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Penetration depth and impurity scattering in unconventional superconductors: T=0 results
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The behavior of the penetration depth A. at low temperatures is an important probe of the symmetry of
the order parameter in superconductors. For this reason, the penetration depth in the high-T, oxide has
been the focus of much recent experimental and theoretical attention. In this paper we provide detailed
results for the behavior of A, at T=O, as a function of impurity scattering, for an unconventional order
parameter.

Experimental' and theoretical investigations of
the penetration depth in the high-T, superconductors
have recently been of great interest. The low-
temperature behavior of the in-plane penetration depth
A, ( T) is an important clue as to the symmetry of the su-

perconducting order parameter A(k). One possibility is
that b, ( k ) has the full rotational symmetry of the
normal-state lattice; this possibility is often labeled "s-
wave. " A contrasting scenario is that b, (k ) is unconven-
tional, having a reduced rotational symmetry; this possi-
bility is often labeled "d-wave, " since one simple form
often considered is

b, k)=h k„—kr) .

Much theoretical work has been concentrated on the
temperature dependence of A,(T) at low temperature,
T ((T, . Here, we focus on a different aspect of the prob-
lem, an aspect of possible experimental relevance. We
present results showing how the zero-temperature
penetration depth, A,(T=0), varies with impurity concen-
tration. Our results illustrate the great sensitivity of un-

conventional superconductors to impurity scattering.
Our results also show the recently discussed difference
between impurity scattering which is in the Born limit,
and scattering in the unitary limit.

We compute the super6uid density p„and then the
penetration depth A, , for a two-dimensional sheet of elec-
trons with a random array of impurities. We treat a sys-
tem with a circular Fermi surface, and a gap of form (l).
To do the calculation, we use a recently developed gen-
eral formula for the superQuid density tensor. This leads
to the following formula [here, P is the polar angle in the
xy plane, so that b, (P)=6 cos2$]:

p, =2N(0)vFA nMT

X
2m d$ cos f cos 2f

0 2n [(p+ia3) +b, cos 2$]

Two quantities are needed as input to this formula, the
order parameter b, and the impurity self-energy a3(e).
Coupled equations must be solved at this point. First, we

have the weak-coupling gap equation

N(0) T yg ~ dP cos 2P
2~ [(&+i a)3+25~ cos22$]'~ 2

a3(e) =ct3(e), (4)

where c is the density of impurities, and t3(e) js the t ma
trix. It is given by

N(0)v (g3)
I;3=

l —(N(0) (g ))'

Here, the impurity potential is taken to be s wave, of
strength u. Small u puts us in a limit where the Born ap-
proximation is valid, while large u, u~ ao, puts us in the
unitarity limit. The quantity (g3 ) is given by

l 1T(c+Ea 3 )
g3 2~ [(a+ia3 ) +b cos~2$]'

(6)

So we must solve Eqs. (3)—(6) for b, and a3(e), and then
use them in Eq. (2) to compute p, . We can simplify our
equations slightly by performing the angular integrals.
This leads to

Here, g is a coupling constant, and the prime on the
Matsubara sum indicates that a cutoff is needed. Next,
we need the equation for the impurity self-energy a3(e):

It [b,'y(Z'+b, ')]—E [6,'/(Z'+& )]

l 2N(0)T~, ~ 2+~p
g Q2 g2+ g2

g2 Q2

p+~ v+5
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and

[2'(0)cv /+Z +b ]K[A /(Z +5 )]
1+[4N(0) vV/(Z +PL )]K [6 /(Z +6 )]

Here, the function Z(e) is defined by

6e)=e+ias(e), (10)

uni arity imits in thedi erence between the Born and 't

e avtor of p, . In particular, in the unitarity limit p,
drops off very quickly as I/2r increases from zero much
more rapidly than T, .

For corn arison wee a so consider a conventional order
parameter; we take the simplest form, 6(k ) =b„ indepen-
dent of k. The superfluid density is then given by"

ln =%(-')—I —+Tc 1

Tco 2 4~TTc
(12)

Here %&@&
'

( ) is the digamma function and T '
h

tion temperature of a pure system.
n, o is t e transi-

Figure 1 shows reresults for the dependence of p, (T=O)
on impurity scattering. We sh
1

e s ow p, as a function of
/2r, for the Born limit (small u) and th~ oo . e also show T, as a function of 1/2~. As em-

phasized by previous authors th ere is a substantial

and K (x) and E (x ) are the elliptic integrals. '

'ng ime in t' e usualWe define t e normal-state scatteri t'

way:

1 N(0)ncu
2r 1+(N(0)nv )

The same
tions of c and

me value of v can correspond to d'ffo i erent combina-
c and v, and their different combinations in en-

eral lead to different values of and A, . H
'

n in „at least in this simple model f-
impurities and an

e o s-wave

only on v"
p

' '
s and an order parameter given b (1) d

'
en y, epends

p, =N(0)vzb, rrMT g (e'+&')( I /2~+'t/e +b, ')

(13)

For this completely isotropic gap, p, depends only on ~,
not separately on the values of c and F'an U. igure 1 includes

different way, showing the T=O value f A.

of I /2~.
va ue o as a function

The tmpurtty self-energy a3(e) clearly plays a ke role

ion of a, for a particular value of r. The h
difference in behavior at

o v. e uge
'

r, at small energies, between the
orn and unitary limits is evident. At lar e e

(e) h its normal-state values of 1/2~; for
e)&b„superconductivity has no effect on a3(e).

Hirschfeld and Goldenfeld have discu
o p, = ), as a function of c, near c =0, in the

unitarity limit. We can enan enlarge on their discussion in the
ramework of our formalism. At T=O th

becomes:
t e formula for p,
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FIG. 3. Same lot asp as Fig. 2, on expanded scales. This shows
more clearly the behavior in the vicinity of 1/2v =0.
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y=ta3(0) . (16) 5p, =p, (T=O,c) p—,(T=O,c =0)

So, as Hirschfeld and Goldenfeld note, y~v c, up to
logarithmic corrections. Furthermore, in this same limit
(small c, unitary) it is easy to see that

4N (0)Muy
(19)

ia3(e=O)= —
—,
' . (17)

Results (16}and (17) are both embodied in the following
formula:

Here, b,o is the pure value. So, Eq. (19), together with the
transcendental equation for y, Eq. (15), gives the leading
correction to p, in the unitary limit. Figure 6 compares
the approximation (19) with the true answer. We can
rewrite (19) in terms of the penetration depth as follows:

E++—e +4yt'a3(e) =
2

(18}

A(T=0, c)—A(T=O, c =0) 2y
A(T=O, c=0) mho

' (20)

which is asymptotically correct for small values of e.
Figure 5 compares the function ia3(e} with the approxi-
mation (18). If we use (18) in the integral for p„Eq. (14),
we can extract the leading correction to p, (T=O,c) in

the small c unitarity limit:
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