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A finite-temperature theory of magnetism in amorphous magnetic alloys with strong environment

effects is developed on the basis of the functional integral method for thermal spin fluctuations and the

distribution-function method for random distribution of local magnetic moments. The theory drastically

simplifies numerical calculations by means of the geometrical-mean model for amorphous structure as

well as electronic structure, and allows us to investigate the magnetism in amorphous transition-metal

alloys with large difference in atomic size via average coordination number which depends on the type of
central atom. Numerical example is given of the amorphous Fe-Zr alloys. It is demonstrated that the

theory reproduces quantitatively the local densities of states obtained from the first-principles calcula-

tions, and describes the magnetic phase diagram, in particular, the itinerant-electron spin glass. It is also

shown that the atomic-size effects play an important role in the formation of ferromagnetisrn in concen-

trated Fe-Zr amorphous alloys. The reentrant spin-glass behavior around 90 at. % Fe is shown to be due

to the thermal spin fluctuations of amplitudes of local magnetic moments.

I. INTRODUCTION

Finite-temperature theories which allow us to investi-

gate the magnetic properties of a large number of amor-
phous transition-metal (TM) alloys have become in-

dispensable with the appearance of intriguing experimen-
tal data for early-TM TM amorphous alloys, and rare-
earth TM amorphous alloys, ' which cannot be ex-
plained by a simple concept such as the charge transfer
or the generalized Slater-Pauling curves. ' For exam-

ple, the amorphous Fe-Zr alloys show complex magne-
tistn: paramagnetism (P), ferromagnetism (F), and spin
glass (SG) with increasing Fe concentration. The mag-
netization vs concentration curve deviates from the gen-
eralized Slater-Pauling curves beyond 85 at. % Fe. '
Neither the concentration dependence of SG tempera-
tures (Tg ) nor that of Curie temperatures ( Tc) has been

explained. The reentrant spin-glass (RSG) behavior near
the SG-F boundary has not been clarified yet, though
much experimental effort has been concentrated on this
issue in the past decade.

A single-site theory of finite-temperature magnetism in

amorphous and liquid alloys was first proposed by one of
the authors' on the basis of the functional integral
method�' ' and the coherent potential approxirna-
tion. ' ' ' The theory explained the qualitative
behaviors of high-temperature susceptibilities in liquid
Fe, Co, and Ni and clarified the importance of thermal
spin fluctuations in the liquid data. The applications to
amorphous and liquid alloys, however, were not easy
since one needs to calculate there the input averaged den-
sities of states (DOS) for noninteracting electrons at each
concentration. Yu and Kakehashi ' solved this difficulty
combing the single-site theory with the geometrical-mean
(GM) model ' for both interatomic distances and

transfer integrals. The approach enables us to calculate
the magnetic properties at arbitrary concentration only
from the electronic structures of amorphous pure metals.
It was applied to the amorphous Fe-Ni alloys and ex-
plained the enhancement of ferromagnetism in the Invar
concentration region.

A theory which takes into account local environment
effects (LEE's), therefore describes the SG in amorphous
metals and alloys, was proposed by Kakehashi. He in-
vestigated systematically various magnetic properties of
amorphous 3d TM's using the theory, ' and provided
us with a picture of metallic magnetism in amorphous
TM's: the formation of the SG around Fe, the enhance-
ment of Tc around Co, and the weak ferromagnetism
around Ni. This theory, however, leaves two problems
unsolved when amorphous alloys are considered. First, it

neglects the atomic-size effects on coordination number
which may play an important role in early-TM TM and
rare-earth TM amorphous alloys. Second, it does not
give us any method to calculate the input average DOS
for amorphous alloys, which are indispensable for the ac-
tual numerical calculations.

In this article, we present an improved theory which
takes into account the atomic-size effects by introducing
an average coordination number z* depending on the

type of central atom a, and greatly simplifies numerical
calculations with use of the GM model. ' This theory
enables us to study various magnetic properties of 3d-3d
as well as 3d-4d and 3d-5d amorphous TM alloys at arbi-
trary concentration. In particular, the present theory de-
scribes not only the itinerant-electron SG, in which am-

plitude fluctuations of spins play an important role, but
also the effects of atomic short-range order (ASRO) on
magnetism.

We wi11 describe the theoretical framework in detail in
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the following section, which consists of four parts. In
Sec. IIA, we transform the degenerate-bands Hubbard
model into a noninteracting electron system with ficti-
tious random exchange fields, using the functional in-
tegral method. ' ' A local magnetic moment {LM) is
then given by a classical average of the fictitious field
variable on the same site with respect to the energy func-
tiona1. In Sec. IIB, we treat the electronic structure of
amorphous alloys in the energy functional by means of a
Bethe-type approximation and the GM model outside a
cluster. In the present approach, the coordination num-
ber is treated as a random variable so that z* is intro-
duced as a new parameter. Next, we take into account
the LEE's on the central LM in Sec. IIC, using the
distribution-function method initiated by Matsubara
and Katsura et a/. The self-consistent equations for the
average LM and the SG order parameter are derived
there. In Sec. II D, we discuss the choice of parameters
which are needed in the actual calculations. In particu-
lar, we will give a simple expression for the average coor-
dination number z' as well as a condition of the most
random atomic configuration with respect to the ASRO
parameters.

%e will present some results for the amorphous Fe-Zr
alloys in Sec. III as a numerical example. We will
demonstrate that the theory reproduces the local DOS
obtained from the first-principles calculations quantita-
tively and the magnetic phase diagram qualitatively or
semiquantitatively. The mechanism for the formations of
the SG, RSG, and ferromagnetism is presented there. Fi-
nally, in Sec. IV, we will summarize our results, and dis-
cuss future developments of the theory.

