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Penetration depth and impurity scattering in unconventional superconductors: T =0 results
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The behavior of the penetration depth A at low temperatures is an important probe of the symmetry of
the order parameter in superconductors. For this reason, the penetration depth in the high-T, oxide has
been the focus of much recent experimental and theoretical attention. In this paper we provide detailed
results for the behavior of A at T=0, as a function of impurity scattering, for an unconventional order

parameter.

Experimental! ™3 and theoretical* ® investigations of
the penetration depth in the high-T, superconductors
have recently been of great interest. The low-
temperature behavior of the in-plane penetration depth
MAT) is an important clue as to the symmetry of the su-
perconducting order parameter A(k). One possibility is
that A(k) has the full rotational symmetry of the
normal state lattice; this pos51b111ty is often labeled °
wave.” A contrasting scenario’ is that A(k) is unconven-
tional, having a reduced rotational symmetry; this possi-
bility is often labeled ‘“‘d-wave,” since one simple form
often considered is®

Ak)=AkI—k}) . (1)

Much theoretical work has been concentrated on the
temperature dependence of A(T) at low temperature,
T <<T,. Here, we focus on a different aspect of the prob-
lem,® an aspect of possible experimental relevance. We
present results showing how the zero-temperature
penetration depth, A(T =0), varies with impurity concen-
tration. Our results illustrate the great sensitivity of un-
conventional superconductors to impurity scattering.
Our results also show the recently discussed difference
between impurity scattering which is in the Born limit,
and scattering in the unitary limit.

We compute the superfluid density p,, and then the
penetration depth A, for a two-dimensional sheet of elec-
trons with a random array of impurities. We treat a sys-
tem with a circular Fermi surface, and a gap of form (1).
To do the calculation, we use a recently developed gen-
eral formula for the superfluid density tensor.” This leads
to the following formula [here, ¢ is the polar angle in the
xy plane, so that A(¢)=A cos2d]:

ps =2N(0WEA*TMT

2 fzw_g cos’¢ cos?2¢
27 [(e+iay)*+A%cos2¢ 32

(2)

|

K[A*/(2*+AY)]—E[A%/(z? +A‘)]

Two quantities are needed as input to this formula, the
order parameter A and the impurity self-energy a;(e).
Coupled equations must be solved at this point. First, we
have the weak-coupling gap equation

amd¢ cos?2¢
0)xT .
2 f 27 [(e+iay )+ A%os?24]'?
(3)

Here, g is a coupling constant, and the prime on the
Matsubara sum indicates that a cutoff is needed. Next,
we need the equation for the impurity self-energy a;(e):

H

0Q |—

a3(€)=ct3(6) N (4)
where c is the density of impurities, and ¢5(€) is the ¢ ma-
trix. Itis given by

N(Ow*gy)
ty= T - (5)
1—(N(0)w{gs))

Here, the impurity potential is taken to be s wave, of
strength v. Small v puts us in a limit where the Born ap-
proximation is valid, while large v, v — oo, puts us in the
unitarity limit. The quantity (g ) is given by

rd —im(e+iay)
(g.)= [*"4¢ _
S = [(e+ias )2+ Alcos’26] /2 ©

So we must solve Eqgs. (3)-(6) for A and a,(€), and then
use them in Eq. (2) to compute p,. We can simplify our

equations slightly by performing the angular integrals.
This leads to

- 2
Ps ZN(O)UFMTZ \/2‘2+A2 (7
1 2N(0 VIR A? 2’ A?
—=— e+A — K (8)
g 2 z2+A2 E+Ar | P+A?
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and
[2eN (0)cv?/V &+ A2IK[A2 /(& +A?)]
1+ [4N 0/ %22 /(B + A2 KA /(@ +A%)]
)

ay=

Here, the function &(¢€) is defined by
e(e)=€+ia,(e) , (10)

and K (x) and E (x) are the elliptic integrals.'®
We define the normal-state scattering time in the usual
way:
1 _ N(O)mew?

—=— (11)

27 1+(N(0)mv)?
The same value of 7 can correspond to different combina-
tions of ¢ and v, and their different combinations in gen-
eral lead to different values of p; and A. However, the
reduction in T, at least in this simple model of s-wave
impurities and an order parameter given by (1), depends
only on 7:%

1 1
-+
2 4nrT,

[

TcO

In =¥(l)—v : (12)

Here, ¥(x) is the digamma function and T is the transi-
tion temperature of a pure system.

