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We calculate in a k-averaging approximation, the vertex corrections for pairing at a Van Hove singu-
larity mediated by an Einstein phonon. The vertex correction leads to a modest reduction in 7, which
can still reach the experimental values for realistic phonon couplings, and to a significant deepening of
the dip in the isotope shift at the 7, maximum. Interference between first- and second-order vertex
graphs diminishes the effect of the Coulomb interaction on T,.. The isotope-shift dip is shallower for
repulsive Coulomb interaction, and deeper in the case of an attractive interaction introduced to model

an excitonic contribution to pairing.

I. INTRODUCTION

One of the proposed mechanisms for achieving the
high transition temperatures characteristic of cuprate su-
perconductors involves' "¢ a combination of the logarith-
mic density-of-states (DOS) peak [Van Hove singularity
(VHS)] associated with the saddle point in the band
structure—now observed in photoemission on several
materials’—together with a relatively high-frequency
mediating excitation. The excitation considered is either
an optical phonon or an electronic excitation. The transi-
tion temperature in this mechanism characteristically
peaks when the Fermi level lies at the VHS, and in the
case of phonon-mediated pairing it is also found"* that
the isotope shift has a minimum at the same point. These
concepts form an explanation for the combination of the
T, maximum with an isotope shift minimum seen experi-
mentally.?

This Van Hove-boosted type of phonon mechanism has
been examined at the BCS (Refs. 1-4) and Eliashberg*™®
levels, but a cause for concern is that the conditions re-
quired to give high transition temperatures (DOS peak
combined with high excitation frequency) are also such as
to produce larger vertex corrections’ which are depairing
in sign, and which tend to eliminate the enhancement in
transition temperature generated by the VHS. In the
case of Einstein phonons a rough estimate of the magni-
tude of the paring vertex to second order in the electron-
phonon coupling energy shows that vertex corrections
are down by the factor (dimensionless
coupling) X (phonon frequency) X (DOS at phonon fre-
quency), times a numerical factor:
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In (1) the first term is the Eliashberg term, and the second
comes from the vertex corrections. A is the dimension-
less coupling in the strip of width wg around the Fermi
level [in the notation below A=(V,/2D)In(D /wg)], og
is the Einstein phonon frequency, and D is the half-
bandwidth. Taking typical values wz;=0.06 eV, D =1
eV, and A~ 1, the vertex correction in (1) is seen to be
equal to the first, Eliashberg, term, which it effectively
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cancels. There would seem to be a strong possibility that
this large depairing vertex correction effect eliminates the
high transition temperature found in Eliashberg approxi-
mation at the van Hove singularity.

In this paper we address the vertex correction prob-
lem'® numerically in a realistic but slightly simplified
model. First we shall restrict ourselves to the Einstein
phonon, for which in the first-order (Eliashberg) approxi-
mation only fermion propagators which are local, i.e,.
summed over k, appear. In the second-order approxima-
tion, involving the vertex corrections, this simplification
is no longer exact, but since it seems unlikely that
momentum-dependent effects are significant for Einstein
phonons, we make a local k-summation ansatz in order to
facilitate calculation of the vertex corrections.

II. CALCULATION OF VERTEX CORRECTIONS

The procedure for calculating the vertex corrections in
the case of uniform density of states has been fully de-
tailed by Grabowski and Sham.!® The results may be ob-
tained by evaluating the diagrams in Fig. 1 using
Nambu-Gorkov notation, keeping (for a T, calculation)
only terms up to first order in the gap. The gap insertion
may lie in any of the three fermion line segments in the
vertex graph in Fig. 1, yielding three conventional Feyn-
man graph contributions! to the vertex function.

The interaction propagator in Matsubara notation for
Einstein phonons is

) (2)

where v, =2mnT is the even Matsubara frequency, and
V, is the phonon coupling energy. It will also be
convenient to introduce the dimensionless coupling
A°=V,/2D.

In the local or k-averaging approximation the normal-
state electron propagator is defined as

Gliwy)= [de—LEL 3)

in,—e—2(iw,)

where p(¢e) is the noninteracting DOS. In the Van Hove
case

3520 ©1994 The American Physical Society



49 VERTEX CORRECTION TO PAIRING AT A VAN HOVE SINGULARITY 3521

S ST

FIG. 1. Diagrams for self-energy in Nambu notation: left,
Eliashberg approximation; right, vertex correction. Solid line,
fermion propagator in Nambu notation, wavy line, phonon.
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where o, =(2n +1)7T is the odd Matsubara frequency,
and E; is the shift of the VHS from the Fermi level (taken
as energy zero). 2(iw,) is the normal-state self-energy,

J

given from Fig. 1 by (in a compact notation)

2n)=T 3 K(n—m)G(m)

+T*3 G(r)G(m)G(n+m —r)

m,r
XK(r—m)K(n—r). (5
The linearized gap equation may be written

ImG (m)A(m)

Im=(m)—w,, ©

A(n)=T ¥ I'(n,m)

where the pairing kernel is given by'°

I'(n,m)=K(n —m)+T 3 K(n —m)[K(n —r)G(—r)G(n —m —r)+K(m —r)G(r)G(n —m +r)]

+TY K(n—r)K(m—r)G(r)G(r—m —n) .