II. FINITE-TEMPERATURE THEORY
WITH LOCAL ENVIRONMENT EFFECTS

A. Functional integral method

We consider binary amorphous alloys described by the
degenerate-band Hubbard model with Hund's rule cou-
pling, and adopt the functional integral method' ' to
take into account thermal spin Quctuations. The in-
teracting electron system is then transformed into a one-
electron system with time-dependent fictitious fields

[g, (r}] acting on each site i Within .the static approxi-
mation, ' in which the time dependence of the fictitious
field variables is neglected [i.e., g;(r) =g;, being static in
time], the thermal average of LM on the site 0 is given by
a classical average of the field variable on the same site as
follows:

Here P is the inverse temperature.
The energy E(g) in Eq. (I) consists of the one-electron

free energy with random exchange fields [g, j, the term
with charge potentials [ w, (g) ) leading to a given d elec-
tron number n, on site i, and the Gaussian term describ-

ing random exchange fields:

E(g)=f dao f(co) —Im tr[ln(L' ' —t')]

++[—n;w;(g)+ —,'J;g;] . (2)

Here we have adopted the D-fold equivalent-bands model
for brevity, and have neglected the transverse-field vari-
ables which cause unreasonable thermodynamics within
the static approximation. f(to) in Eq. (2) denotes the
Fermi distribution function and J, the efFective exchange
energy parameter on site i. The locator matrix I.' for 0.-

spin electrons is defined by

(L' ');:—[co+i5—e;+p w;(—f)+ ,'J;g;—o+ho]5;

Here 6 is an infinitesimal positive number, e; and p are
the atomic level and the chemical potential, respectively.
h denotes the external field. The matrix (t');, is defined

by the transfer integral between sites i and j as follows:

(t'),, = t'(R,, ), (4)

t'(R, , )~R,, ',
a. being independent of the type of atom, we obtain the
following relation:

t'(R,, )= "'t(R,, )
" (7)

Here t (R,, ) can be chosen as t s (R,, ) so that the factorr" only depends on the type of atom u

(R)'z(c)— (&)
t (RJ)

It should be noted that t(R J. )=t (R;J. ) still depends on
the types of atoms a and y via R,-,. =R,-,-~.

The energy function E (g) is then rewritten as

E(g)=fdeaf (to) Im tr[ln(L —' —t)]

+g[ n;w;(g)+ ,'J;g; ] . ——(9)

Here {L); =L; 5, is a renor. malized .locator matrix

where R;, is the interatomic distance between the sites i
and j.

In the amorphous magnetic alloys, the structural and
configurational disorders appear in both the diagonal ma-
trix L' and the off-diagonal matrix t'. This makes it very
difficult to treat the first term in Eq. {2). We therefore
simplify the transfer integral t'(R, }betw"een the types of
atoms a and y by means of a geometrical mean,

t'(R,J ) =t r(R,")= [t (R J )trr(R I)]'
which is recognized as a reasonable approximation in TM
alloys. Assuming that the transfer integral follows the
same power law with respect to the interatomic dis-
t 35'36
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defined by

E(g)=g E;((;)+g @;,(g;,g, )+ (12)

The zeroth-order term in Eq. (12) has been omitted, since
it is described by the effective medium only. Thus, the
energy E(g) consists of the sum of a single-site energy
functional E;(g; ) on each site:

E;(g;)=f dco f(co) Imp—ln(L; ' —X,' '+F; ')

and t is the transfer integral matrix defined by

(t), =t(R,, ). -

Next, we introduce a site-dependent effective medium

] to describe the effects of random potentials and
thermal spin fluctuations in the diagonal matrix L as an
average, and expand the scattering potential
(L ' —X' ') in Eq. (9) with respect to the site:

d e ~'&'
(m, )=

fdP Pwi—)

(m, )
'lip) =Eo(g)+ g @()", (g) —g @()J'(g)

jx0 j%0 J

(19)

(20)

Here Eo(g) in Eq. (20) is the single-site energy functional
on site 0 [see Eq. (13)], and 4IJ')(g) and 4I }(g) are the
atomic and the exchange pair energies defined by

(I)(a)( g)

@(e}(g)
iJ

1

4,"(g,vxj ) .
Q= +

(21)

ergies in Eq. (12) because of the strong damping of in-

teraction strength in the disordered system as a function
of interatomic distance. After making use of a decou-
pling approximation to the surrounding field variables in

Eq. (1), which is correct up to the second moment, and a
molecular-field approximation in the thermal average of
LM on site 0, we obtain

—n;w;(g)+ —,
' J,g, ,

the sum of pair energy C),"(g, , g ):

+;,(g;, g, )

(13)
The amplitude x in Eqs. (20) and (21) is defined by

f dge
(22)

= f deaf(co) Imp ln[—l t,' (g, )t
' —(g )F F'; ],

7T

and t ,'(g; ) is the single-site t matrix defined by

L
—1 ~ i —i

iver

io'

1+(L; ' —X,' ')F;
(16)

(14)

and the higher-order terms. F,', (F ) in Eq. (13) [Eq.
(14)] is the diagonal (off-diagonal) term of coherent
Green's function defined by

(15)

and is approximated by its average value [xr ], in the
J

following, where y. denotes the type of atom on site j.
The formulation until here is essentially the same as in
that of substitutional alloys. (See Ref. [38] for more de-
tails. )

B. Calculation of coherent Green's functions

A simplified method calculating the coherent Green's
functions F," with structural disorder in Eqs. (13) and
(14) has recently been proposed in our paper. Let us
consider a cluster which consists of the central atom a
and neighboring atoms on its NN shell. We then expand
the coherent Green's functions with respect to the locator
[X,' ] as follows:

The effective medium X,' is chosen so that the higher-
order correction in Eq. (12) becomes as small as possible.
This leads to a condition that the average single-site t ma-
trix vanishes on each site:

FI)o:X() +X() g t()~F1~0'
j&0

F&'o =g,' t OFI)o +X' S' (X' )F'()

(23)

[[(t,' (g;) ) ],],=0 . (17)

Here ( ) denotes the thermal average, and [ ], ([ ], )

denotes the structural (configurational) average. Equa-
tion (17) is called the CPA (coherent potential approxi-
mation) equation. ' ' The charge potential w; in Eqs.
(13) and (16) is determined from the charge-neutrality
condition

+ g T,', (X' )F()
i&j,o

(24)

The self-energy S' (T', ) denotes the sum of all the paths,
which start from site j and end at site j (i) without re-
turning to the cluster on the ways.

After adopting the Bethe approximation [i.e., T', =0 in

Eq. (24)], we obtain

n;= f den f(co) Imp, , (L,„()2

2

Fl /I —] ~ J
00(7 OcT ~ ~g —( Sg (~g )j&0 jo jo e

(25)

(18)

In the following, we neglect the higher-order term, and
only take into account the nearest-neighbor (NN) pair en-

to.F' - =F' = F'
' —S' (X' )ja ju o

(26)

Here we can treat the coordination number z of the cen-
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tral atom as a random variable in Eq. (25). Note that it
was regarded as a constant previously.

Next, we treat the interatomic distance Ro~ between
the central atom a and the neighboring atom y on the
NN she11 by means of the GM model:2 *

R &=(R-RP))" . (27)

This relation holds true within a few percent errors as we
emphasized in a previous paper. The transfer integral
toj(Roj)=t(Rof) is then written as

t (R )') = r *'+t r" (28)OJ a Oj y

where the factor r" is given by

t(R() )

At this stage, to =t (Ro ) does not depend on the
atomic configuration any more. The coherent Green's
function Foo is then expressed with use of the renormal-
ized locator Xi:—r"

~
XJ as follows:

(29)

-( ( )„( ))—1F (33}

toF Foo~.-)—s,.(~.)

