
the current correlations needs to be considered, *® as men-
tioned briefly in Appendix A. One should be careful in
not confusing the Drude weight and the superfluid densi-
ty which are obtained from very similar current correla-
tions.

In Fig. 11(b), the results corresponding to n, =4 are
shown, again for several values of V. The pairing correla-
tions are clearly more robust than those shown at smaller
hole doping in Fig. 11(a). However, this effect is unfor-
tunately spurious and caused by the finite size of the
chain as discussed before. The 10 holes prefer to be lo-
cated on oxygen sites, with none on copper sites, and thus
the oxygen pairs have enough mobility to induce a robust
pairing signal. We are currently investigating the possi-
bility of enlarging the range of the repulsive density-
density interaction in order to stabilize the results of Fig.
11(b). Work is in progress. Finally, in the case n, =6 all
oxygen sites are doubly occupied in the large V limit, and
we observed that C(m) decays to zero rapidly with dis-
tance as expected.

In short, a numerical analysis of the two-band Hub-
bard model on a chain roughly shows a behavior similar
to that of the #-J model in 1D and 2D, and of the t-U-V
model, namely, the presence of superconducting correla-
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tions near half-filling. A study of the same phenomenon
for a three-band model in 2D would be important.

V. CONCLUSIONS

In this paper we have analyzed several models of corre-
lated electrons using both numerical and analytical tech-
niques. In particular, we search for superconducting
phases as a function of couplings and densities. Our main
result is that the two-dimensional ¢-J model has a region
of dxz_yQ superconductivity near phase separation cen-
tered at a density of quarter-filling {n )=%. In addition,
an interesting transition from d-wave to s-wave supercon-
ductivity was observed reducing the electronic fermionic
density. Although the presence of the d-wave supercon-
ducting phase for realistic densities remains unclear, we
argued that numerical studies in this region may be
affected by the small number of pairs contributing to the
signal. Then, we believe that the possibility of finding su-
perconductivity in this model in the realistic region of
small J/t and densities close to half-filling is still open.
The most favorable channel in this region is clearly
dxz_yz. Now that superconductivity has been identified

in the phase diagram, we believe that the most suitable
procedure to follow is to describe the quarter-filling re-
gion with a variational wave function of condensed d-
wave pairs, such that a good agreement with the numeri-
cal work is found, and then the variational calculation
should be repeated at other densities on larger clusters.

In addition, in this paper we conjectured that the pres-
ence of superconductivity near phase separation observed
for the ¢-J model may be a general feature of several mod-
els of correlated electrons. To explore this possibility we
studied analytically the t-U-V model in two dimensions at
half-filling. Indeed, we observed superconductivity near
phase separation in the regime of attractive couplings.
For large and negative U the condensate is s wave, while
increasing U it becomes dx2—y2’ as for the 7-J model. We

also observed signals of superconductivity near phase
separation for the one-dimensional two-band Hubbard
model. In this case the analysis was done using numeri-
cal methods. As a rule of thumb, we believe that once an
electronic model is proposed to describe a superconduct-
ing material, first it is convenient to search for indications
of phase separation in the phase diagram, which is usual-
ly not very difficult, and then superconductivity should be
analyzed in its boundary. This rule seems to work in all
models of correlated electrons that we are aware of (at
least those with finite-range interactions).
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APPENDIX A:
STUDY OF THE SUPERFLUID DENSITY

For completeness, in this appendix we remind the
reader of an alternative way to characterize a supercon-
ducting phase. In the bulk of this paper, we have used
the existence of long-range order in the equal-time pair-
ing correlation as an indication of superconductivity.
However, there is another approach that does not involve
the study of different symmetry sectors. This technique
consists in the evaluation of the “superfluid density” D,
in the region of interest. It has been recently shown®®
that this quantity can be obtained on a finite cluster fol-
lowing steps similar to those necessary to calculate the
Drude weight.® Actually, it can be shown that

s (=T) 1 1 ) X
D _(=1) 1 o
e’ AN N 2 E,—E, (M@0,

(A1)

where e is the electric charge, the current operator in the
x direction with momentum q is given by

Jx(q)= 12 e'vle }L,a51+3,a -c Li,a‘—'ha) )
N

(—T) is the mean value of the kinetic energy operator
of the model under study, |n) are eigenstates of the
Hamiltonian with energy E, (where n=0 corresponds to
the ground state), and the rest of the notation is standard.
The momentum q=(g,,q, ) of the current operator needs
to be selected such that g, =0 and g, —0. The constraint
of having a small but nonzero g, is necessary to avoid a
trivial cancellation of D, due to rotational and gauge in-
variance.’® On the 4X4 cluster, the minimum value of
g, is m/2, which unfortunately is not small. D, given by
Eq. (A1) can be evaluated numerically using a continued
fraction expansion technique.’