When the second-order terms are dropped from (5) and
(7), then (5) and (6) reduce to the standard Eliashberg
equations.

The numerical procedure used for calculating T, is
first, defining frequency sums within a cutoff ., to
iterate (5) for the normal-state self-energy. Starting from
a self-energy, G is calculated using (3), the result inserted
in (5), and the loop repeated. This procedure converges
to high accuracy in a few iterations. Calculating I" from
(7), and inserting into (6), we have an eigenvalue equation
involving eigenvector A, which yields 7, when the
highest eigenvalue is unity.

ITII. RESULTS

Let us first consider how the electron-phonon coupling
strength may optimally be defined in the nonuniform
DOS situation. An unambiguous dimensionless measure
of the electron-phonon coupling strength in the calcula-
tion is A°=V, /2D, but this quantity omits the logarith-
mic enhancement of the DOS near the Fermi level. The
Z factor yields a more physical measure of coupling
strength; in Eliashberg approximation Z typically falls off
monotonically from a fairly large value at low frequency,
given in the case of uniform DOS as Z (0)=1+A, to uni-
ty over a frequency range wg. An estimate of the
effective coupling near the Fermi level can be then ob-
tained from the excess of the Z factor over unity, more
formally A= —Re32(iwy)/iwy. Finally we may intro-
duce A as the electron-phonon matrix element times the
DOS at the phonon frequency wg, giving
Ae=A%In(D /wg).

In Fig. 2 we illustrate, for the case where the
Fermi level lies at the VHS, how the Z factor
Z(iw,)=1—Re[2(iw,)/iw,] varies as a function of
Matsubara frequency , for the Eliashberg and vertex

(7

levels of approximation. The Z factor is seen in the
Eliashberg case to fall off monotonically from the low-
frequency value 1+A;. However, the effect of the vertex
corrections is to reduce the Z factor back towards unity,
and this effect is most noticeable at the lowest frequency
where the Eliashberg Z factor is largest (Fig. 2), actually
giving a minimum in Z around zero frequency. The
overall smaller Z is reminiscent of the BCS approxima-
tion in which Z =1, a result which lends some credence
to use of the BCS formalism in treating superconductivity
in the van Hove model.! ~*

In Fig. 3 we compare transition temperature and iso-
tope shift for the Eliashberg and vertex levels of approxi-
mation for pure phononic coupling. When the Fermi lev-
el lies near the van Hove the DOS is largest and
the vertex corrections maximal. Hence T, is reduced
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FIG. 2. Reduction in Z factor due to inclusion of vertex
corrections is seen in plot of Z factor vs Matsubara frequency at
T,: dashed curve, Eliashberg approximation (labeled E); solid
curve, with vertex correction included (labeled ¥). VHS at Fer-
mi level, parameters are wy;=700 K, A°=0.33, A,=0.88,
Ag=0.79, D=w,=10000 K.
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FIG. 3. Reduced T, and deeper isotope shift minimum due
to inclusion of vertex corrections is seen in plot of transition
temperature (solid curves) and isotope shift (dotted curves) vs
shift 8E of VHS from Fermi energy: curves labeled E, Eliash-
berg approximation; curves labeled V, with inclusion of vertex
corrections. Parameters are wz;=700 K, A°=0.40, A,=1.34,
Ag=1.15,D=20000 K, v, =10000 K.

significantly relative to Eliashberg in this region, the
reduction being less significant away from the VHS where
the DOS is lower. Nevertheless, T,’s of order 90 K may
still be obtained of realistic couplings A;~Ag~1. The
isotope shift is also affected by the vertex correction, and
acquires a more significant dip at the 7. maximum, in
contrast to the shallow minimum in the Eliashberg
case.!!

Next we consider the effect of including an electronic
interaction. To introduce a repulsive Coulomb interac-
tion, we add a constant term to the phononic kernel (2):

K(v,)—K(v,)—V ®)

e

where V, is positive in the repulsive case, and may
be parameterized in terms of the coupling constant
A=V, /2D, or in terms of u* which may be defined (for
Fermi level at the VHS) as

. MIn(D /wg)

= : ©)
I+ (/2D /wp)

More speculatively, we may also model an attractive elec-
tronic (excitonic) interaction by introducing a negative
sign for V,.

In Fig. 4 are illustrated the effects of both a repulsive
and attractive Coulomb interaction [for larger values of
the interaction V, with an attractive sign the iteration
procedure involving Egs. (3) and (5) is unstable]. The
predominant effect of a small Coulomb interaction from
the vertex graph is via the interference term, in which the
second diagram in Fig. 1 contains one Coulomb and one
phonon interaction line. This interference term is poten-
tially opposite in sign to the conventional Eliashberg
Coulomb term (first diagram in Fig. 1), so the two effects
combined tend to cancel out the effects of the Coulomb
interaction—in principle, the Coulomb effect on T,
could even be counterintuitive in sign, if the vertex con-
tribution were the dominant one.