F,',.=Ir,"I 'FJ,.
FJj (cj t )

(34)

(35}

(36)

Substituting Eqs. (31)—(36) into Eqs. (13), (14), and (18),
we obtain

Eo(g)= fde f(co) Im g ln(Eo '——X )+F~' )
7r

+&owo(k}+ —.'~ok' (37)

F' = X ' —& . (30}z-' —s' r~."~'Ta j~ Jo J
Since the self-energy S' in Eq. (30) contains all the

structural disorder outside the cluster, it brings us the
diSculties in the calculation of Foo . To simplify it, we
make further approximations. First, we choose the
effective medium XJ to be site-independent in the fol-
lowing (X =X ). Second, we adopt the GM model out-
side the cluster. This model, in addition to Eqs. (5} and
(6), assumes (i) R; r=(R; Rr~r)'~ for any interatomic
distance, and (ii) similarity in structures between amor-
phous pure metals A and 8. We have shown in a previ-
ous paper that this model leads to a good description of
electronic structure outside the cluster. Then, Eq. (30)
can be written as

Fi ir(s)
)

2F— (31)
2

F()()
—1 Oj

, , z.-)—s,.(z.)

Here S (X )—= ~r,"~ S' (X ) is the renormalized self-
energy in the GM model.

In the same way, we approximate the coherent Green's
functions Fjo in Eq. (26) and FJJ as follows:

EJ.(g)= f dtof(co) —Imgln(L~ ' —X '+F~ ')
7T

—n. w. (g)+ ) J.g (38)

(I)o, (g, g, )

=f dc@f(co) I—m+in[1 to (—(}t.(( )Fo. .F.o ],D

(39)

n;= co co Im, . ' — '+F;, '
1T r,

(40)

Here the renormalized locator L; (i =0,j) is defined by

E, =ir, i2L,' (41)

(42)

and the single-site t matrix t,' (g, ) [Eq. (16)] reduces to
t, (g; ) defined by

f —1 ~—1

t;.(;)=
1+(E; —X ')F(;

The CPA equation reduces to

],],=0.

(43)

(44)

These equations are explicitly influenced by the
structural disorder outside the cluster via SJ (X ) and
FJ" . %'hen we take a structural average outside the clus-
ter, we replace S (X ) with the effective self-energy ()'

and FJ with its structural average [F ],. The coheren"t
Green's functions are then expressed as

—1z

Foo = X ' —gtoR (45}
jXO

Fjo =t()q%' Foo

p e' ~d6' (46)

(47)

Here

' —g t()%' =F
s

A simplified expression for Eq. (49} has been obtained in
a previous work by adopting a decoupling approxima-
tion to a random variable 8=+ tjo:.

[ ( gfi) ]21/2

1+v
2 .=+ [()],

(49)

[8],%

(50)
Solving this equation, we obtain

(48)

The effective self-energy 4 is determined so that the
structural average of the diagonal Green's function [Eq.
(45)] recovers the exact form:
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2F X —1+{1+4([(58)],l[8],)F J '(F g ' —1))'~~
[8],A' =

2[1—[(58) ],/[8], $F
(51)

The sign at the right-hand side of Eq. (51}should be taken so that 1m[8],R (0.
The average DOS [p(e)], in F [see Eq. (47)] depends on concentration in the case of the 3d-4d and 3d-5d amorphous

TM alloys since the shapes of the DOS for constituent elements are considerably different from each other. In this case,
we take into account the concentration dependence with use of a common band model

t,, =At, , =A[CAt, , ( A)+cBt,, (B)] .

Here A, is a normalization factor and t J(a) =t (R;J,c =1).
Approximate expression for R has been obtained in our recent work [see Eq. (60}in Ref. 23]

=(CARAe+CBRBo )

2F X ' —1+
I 1+4([(58) ],l[8],)F X '(F 2 ' —1) ]

'

2A. p2(a) I 1 —[(58) ],l[8],IF
[p,(e)],de

—
A,e

(B)1/2

cAp2(A)' +CBpz(B)

(52)

(53)

(54)

(55)

Here [p (p)], denotes the average DOS for noninteracting electrons in amorphous pure metal a. p2(a)» the second
moment for the averaged DOS,

p2(a)= f (6 6 ) [p (e)],dE .

C. Distribution-function method

After having introduced the effective medium X and the effective self-energy S, the central LM in Eq. (19) is re-
garded as a function of the surrounding LM's

I ( m ) ] on the NN shell, the squares of transfer integrals [y, = t o I, the
atomic configuration on the NN shell [y ], and the coordination number z. These variables randomly change because
of the structural and configurational disorders. We therefore introduce a probability gr (m. )dm. of finding LM on the

atom of type yj between mj and mJ +dm, a probability p, (yj )dyj of finding the square of the transfer integral between

y and y +dy, a probability p, of finding an atom of type a at the neighboring site of the central atom a when z is
given, and a probability p (z) of finding z sites on the NN shell of the central atom a. These distribution functions
determine the distribution of the central LM via Eq. (19) and the latter should be identical with those at the neighboring
sites. We therefore obtain an integral equation for the distribution of LM's in the same way as in a previous paper:

Z n Z

g (M)=gp (z) g I (n, z p, )f 5(M —(m ))g [p, (y;)dy;g (m;)dm;] g [p, (yj)dy g (m~)dm ] . (58)
n=0 j=n+1

Here the atomic configuration is described by a binomial distribution function with the coordination number z and the
number of a atom n on the NN shell:

ziF'(nzp )= (p ) (1—
p )'

n!(z —n)!
(59)

since we have adopted the Bethe-type approximation to the surrounding sites and have neglected the z dependence of
p, for brevity. The latter is written by Cowley's ASRO parameter ~ as follows:

p =c +(1—c )~ (60)

A new feature in the integral Eq. (58} is that the distribution of the coordination number [p (z)] is taken into ac-
count. We adopt here a simple form for the distribution function

p (z) =(z* —[z' ])5, , +([z' ]+1—z* )5 (61)

This describes the average coordination number z =g,p (z)z, but does not necessarily describe the fluctuations
around z*.
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~e further simplify the 2z-fold integrals in Eq. (58) making use of the decoupling approximation as follows:

g ~ ~ s c ma s c

f (y —[y], )
"+

p, (y)dy =[(fiy)'],"0' .