Figure 1 shows results for the dependence of p, (T =0)
on impurity scattering. We show p, as a function of
1/27, for the Born limit (small v) and the unitary limit
(v— ). We also show T, as a function of 1/27. As em-
phasized by previous authors, there is a substantial
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FIG. 1. Superfluid density, at T=0, as a function of 1/27.
Solid lines show p; for unitary limit d wave, Born limit d wave,
and s wave. p{ is the value of a pure system. Dotted line shows
T, /T, for the d-wave order parameter.
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difference between the Born and unitarity limits in the
behavior of p,. In particular, in the unitarity limit p
drops off very quickly as 1/27 increases from zero, much
more rapidly than T.

For comparison, we also consider a conventional order
parameter; we take the simplest form, Ak )=A, indepen-
dent of k. The superfluid density is then given by'!

1
=N(0WwZA*’rMT _—
s F 2 (E+A2)(1/27+V e+ A?)

(13)

For this completely isotropic gap, p, depends only on 7,
not separately on the values of ¢ and v. Figure 1 includes
a plot of this result, and we can see that for a convention-
al, isotropic gap, p, falls off very slowly with increasing
1/27. In Figs. 2 and 3 we display our results in a
different way, showing the T=0 value of A? as a function
of 1/27.

The impurity self-energy a;(e€) clearly plays a key role
in these calculations. In Fig. 4 we show a plot of a;(¢),
as a function of €, for a particular value of 7. The huge
difference in behavior, at small energies, between the
Born and unitary limits is evident. At large energies,
ia;(€) approaches its normal-state values of 1/27; for
€>> A, superconductivity has no effect on a;(e).

Hirschfeld and Goldenfeld® have discussed the initial
decrease of p (T =0), as a function of ¢, near ¢ =0, in the
unitarity limit. We can enlarge on their discussion in the
framework of our formalism. At T=0 the formula for p,
becomes:
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FIG. 2. Plot of A%, at T=0, as a function of 1/27. Solid lines
show d-wave unitary limit, d-wave Born limit, and s wave. A, is
the value of the pure system.
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FIG. 3. Same plot as Fig. 2, on expanded scales. This shows
more clearly the behavior in the vicinity of 1/27=0.
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0 VE+A?
The elliptic function K(x) has a logarithmic singularity
as x — 1; thus, if the density of impurities ¢ is small, this

divergence comes into play near e=0.

0.40[ T T T B — T T T )

1/27T,4 = 0.1

d wave (Unitarity)

Ll

d wave (Born)

0.00

€/Teo

FIG. 4. Impurity self-energy, ia;(e€), as a function of ¢, at
T=0, for the d-wave order parameter. We close 1/277T,,=0.1,
and show results for the Born and unitarity limits. In the Born
limit, ia;(e) does not vanish at e=0; it approaches a value too
small to resolve on this graph.
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FIG. 5. Impurity self-energy, ia;(€) as a function of ¢, at
T=0 for the unitary limit. We chose 1/27T,,=0.0001. The
solid line shows the actual, computed value, while the dashed
line plots the approximate formula ia; = —e+V 2 +4y2/2.

We also need to understand the small ¢, unitary limit,
behavior of a;(e). From Eq. (9), it is easy to see that in
this limit we have

4A cA
2 —
In|l— |=—=—
S IV T T 1s)
where
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FIG. 6. Superfluid density at T=0 in the unitarity limit for
the d-wave order parameter. The solid line shows the actual
computed value, while the dashed line plots the approximate
formula p,=p?—[4N(0)Mv?/mA]y. The value of y is ob-
tained by numerical solution of Eq. (15).
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y=ia;3(0) . (16)

So, as Hirschfeld and Goldenfeld® note, y «Ve, up to
logarithmic corrections. Furthermore, in this same limit
(small ¢, unitary) it is easy to see that

ia}(e=0)=—1. (17)

Results (16) and (17) are both embodied in the following
formula:

Y sy
ia3(e)=—L‘/26—ﬂI— , (18)

which is asymptotically correct for small values of e.
Figure 5 compares the function ia;(€) with the approxi-
mation (18). If we use (18) in the integral for p,, Eq. (14),
we can extract the leading correction to p (T=0,c¢) in
the small ¢ unitarity limit:
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8p, =p,(T=0,c)—p,(T=0,c=0)
4N (0)Mv}
Ay Y. (19)

Here, A, is the pure value. So, Eq. (19), together with the
transcendental equation for y, Eq. (15), gives the leading
correction to p, in the unitary limit. Figure 6 compares
the approximation (19) with the true answer. We can
rewrite (19) in terms of the penetration depth as follows:

MT=0,c)—MT=0,c=0) _ 2y
AMT=0,c=0) Ty

(20)
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