It is seen from the numerical example presented in Fig.
4 that, due to the above-mentioned cancellation between
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FIG. 4. Transition temperature (solid curves) and isotope
shift (dotted curves) plotted vs shift 6E of VHS from Fermi en-
ergy, with inclusion of vertex corrections, illustrating the effect
of the Coulomb interaction, including an attractive interaction
to model an excitonic pairing effect. Values of A2 are 0.05
(repulsive interaction, u*=0.113), 0.0, and —0.02 (attractive
interaction, u*=—0.057), curves labeled accordingly. Other
parameters are wy;=700 K, A°=0.33, A,=0.88, A,=0.79,
D=w,=10000 K.

the Eliashberg and vertex graphs when the Fermi level
lies right at the VHS, there results a very small counterin-
tuitive reduction in 7, from an attractive Coulomb in-
teraction, and a very modest reduction in T, in the case
of a repulsive interaction. On the other hand, when the
Fermi level is displaced significantly away from the VHS,
the Coulomb effect on T, is larger and now the repulsive
(attractive) Coulomb interaction lowers (raises) T, as ex-
pected unintuitively—the Eliashberg term is now seen to
be the dominant one again.

The effect on the isotope shift of the relatively small
values of the Coulomb interaction in Fig. 4 is quite in-
teresting. The attractive interaction deepens the isotope
shift minimum, while the repulsive Coulomb interaction
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FIG. 5. Transition temperature (solid curves) and isotope
shift (dotted curves) plotted vs shift E of VHS from Fermi en-
ergy, for Eliashberg (curves labeled E) and inclusion of vertex
corrections (curves labeled V), illustrating cancellation of vertex
effect on T, by a large repulsive Coulomb interaction. Parame-
ters wg =700 K, A°=0.60, A,;=2.0, Az =1.58, A2=0.12 (repul-
sive interaction, u*=0.24), D =20000 K, o, = 10000 K.
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makes the dip shallower.

The cancellation associated with the vertex correction
with one Coulomb and one phonon interaction is ex-
pressed in another way in Fig. 5, illustrating results for a
rather large repulsive Coulomb interaction. With this
choice of parameters the vertex correcting has little effect
on T,, due to cancellation between the diagram with one
Coulomb and one phonon interaction, and the diagrams
with two phonons and two Coulomb interaction lines.

IV. CONCLUSION

The zeroth-order conclusion from this study is that
while phonon vertex corrections are depairing in sign,
nevertheless they do not eliminate the strong phononic
pairing at a VHS. When realistic values of D in the range
1-2.5 eV are used, together with realistic values of the
coupling constant, 7,’s in the experimental range for the
cuprates are possible.

The effect of the vertex corrections on the isotope shift
is significant. The dip in the isotope shift at the max-
imum T, becomes more pronounced when they are in-
cluded, in contrast with the relatively shallow dip ob-
tained in the Eliashberg approximation. The isotope shift
results are indeed more similar to the BCS approxima-
tion, consistent with the reduced Z factor produced by
the vertex corrections.

The Coulomb interaction, normally repulsive, may be
also be made attractive as a crude way to model an exci-
tonic pairing contribution. The vertex contribution to
first order in a relatively weak Coulomb interaction inter-
feres with the Eliashberg Coulomb contribution so that at
the 7, maximum the Coulomb effect on 7. can be
small—or, in principle, even counterintuitive in sign. On
the other hand, away from the T, maximum the vertex

contribution is relatively smaller and the intuitive reduc-
tion in T, by a repulsive (or increase in T, by an attrac-
tive) Coulomb interaction occurs.

The Coulomb interaction also has a strong effect on the
isotope shift, the shift at the T, maximum being reduced
in the presence of a relatively weak attractive interaction,
and increased by a repulsive interaction.

From these results it is clear that the Eliashberg ap-
proximation is useful as a rough guide to the values of T,
to be expected form phononic pairing, but it cannot be
relied on more quantitatively, in particular, the isotope
shift when vertex corrections are included has a more
pronounced minimum than expected from the Eliashberg
approximation, in better agreement with the experimen-
tal data.

The foregoing results to not trivially reproduce the ob-
served sharp maximum in T, as a function of Fermi level
location together with a deep isotope shift minimum.
But if the excitonic attractive contribution were localized
near the T, maximum, as in the saddle-point pairing'? ex-
citonic mechanism, then T, would peak sharply and also,
from Fig. 4, the isotope shift might have a deep
minimum. It remains, however, to demonstrate these
conjectures in an explicit calculation at the vertex level of
approximation. Of course we recognize the existence of
other effects, such as anharmonic phonons, which may
further reduce the isotope effect.

One final speculation regarding the interesting
phenomenon of interference between the first-order dia-
gram in Fig. 1 when the interaction is Coulombic and the
second-order diagram to first order in the Coulomb in-
teraction, which as observed above tends to nullify the
effect of Coulomb repulsion, is that it may also occur in
other narrow band systems, for example, C¢,-based sys-
tems.
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