(62)

(63)

These are the lowest approximations which take into account the effects of fluctuations in these distributions and have

been successfully applied to the substitutional alloys. Thus, the distribution function g (M} [Eq. (58)] becomes

n —i

g (M)=gp (z) g I'(n, z,p ) g I'(i, n, —,') g I (j,z n—, ,') —g I (ki, i, q ) g I (k2, n —i, q )

n=0 i=0 j=0 k] =0 k, =o

J z —n —j
X g I'(l, ,j,q ) g I'(l2, z n j—, q

—)5[M —(m, )(z, n, i,j,k„k2, l„l2)],
l] =0 l2 =0

[[&m.&l, ],

(64)

(65)

M
2 g M M

In this way, we can specify the central LM on atom a by means of the coordination number z, the number of a atoms

n on the NN shell, the number i (j) of contracted atoms a (a) on the NN shell, the number k, (l, ) of fictitious spins in

the up direction on the i (j}contracted atoms a (a), and the number k2 (12) of fictitious spins in the up direction on the

n i (z —n —j—} stretched atoms a (a}. The first and the second moments with respect to the configurational and

structural disorders (i.e., [[(m, ) ], ], and [[(m ) ], ], ) on the right-hand side of Eq. (64) are automatically obtained
from the following self-consistent equations:

[[& .&],],

=gp (Z) g I (n, z,p } g I (l, ll, —) g I (j,z ll, —) g I (k ll, q )
n=0 i=0 j=0 k] =0

Here

n —i j z —n —j ( g~)(Z, n, i j,kl, k2, ll, 12 )

X g I (k, n i, q
—) g Pl, ,j,q ) g I'(l, z n j—,q )—

k =0 I =0 I =0 ( n) Zn/j I 2 ll l2)
2 1 2

(66)

—p%'(g, z, n, i j,k ki12l l2)
doge

(g )(z, n, i j,kl, k2, ll, l2)=
f ~Jz ]z 2z ]zage

0'(g, z, n, i,j,ki, k2, li, l2)=E (g, z, i +j )+i@ '+(g, z, i+j )+(n —i)4" (g,z, i+j )

+j 4"+(g,z, i +j )+(z n j)4~" (g, z—,i +j—)

(67)

—[(2k, i)4"+(—g, z, i +j)+(2k2 n+i)4" (g,z—,i +j)]
[x ],

[[(m ) ], ],'j2—[(2l l j)4 "+(g,z, i +j—)+ (212 —z +n +j)4i" (g,z, i +j ) ] [x ],
(68)

The energies on the right-hand side of Eq. (68) are given by

E (g', z, l)= Jdcuf(co}—Imgln[f (g', 1) ' —X '+F00 (z, l) '] nw (g, l)+ ,'J g- —'
7r

(69)

C."„(g, l)z

N'r'~( j,z, l )

1

=2 X
v=4

4 r+(g, v[xr]„z,l}, (70)

@ r~ g, v[xr]„z,l)= f deaf(co) Imgln[1 F0—j F0 (z, l)t (g, z, l)t—(v[x ], )] .D
7T

(71)
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Here

Foo (z, l) = X ' —z+(21 —z)
b], b ]A'. (72)

)2]1/2
Fo Fo (z, l)= I+

3' s
[y],%' Foo (z, l) (73)

(g, z, 1)=
L (g, 1)

1+[E (g, I) ' —X ']Foo (z, 1)
(74)

L '(g, 1)=

a)+i5 e—+p w—(g)+ ,'J g—o+h cT

L '(g) =

L (vfx ], )
t (v[x ], )= I+[Lr (v[xy], )

' —X ']F

co+i5 e+—lJ, w(—$, 1)+ ,'J ga—+ho.

Ir. I'

(75)

(76)

(77)

The charge potentials w (g, 1) at the central site and w (g) at the neighboring site are determined from the charge-
neutrality condition of Eq. (40):

n = f des f(co) Im g [L (g, I-) ' —X '+F00 (z, l) ']
ra

(78)

n =fdc'(co) Imp [L (g) ' —X '+F '
]

T~
(79)

The average amplitude [x ], is given in the present scheme as

[x ],=g p (z) g I (l,z, —,
' )x (z, 1),

z 1=0
(8O)

fdge
x (z, 1) =

PE (f,zl), —
d e

(8 I)

With use of the same approximation scheme, the CPA equation is expressed as follows:

(.&, ,gc g —1+v. . . [L (v[[(g')] ]'~') ' X'+F '
}

—'=F (82)

=gp (z) g I (n, z,p ) g I'(i, n, —,') g I (j,z n, —,
')—

n=0 i=0 j =0

X g I (k, ,i, q ) g I (k2, n —i, q ) g I (l, ,j,q )

kl =0 k, =o ll =0

'(
g ) (z, n, i, j,k, , k, , 1, , 1, )x' j 'r(i„.—.—,, q ) ((, )(

' '.'.'„'„', ',
)

'2

—pP(g, z, n, i,j,k l, k2, 1l, 12 )
e

(g&(z, n, i,j,k, ,k„l„l )=
~

—~(g, z, lt, l j,kl, k2, ll, l2)
dye

(84)
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Magnetic states of amorphous alloys at finite tempera-
tures are obtained by solving Eq. (66) for [[(m ) ],], and

[[(m ) ],]„and Eq. (82) for the effective medium X
self-consistently with additional equations (51), (78), and
(79).

D. Discussion on the choice of parameters

In the present theory, the following parameters are
needed in the numerical calculations.

(1} The average DOS for noninteracting electrons in
amorphous pure metals [ [p (e) ],].

(2) The d electron numbers [n ] and the effective ex-
change energy parameters [J ].

(3) The average coordination numbers [z~ ] and ASRO
parameters I r ].

(4) The fluctuations of the square of the transfer in-
tegrals [(58) ],/[8], or [(5y) ],/[y]„and the average
square of transfer integrals [ [y ],].

(5) The factor I
r

I
in the GM model.

Among these parameters, [[p (e)], ] are immediately
obtained from the first-principles calculations for amor-
phous pure metals. The d electron numbers [n ] are also
estimated from the results of calculations. The effective
exchange energy parameters [J~] are chosen so that the
obtained magnetization for crystalline counterparts is
reproduced. Otherwise we can take the value estimated
from band calculations.