Results for D, have already been presented for the 2D
t-J model close to phase separation in Ref. 19. The
superfluid density has a clear peak in the same region
where the pairing correlations are maximized. Thus, the
results obtained with these quantities are consistent with
each other, and they support the conclusion that a super-
conducting phase exists in the 2D z-J model. Note also
that in Ref. 19 it was shown that the Drude peak is very
large not only in the superconducting phase, but also for
smaller values of J/t. This is to be expected since a small
resistivity (actually zero in the bulk limit) does not
uniquely mean that the system superconducts, since a
perfect metal has also zero resistivity. For details see
Refs. 19, 58, and 4.

It is interesting to remark that we have carried out a
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study of D; in the one-band Hubbard model with a repul-
sive interaction on a 4X4 cluster.’® Unfortunately, we
have not observed any indication of superfluidity in this
model based on D,. Since other groups may attempt
such a study, it would be helpful for them to have some
numerical results to compare with, and thus we provide
them here: working at U/t=8 (which is the most realis-
tic region of parameter space for the one-band Hubbard
model as a model of high-T, cuprates), and at the
representative density of 14 (8) electrons, we found that
(—T)/4N =0.26473 (0.28028). The complicated
second term on the rhs of Eq. (A1) evaluated at momen-
tum q=(0,7/2) gives —0.336 36 and —0.348 36, for 14
and 8 electrons, respectively. Then,
D, /(2me*)=—0.071 63 and —0.068 08, again for 14 and
8 electrons, respectively. Note that a negative result for
D, is not impossible on a finite system, and similar prob-
lems have been observed in the analysis of the Drude
peak near half-filling for the one-band Hubbard model. ®
Also in the t-J model, at small J /t, the superfluid density
is negative on finite clusters. These results should be tak-
en as indicative that there are no strong superconducting
correlations in these regimes of parameter space.

APPENDIX B:
HARD-CORE BOSONS IN THE ¢-J MODEL

In Sec. II, the phase diagram of the two-dimensional
t-J model was analyzed, finding indications of supercon-
ductivity near phase separation. This result is qualita-
tively similar to that found in the one-dimensional ver-
sion of the same model.3® It is interesting to notice that
in one dimension the statistics of the particles described
by the #-J model is irrelevant since a pair of them cannot
be interchanged due to the constraint of no double occu-
pancy at every site.® In other words, fermions and
hard-core bosons produce the same physics in this model.
Other one-dimensional models have the same property.
Then, a natural question arises: is the role of the statis-
tics in two dimensions important for the qualitative
features of the phase diagram? In order to study this
problem we analyze the same ¢-J model defined in Sec. II
but removing the fermionic statistics, i.e., considering
hard-core bosons with spin L. This is an artificial model
without physical realization (to the best of our
knowledge) but mathematically well defined, and its
analysis will teach us whether the signs coming from fer-
mionic permutations are important for the phase dia-
gram.®? As an additional motivation note that sometimes
the treatment of hard-core bosons is simpler than that of
fermions. In particular, it may occur that Monte Carlo
simulations without “sign problems” can be carried out
for bosons and not for fermions. Then, it is important to
know how drastic an approximation would be to neglect
the statistics in the two-dimensional ¢-J model.

Using a 4X4 cluster and exact diagonalization tech-
niques, we investigated the quantum numbers of the
ground state, and the sign of
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FIG. 12. Schematic phase diagram of the two-dimensional
t-J model when the fermionic statistics of the particles is re-
moved. FM denotes a ferromagnetic region, while PS is phase
separation. In the narrow region between these two phases,
“binding” (i.e., Ap <0) is observed, but such a narrow strip may
be a finite-size effect (and thus we included an interrogation
mark in the figure).

Ag=E(n+2)+E(n)—2E(n+1)

as a criterium to analyze the presence of binding of parti-
cles in the system [where E (m) is the ground-state energy
in the subspace of m holes]. In an analogous way, we
search for indications of phase separation studying the
sign of

Aps=E(n +4)+E(n)—2E(n+2).

Although the actual results are somewhat erratic (prob-
ably due to finite-size effects), the analysis of these num-
bers shows a clear pattern which is schematically shown
in Fig. 12. The region of phase separation is robust and
not appreciably affected by the statistics of the particles.
However, the metallic region of the phase diagram drasti-
cally changes replacing fermions for hard-core bosons. A
large “ferromagnetic” region is observed at all densities.
The total spin is maximized (fully polarized ferromagnet)
for small J /t, and then it decreases until the boundaries
of the phase are reached. It can be shown that even two
particles in an otherwise empty lattice minimize their en-
ergy by forming an S=1 state, at least for J/t smaller
than some finite number and on a finite cluster. Numeri-
cally we systematically observed a small window between
the ferromagnetic and phase-separated regimes. In this
regime, we found Ay <0 suggesting the presence of pair-
ing. However, it is not clear whether this small detail
will survive the bulk limit increasing the lattice size.
Then, we conclude that the phase diagram of the two-
dimensional ¢-J model is strongly affected by the statistics
of the particles, and approximations that do not handle
this properly may produce incorrect results.
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