There is a relation among [z,' ] and [r ], which is ob-
tained from a consistency for the number of neighboring
A-B pairs.

f(b»'1,
=4m

[y],' [R],' (91)

which is obtained from the width of the first peak of the
pair distribution function in experiment or computer
simulation. The second term is neglected in the following
calculations because p (z) in Eq. (61) does not describe
the fluctuations [(» ) ],/z ' correctly. The average
square of transfer integrals [y ], is calculated from the
second moment [see Eq. (57)]:

z'[y. ],=1 2(a) . (92)

The factor Ir I defined by Eq. (42) is also obtained
from the second moment p2(a) as follows:

2
ZZ

[(58) ],=gp(z) J g yj
—[0],

Z jXO

=Xp(z) g [&y;~y, ],+(»)'[yl,'
Z i,jWO

Here p (z) denotes the distribution function of z, and z'
[=z'(1)] is the average coordination number of amor-
phous pure metal. In the Bethe-type approximation,
[Sy, 5y, ],=0 (i%j). Thus, we have

[(&y )'], [(»}'],
+ (90)

[8], z'[y], z'

The first term on the right-hand side of Eq. (90) can be es-
timated from the fluctuations of the NN interatomic dis-
tance [(5R ) ],/[R ],:

z „' ( 1 r„)=zii
—( 1 r~ ) . — (85)

[p2(A)/pz(8)]' ' for a= A,
The above relation means that we cannot consider the
case of complete disorder (r„=~~=0) in amorphous al-
loys when the size of atom A is different from that of
atom B because the atomic-size difference leads to
z„'Az~. We therefore consider the case of the most ran-
dom atomic configuration under the condition of Eq. (85).
This condition is (see Appendix A}

cgvg +cgvg =0 . (86)

=z*[y], , (88)

Moreover, we assume a linear relation between z' and

p aa.

z' =z'(0)+p [z,'(1)—z,'(0)] . (87)

Here the average coordination numbers z'(0) and z'(1)
are the values for p =0 and p =1, which are estimat-
ed approximately from the dense random packing of
hard-spheres (DRPHS) model. This relation means that
the coordination number of atoms with larger size in-
creases linearly with decreasing the same type of neigh-
boring atoms. For further discussion on this relation, see
Appendix B.

The fluctuations of structure via [(56)) ],/[8], are cal-
culated as follows:

Z Z

[~I,=X ( )f gy,
Z j%0 j

(93)

Finally, we briefly mention the calculation scheme in
obtaining the self-consistent solutions. After fixing
the parameters mentioned above, we first assume
[[(m )],]„[[(m ) ],],', [[(g~)],],', and
w (+[[(g )],],' ), and solve the CPA equation [Eq.
(82)]. Next we calculate A', Foo, and Fo F 0 from
Eqs. (51), (72), and (73), and solve Eqs. (78) and (79) for
the charge potentials w (g, 1) and w (g). Therefore,
we can obtain the new values [[/m )],], and
[[(m ) ],],'~ solving Eq. (66) by means of the iteration
method and then calculate the new values of [[(g ) ],],'
and w (k[[(g }],],'~ ) from Eqs. (83) and (79). This
procedure should be repeated until self-consistency is
achieved.

III. NUMERICAL RESULTS

Characteristic features of the present theory are the
description of itinerant-electron SG and the inclusion of
atomic-size effects via the difference in the average coor-
dination numbers of constituent atoms. To test the valid-
ity of these new aspects, we have performed the numeri-
cal calculations for the amorphous Fe-Zr alloys, which
consist of 3d and 4d TM with distinct difference in atom-
ic size and show the SCz-ferromagnet transition.

The input DOS for amorphous Fe and Zr metals are
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FIG. 1. The input densities of states (DOS) for the amor-
phous Fe (Ref. 41) (solid curve) and the amorphous Zr (dashed
curve} calculated with use of the tight-binding LMTO recursion
method.

shown in Fig. 1. The former is taken from the results ob-
tained by Fujiwara, ' and the latter was calculated by Ta-
naka. In both cases, the amorphous structures were gen-
erated by using the relaxed DRPHS model with 1500
atoms, and the electronic structures were calculated by
means of a tight-binding linear muffin-tin orbital (LMTO)
recursion method.

In the 3d-4d TM alloys, a change in the d electron
number is expected with varying concentration because
of the considerable difference in the atomic level between
the 3d and 4d atoms. In fact, we have calculated the
electronic structures for nonmagnetic amorphous
Fe9QZr, Q and Fe65Zr35 alloys with use of the tight-binding
LMTO recursion method, and found a change in the
d electron number: n„,(c„,=0.65)—nF, (cF, =0.90)
=0.43, though the charge neutrality still holds true in the
atomic spheres. We therefore adopt the concentration
dependence of the d electron number for Fe as

nF, =7.0+(1.0—cF, )0.5, while the d electron number
for Zr is assumed to be constant as nz, =3.0 since the
magnetic properties are not so sensitive to a small change
in the Zr part. The set of d electron numbers leads to a
reasonable peak position of Fe local DOS at low Fe con-
centrations as will be shown later.

The effective exchange energy parameters are chosen
to be J„,=0.064 Ry and Jz, =0.046 Ry. The former is
chosen so that the critical concentration for the disap-
pearance of ferromagnetism is consistent with the experi-
mental data. ' ' This value gives the ground-state mag-
netization 2.3pz for bcc Fe. The latter is taken from
Janak's paper.

Moreover, we adopt [(5R) ],' /[R], =0.06 for both
amorphous Fe and Zr. This value was estimated from
the experimental data and the theoretical calculation
for the pair distribution functions of amorphous Fe.

The average coordination numbers [z*] and ASRO
parameters [r ] shown in Fig. 2 are determined from the
following parameters via Eqs. (85)—(87): zF, (0)=7.0,
zz, (0)=16.0, and zF, (1)=zz,(1)=11.5. They are es-
timated from the view point of the DRPHS model.

1.0 0.2

Concentration ZI

FIG. 2. The concentration dependences of the ARSO param-
eters [r ] (solid lines) and the average coordination numbers

[z ] (dashed lines) obtained from the condition of the most
random atomic configuration and a linear equation for [z ]
[see Eqs. (85)-(87)].

We first illustrate, in Figs. 3(a)—3(e), the average local
DOS calculated at 75 K (see Appendix C for the expres-
sion). The Fe local DOS form the Lorentz-like narrow
band in the broad 4d band around 35 at. % Fe. With in-

creasing Fe concentration, the bandwidth of Fe local
DOS gradually increases, and the local DOS polarize
with the appearance of ferromagnetism. Moreover, it is
seen that the down-spin bandwidth for Fe local DOS be-
comes larger than the up-spin one because of more mix-

ing of the former with the Zr bands. In the Fe-rich re-
gion, magnetization rapidly decreases beyond 85 at. %
Fe, and the SG state appears after the disappearance of
ferromagnetism. The local DOS in the SG state is
presented in Fig. 3(e).

Recently, Turek et al. have performed the ground-
state electronic structure calculations for amorphous Fe-
Zr alloys with use of the LMTO-supercell approach, in
which they constructed the amorphous structure from 64
atoms in a box with the periodic boundary condition by
making use of the molecular dynamics method, and cal-
culated the spin-polarized DOS for the amorphous Fe-Zr
compounds with use of the same periodic boundary con-
dition. Their results are also drawn in Figs. 3(a)—3(e).
We find that our results are in good agreement with their
results for 35, 50, 65, and 75 at. %%uoFe, wher e ther e isnot
as much competition between ferromagnetic and antifer-
romagnetic interactions. This supports that the present
theory with the most random atomic configuration de-
scribes semiquantitatively or even quantitatively the aver-

age local DOS in amorphous TM alloys.
The exception is found beyond 90 at. %%uoFe, wher cour

result shows the SG state, while Turek's result still shows
the ferromagnetism. The same discrepancy was found
even in amorphous pure Fe, in which their results show a
F-P transition at very high density 10.2 g/cm, and do
not show the SG at any volume. This seems to be relat-
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ed to the different number of configurations and the
different self-consistency between the two schemes. The
number of configurations in the NN cluster is about
2X2'X2'X2'( —10") in our scheme, while it is less than

10 (64 atoms in a unit cell) in their scheme. The latter
is probably insuScient to describe a reasonable phase
transition such as the transition from ferromagnetism to
SG, though they chose the most probable configuration.
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Another point which we would like to discuss is that
the unit cell of magnetic structure is generally larger than
that of crystal structure, especially in the system with
competition between ferromagnetic and antiferromagnet-
ic interactions. In that case, the same periodicity as that
in the crystal structure may lead to an overestimate of
magnetization. In fact, the ground-state magnetization
of fcc Fe-Ni alloys calculated with use of the same ap-
proach remains finite over all concentrations, while the
experimental data indicate the appearance of a SG
around 70 at. %%uoFe . Inou r theor y, calculate dmagneti-
zation disappears around 70 at. % Fe, and the SG state is
realized being consistent with the experimental data be-
cause of the self-consistent treatment of the LM's without
use of the periodic boundary condition.

The temperature dependence of an average local DOS
for the amorphous Fe7&Zr25 alloys is presented in Fig. 4.
With increasing temperature, the splitting between the
up-spin and down-spin bands for Fe gradually decreases
and vanishes above Tc. The disappearance of average
exchange splitting causes more (less) mixing of the up-
spin (down-spin) band for Fe with the Zr band, and the
thermal spin fluctuations tend to broaden both up- and
down-spin bands, so that the up-spin bandwidth becomes
broader as temperature increases, while the down-spin
bandwidth is almost independent of temperature.

In Fig. 5, we present our numerical result for the mag-
netic phase diagram in the temperature-concentration
plane. The present theory with the condition of the most
random atomic configuration describes well the three
different phases P, F, and SG. In particular, it suggests
the existence of RSG behavior in a narrow range of con-
centration near the SG-F phase boundary in the Fe-rich
region, in agreement with the experimental data by
Fukamichi et al. (see the inset of Fig. 5). In our results,
the maximum of calculated Tc is 420 K at 70 at. % Fe,
which should be compared with the experimental value
275 K. Calculated T~ increase linearly from 150 K at the
triple point (85 at. %%uoFe ) to240 Ka t amorphou sFewith

a-Fe 75 Z rg5

1.06 Tc

20—

(Ry )

FIG. 4. Calculated average local DOS for amorphous
Fe»Zr2& alloys at various temperatures. The average local DOS
for the Zr part at 0.63 Tc lie between the asymmetric DOS at
0.19T& and the symmetric one at 1.06 T~-.

400

300

200

too-

0. 2

( concentration

FIG. 5. Calculated magnetic phase diagram of amorphous
Fe-Zr alloys, showing paramagnetism (P), ferromagnetism (F),
spin-glass (SG), and reentrant spin-glass (RSG). The inset
shows the experimental results by Fukamichi et al. (Ref. 4).
Curie-temperatures ( T& ) and spin-glass transition temperatures
( T~ ) below 50 K are expected by dashed lines.

increasing Fe concentration. These transition tempera-
tures are overestimated by a factor of 1.5-2.0 as com-
pared with the experimental ones, which is mainly attri-
buted to the molecular-field approximation used in the
present theory. The magnetic properties below 50 K
have not been obtained yet because of the numerical
difficulties at low temperatures. The SG state which may
appear below 50 at. % Fe according to the experimental
data has not been found. We therefore concentrate the
following discussions on the formation of SG and RSG
behaviors in the Fe-rich region.

The SG state in amorphous Fe has been clarified by
Kakehashi from the viewpoint of structural disorder.
He found that the SG behaviors change with the d elec-
tron number X. In the range of 6.8~% &7.2, the forma-
tion of SG is attributed to the competition between fer-

romagnetic and antiferromagnetic NN interactions,
which is caused by the nonlinear magnetic couplings be-
tween the NN LM's and the LEE's on the amplitudes of
LM's. However, the SG's in the range 7.2~%~7.35
were found to accompany the ferromagnetic clusters be-
cause of the disappearance of antiferromagnetic NN in-

teractions. The SG's, therefore, are caused by the com-
petition between the NN ferromagnetic interactions and
long-range antiferromagnetic interactions.

The formation of a SG in the amorphous Fe-Zr alloys
seems to be between the former and the latter cases men-

tioned above. In fact, the nonlinear magnetic couplings
between the NN Fe LM's are found in the Fe-Fe ex-

change pair energies —4F",F,+(g, l) when the number of
contracted atoms (I) are larger than 5 (see Fig. 6); the
central Fe LM with small amplitude antiferromagnetical-
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ly couples to the neighboring Fe LM's, but the central Fe
LM with large amplitude ferromagnetically couples to
the neighboring Fe LM's. Thus, the nonlinear magnetic
couplings can bring about a coexistence of ferromagnetic
and antiferromagnetic interactions between the central
and the neighboring Fe LM's because there is a broad
distribution of the amplitudes of Fe LM's ((g, )' }
whose width is about 2.4pz as seen from Fig. 7. On the
other hand, we found rather strong ferromagnetic corre-
lation between the central ( moF, ) and neighboring

(m&F, ) Fe LM's (i e., [[(moF, )(mtF, )],],(cF,
=0.9)=0.15 at 75 K}. This means that the NN fer-
romagnetic interactions are rather strong as compared
with the NN antiferromagnetic ones. Therefore, the ex-
istence of long-range antiferromagnetic interactions
seems to be plausible, and it is found, indeed, by examin-

ing the response of the centra1 Fe LM when we polarize
the effective medium. This is in favor of the formation of
cluster SG in the amorphous Fe-Zr alloys in the Fe-rich
region.

The RSG behavior appears near the SG-F boundary in
the Fe-rich region (see Fig. 5), which is mainly attributed
to the thermal spin fluctuations of amplitude of Fe LM's
because of the following reason. The magnetic couplings

[—CF'e'„,~(g, l)] between the central and the neighboring
Fe LM's are governed by an average amplitude of neigh-
boring Fe LM's ([x„,], ) and the effective medium L
which is again determined by the average amplitudes

[[(g }],],' via CPA Eq. (82) in the SG states. When
the temperature is elevated, the thermal spin fiuctuations
increase the amplitude [xF, ],. This makes the exchange
pair energies [ 4F",F—,+(g, I)] more ferromagnetic and un-

balances the competition between short-range ferromag-
netic and long-range antiferromagnetic interactions, so
that a net magnetization appears at the RSG tempera-
tures. The mechanism, therefore, seems to be the same as
that found in the theoretical investigations for amor-
phous TM's.

When the Fe concentration decreases, smaller Fe
atoms are replaced by larger Zr atoms on the NN shell of
the Fe atom. This leads to a decrease of the average
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coordination number zF', according to the DRPHS model
(see Fig. 2), and therefore causes additional band narrow-

ing in the Fe local DOS since the second moment is pro-
portional to zF', . We present, in Fig. 8, as an example,
two kinds of local DOS for the nonmagnetic amorphous
Fe65Zr35 alloys to show the effects on magnetism: the lo-

cal DOS with atomic-size effects under the most random
atomic configuration (z„',=9.5, zz, =14.0, r„,= —0.26,
rz, =0.14) and the local DOS with the same atomic size

(zF, =zz, =12.0, r„,=rz, =0 0) The. fo.rmer shrinks the
bandwidth at the Fe site and develops the peak near the
Fermi level in the Fe local DOS as compared with the
latter. These changes in the local DOS are favorable for
the enhancement of ferromagnetism. In fact, we obtained
the magnetization 0.75p& at 75 K, which is reasonable
for the experimental data [0.95ps at 4 K (Ref. 15)].
However, we did not find the appearance of ferromagne-
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FIG 6. Exchan. ge Fe-Fe pair energies [—4'„„,+(g, l)] for
various environments I (the number of contracted atoms on the
NN shell). They show a magnetic energy gain for the central Fe
LM when the neighboring Fe LM's with amplitudes [xp, ],
point up [see Eq. (20)].

FIG. 8. Local DOS for Fe (solid curves) and Zr (dashed
curves) atoms in the nonmagnetic state at 65 at. % Fe, which
are calculated by the ground-state theory (Ref. 23). The average
coordination numbers {z j are shown on the curves which cor-
respond to the case of the most random atomic configuration
(~Fe 9 5 ~zr 14.0s +Fe 0.26, &zr =0.14) and the case of
the same atomic size (zF*, =zz =12.0 ~p =~z =0.0), respec-
tively.
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tisrn in the case of the same atomic size. Thus, the large
difference in atomic size between Fe and Zr atoms plays
an important role in the formation of ferromagnetisrn in

the amorphous Fe-Zr alloys.

IV. SUMMARY

We have developed a finite-temperature theory for
amorphous magnetic alloys on the basis of the functional
integral method and the distribution-function method.
The theory drastically reduces the numerical calculations
for amorphous structure and electronic structure by
means of the GM model outside a cluster. It allows us to
investigate theoretically the amorphous magnetic alloys
with a large difference in atomic size at arbitrary concen-
tration using a small number of parameters for amor-
phous pure metals and local atomic configurations. It
reduces to the previous theory ' ' in the case of substi-
tutional alloys, which succeeded in explaining the Slater-
Pauling curves, the Curie-temperature Slater-Pauling
curves, and the effective Bohr magneton numbers for 3d
TM alloys. It also recovers the recent theory in the
limit of amorphous pure metals, which has described sys-
tematic change in magnetism of amorphous 3d TM's.
Thus, the present theory covers a wide range of magne-
tism.

We have applied this theory to the amorphous Fe-Zr
alloys to demonstrate its reliability. Calculated local
DOS at low temperatures reproduced well those obtained
from the first-principles LMTO-super cell approach.
The new parameters z* explained the formation of fer-
romagnetism due to the atomic-size effects in amorphous
Fe-Zr alloys. The self-consistent equations for LM's
([[(m )],], and [[(rn ) ], ],'~ ) reproduced the
itinerant-electron SG as well as the RSG in the Fe-rich
region. In particular, we found that the RSG is caused
by the thermal spin fluctuations of amplitudes which are
never seen in the insulators. It was also shown that the
most random atomic configuration reproduces the mag-
netic phase diagram in amorphous Fe-Zr alloys. The nu-
rnerical results mentioned above encourage us to perform
systematic investigations for 3d-4d and 3d-5d amorphous
alloys on the basis of the present theory.

Finally, we remark that although we have succeeded in
explaining the overall feature of magnetic phase diagram
in amorphous Fe-Zr alloys, there are still some problems
which should be examined in the future. For example,
we have not taken into account the magnetic couplings
between the central and next-NN LM*s in the present
theory, which may be expected to hold the key to the for-
rnation of SG in amorphous Fe-Zr alloys below 50 at. %
Fe. We also have neglected the transverse components of
spin fluctuations. It not only underestimates the rnagnet-
ic entropy, but also excludes the possibility of transverse
spin freezing as found in the classical Heisenberg mod-
el. Moreover, we have neglected the amplitude fluc-
tuations [[(5x ) ],], on the neighboring sites in our self-
consistent equations. This effect seems to be important
near the critical concentration of ferromagnetic instabili-
ty since the amplitudes of LM's are expected to change
drastica1ly there. These problems should be solved in fu-

ture investigations to reach a more solid conclusion in
this field.
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APPENDIX A:
THE MOST RANDOM ATOMIC CONFIGURATION

4=L+A, [(1—r )z' —(1—r )z" ] . (A2)

Minimizing the new function 4 with respect to I r ], we

obtain the following equations:

ac =2c z'c ~ —Az* =0,
7 g

ae =2c z c~'7 +Az =0 .
a

(A3)

(A4)

Eliminating A, in Eqs. (A3) and (A4), we finally obtain the
condition of the most random atomic configuration:

c ~+c v. =0. (A5)

This condition is identical with that of complete chemical
disorder obtained by Cargill and Spaepen, maximizing
the mixing entropy. '

APPENDIX B: A SIMPLE RELATION
BETWEEN THK COORDINATION NUMBER

AND THE ASRO PARAMETER

It is expected from a viewpoint of the DRPHS model
that the coordination number z of the a atom is strongly
correlated with the number of a atoms n on the NN
shell. We here argue a simple relation between the aver-
age coordination number z* and the ASRO parameter 7.

in the strong-correlation limit.
Let us introduce a probability p ( n ) of finding n atoms

of type a on the NN shell and a probability p (n ~z) of

When the average coordination numbers are not equal
to each other (i.e., z„"Az~), the condition of complete
disorder (r„=r&=0) cannot be realized according to
Eq. (85). We therefore consider here the most random
atomic configuration which leads to the least mean
square of deviation (p r —c ) from the complete disorder

(p ~=c ).
We first define a mean square of derivations taken over

all the NN pairs:

L= ,'N gc g—z~ r(p r —cr)
a y

Here z*p ~ denotes the number of a-y pairs around an a
atom, and N is the total number of sites. To minimize
Eq. (Al) under the condition of Eq. (85), we introduce a
Lagrangian multiplier A, :
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z' =g gp (n)p (n~z)z . (81)

We now consider the strong-correlation limit in which
the coordination number z (n) is determined by the n

Then the probability p~(n~z) is given by

finding a z coordination number under a given n. The
average coordination number z* is then expressed as

Here D and eo denote the number of degeneracy and the
atomic level on site 0, as have been explained in Sec. II.
The locator matrix I.' and the transfer matrix t' have
been defined in Eqs. (3) and (4). The integrated electron
number on the right-hand side of Eq. (Cl) has appeared
in the one-electron free energy in Eq. (2).

Adopting the same approximation scheme as in Sec. II,
we have

p (n~z)=5, , („),

and Eq. (Bl) reduces to

z*=gp (n)z (n) .

(82)

(83)

1mtr[ln(L' —t'} ']=Im X++4;1+
(ij )

X= tr[ln(X ' —t ) ]+glnF;;
io'

+gin(E, ' X, '+F—;, '),

(C2)

(C3)

Since z (n) is expected to increase monotonically with n

R &R and to decrease monotonically when R &R,
we assume a linear dependence of n for z (n }: C,,=gin[1 —t, (g, )t, (g, )F,, F,, ] . (C4)

z (n)=z, (0)+n
z Q

(84)

z'(p )=z (0)+p bz" . (85)

Here we have adopted the following relation for the aver-
age number of atoms a on the NN shell:

gp (n)n=z~ (86)

z (0) and b,z' in Eq. (85) are determined from both
z'(p =0) and z'(p =1) limits. Thus, we have

z* =z,'(0}+p bz',
bz' =z'(1)—z,'(0) .

(87)

Here the average coordination number z" (1) for an
amorphous pure metal is expected to be close to 12, and
the average coordination number z'(0} for an impurity
atom a in the amorphous pure metal a can be estimated
semiquantitatively from the DRPHS model.

APPENDIX C: LOCAL DOS

The average local DOS for cr-spin electrons on site 0 is
given in the static approximation ' as follows:

(ptt (rr))=( Im[(L' ' —t ))m'
(mtr((n(l' t )]) . —'D

g (Cl)

where M' is an unknown constant. Substituting Eq. (84)
into (83), we obtain

Here the single-site matrix t; (g;) and the coherent
Green's functions IF.. .F; ] have been defined in Eqs.
(43), (45), and (46).

The single-site term X is stationary for a change of the
effective medium (i.e., BX/BX, '=0) because of the
CPA, Eq. (44). Therefore, we can neglect the change via

in the single-site approximation. It is also obvious
that one can neglect again the change via X, ' when one
takes into account all the terms in the series of expansion
because the result does not depend on X, Therefore, we

may neglect it even when we make the pair approxima-
tion in Eq. (C2) and neglect higher-order terms. The lo-
cal DOS is then given by

(p„(ttr, t)) =(p„(rt,t))+ X p,"t', (ttt, t)),
jWO

p (co, g) = Im (E~ ' —X '+Fac' )
77

(C5)

(C6)

(z) D 1 FDJ F~0 t (f )tj' (gj' )
p' ' (co,g)= —Irn

~r ~ [1 F() FD t (g—)tJ ((J)]

(~ ' —X ')[(E ' —X ')FDD +1]
(C7)

Here the site index 0 has been replaced by the type of
atom a on the same site for brevity.

We next adopt the distribution-function method when
we take the configurational and structural averages in Eq.
(C5). Making again use of the decoupling approximation,
we obtain the final form of the average local DOS as fol-
lows:

[[(p (co,g))), ],=gp (z} g I (n, z p ) g 1(i,n, —,') g Pj z n, ,')——
n=o

n —i
i=0 j=o

X g I(k„t, q ) g I('k, n i, q } g I(l„—j,q )

k, =O k2=0 I I
=0

z —n —j
X g 1 (l2,z n j,q )(p (co,g, z—, n, i—j, &k, zk, l (1 )2) .

12 =0
(C8)
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Here

p (to, p, z, n, i j,k&, k&, l&, l&)=p (to, g, z, i +j)+ip~ ~ (co, g, +,z, t +j)
+(n i—)p ' (co, g, —,z, i +j)+jp"' (co, g, +,z, i +j )+(z —n —j)p" (co, g, —,z, i +j)

P (co, g, z, I)=

—[(2k& —i)p' (to, g, +,z, i +j )+(2k& —n +i)p '
(co, g, —,z, i +j )]

[x ],
—[(2i) —j)p," (co, g, +,z, i +j)

[[(m )'] ]'"
+(2lz —z +n +j)p" (co, g, —,z, i +j)]

X a

Im [L (to, g I) ' —X '+F~ (co, g l)]
tr r

(C9)

(C10)

p'z (co, g, +,z, l)

p r' (co, (,+,z, l)

1
p' ' (co, g, +,v[x ]„z,l),

'1r —+
(C11)

Fo F~&& (z, l)t (g, l)t (v[x ] )
p'r' (co, g, +,v[x ]„z,l)= —Im

[1 FF*—(z, l)t (.g, l)t (v[x ], )]

1 1

[[L (co, g, l) ' J']Foo (z, l)+—1] [L (to, g, l) ' —X '] (C12)

The coherent Green s functions, the single-site t matrices, and the locator in Eqs. (C10)—(C12) are given by Eqs.
(72)—(76).
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