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Coupled-cluster method applied to the motion
of a single hole in a Hubbard antiferromagnet
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The coupled-cluster method has recently proved to be efBcient in calculating the ground state
of strongly interacting spins or fermions on lattices. We apply it to the ground state of one hole
in the half-Slled Hubbard model on a two-dimensional square lattice. In a wide range for the
interaction 10 & U/t & 80, the ground-state energy of a hole is fitted by a simple function e/t
—3.40+ 8.9(t/U), in good agreement with the results obtained through exact diagonalizations on
small clusters Th. e efFective mass of a hole m' = 8t/W (W represents the bandwidth) is proportional
to U/t (rn' 0.845U/t) for 5 & U/t & 20 and saturates to a constant value m' 84 for large U/t

I. INTRODUCTION

Over the last two decades, the coupled-cluster method
(GCM) has met with great success in calculating ground-
state energies for a variety of strongly interacting systems
from quantum chemistry to condensed matter physics. It
has more recently been extended to strongly interacting
spins or fermions on lattices. 2 4

The CCM generally starts with a ground state of in-
dependent particles ~0) (usually from a mean field or
Hartree-Fock theory) and develops a better approxima-
tion of the form ~ill) = exp(S) ~0). The correlation opera-
tor S = S2+S3+S4 ~ ~ ~ consists of two-body, three-body,
four-body, ..., raising operators, and ~ill) converges to the
exact result as more terms are included in S.

In the so-called "SUB-n" coupled-cluster approxima-
tion, S is generally truncated at the S„level. For the lat-
tice problem, more eKcient approximation schemes have
been proposed. ' These are utilized in the following.

H = t) (c,~catt+ c;tc1g) + U) c;tcttct~c, l . (2.3)
A )2

Provided that ~0) is not orthogonal to the ground state
~@), we can write ~@) = exp(S)~0).s The Schrodinger
equation is

H exp(S) ~0) = Eo exp(S) ~0), (2 4)

i.e.,

rotation of the spin axes of x on sublattice B and (ii) an
electron-hole transformation for the fermions with spins

t in the new local spin axes. In that way, ~0) appears
now as the vacuum state for the new fermion operators
de6ned as c,.&

——a;t, c;t ——a,.t, c,-& ——a,.&, c;g ——a;g for

the sublattice A and ci = aig, cit ——a. , ci = a. ,

cia ——ait for the sublattice B. In terms of these new
operators, the Hamiltonian is

II. CCM APPLIED TO THE HALF-FILLED
HUBBARD HAMILTONIAN

H =t) at a1 +U) ngnl (2 1)

The at (a; ) create (destroy) a fermion of spin a on
site i, and n; = a,- a; . The 6rst sum is restricted to
nearest neighbors. In the half-filled case, this Hamilto-
nian reduces at large U to an effective antiferromagnetic
Heisenberg Hamiltonian acting on the subspace of singly
occupied sites. Let us start from the two-sublattice Neel
state with one fermion per site:

I0) =
I t, t, t, a ...), (2.2)

We consider the one-band Hubbard Hamiltonian on a
square lattice:

H~O) = Eo~0) with H = exp( —S)H exp(S) . (2.5)

PV fV

Using the property AB = AB we obtain H from the
elementary transformations

c; =c; +[c;,S] and ct =ct (2.6)

Hio) = Cio), (2.7)

where the operator C contains exclusively creation oper-
ators.

At the lowest level we only retain in S the terms

S() ) t t
&4. it (i,j first neighbors) (2.8)

where [A, B] = AB —BA is the usual commutator.
After moving all annihilation operators to the right,

we obtain

where spins g are on sublattice A and spins $ on sub-
lattice B. It is convenient to perform successively (i) a

&om the kinetic part of the Hamiltonian, which create
a double occupancy leaving one neighboring site empty.
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After simple algebra, we obtain

(~)

C = 4aNt + [t(l —9a ) + aU] ) ct~ct~

(4) (6)
—3a't) ct,c,'., —a' t) ct,c,'.„

—A U g c)gcigcigcg~
i,k, l

(2.9)

~ Monte —Carlo
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«L»

I '-L.
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I
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FIG. 1. Ground-state energy for the half-filled Hubbard
model. The simple approximation corresponding to Eq.
(2.12) (dotted curve) is compared to the more accurate
"CCA-2" approximation of Ref. 2 (dash-dotted curve), the
Hartree-Fock approximation (dashed curve), and quantum
Monte Carlo calculations from Refs. 7 (o) and 8 (~ ). The
straight lines indicate the Heisenberg limit [solid line, QMC
(Ref. 9); dash-dotted line, leading term in t/U of Eq. (2.12)].

III. THE SINGLE-HOLE PROBLEM

In contrast to this approach, most of the works on this
subject have focused not on the Hubbard Hamiltonian
[Eq. (2.1)] but on its large U effective limit: the "t t'-J"-
(Ref. 6) model, often reduced to the "t J" or "t J,"-part. -

In the t-J, model which only takes into account the Ising
part of the antiferromagnetic Heisenberg interaction be-
tween first neighbors, a hole is localized. Starting from a
Neel state, a hole after n nearest-geighbor hops leaves n
spins overturned and 2n+ 1 frustrated J, links that cor-
respond to a "string" potential. Its ground-state energy
behaves as

(2) x t t 1 x t t t tS = cl g circ ~ + —g@ g c-~circ,.~c ~, (2.10)

with (i, j) first neighbors. After straightforward algebra,
we obtain

C = 4aNt + [t(1 —9a + y@) + aU] ) c,~c~~

The three first sums are restricted respectively to pairs
of first, fourth, and sixth neighbors. The last sum is
restricted to triplets such that Io and l (possibly equal)
are first neighbors of i.

The parameter a introduced in S is obtained by setting
the second term to zero. The constant term Eo ——4aNt
gives the energy Eo/N = s[U —(U2+ 36t2)~/2], which
is identical to the Hartree-Fock (HF) approximation in
the large U limit. The last three terms cannot be set
to zero. Hence we now reintroduce in S the terms nec-
essary to cancel these remaining terms. This gives a
scheme for successive approximations. There are five new
terms to introduce in S at the next level, and the alge-
bra is a little more tedious; the parameters introduced
in S are a solution of a coupled system of six nonlinear
equations. 2 At large U, the most important among these
new terms is that which exchange first-neighbor spins:

c.&c,.&c,.&c.&, the others are of higher order in t/U 2.
Hence let us simply take here

[8&Eat+ a U-] 0 c~~c*i"icosi+ (2.11) e/t = —2y 3 + 6.90(t/U) a . (3.1)

Setting the coefficients of the first and second sum to
zero gives a and y@ as a solution of a second order equa-
tion. The constant term provides a simple but reliable
approximation of the energy

1

Eo/N = — 7U/8 — (7U/8) + 36t
9

(2.12)

which for U larger than the bandwidth 8t is only = 2'Fo

above the best estimates through quantum Monte Carlo
(QMC) calculations" s (see Fig. 1). Since, in that range,
the HF approximation is roughly 10' higher, we con-
clude that this simple g@ terms takes —80% of the
correlation energy into account. We shall stay at this
elementary step in the following.

Trugman has pointed out that if a hole travels around a
plaquette one and a half times it unwinds the string and
find itself translated to a next-nearest-neighbor site with
the background spins undisturbed. Nevertheless such in-

tricate paths lead to a high ffective mass.
In a t-J model, the Jar,+-o terms can Hip two neigh-

boring spins and restore the original antiferromagnetic
order after two vacancy hops. In a t-t'-J model the t'
terms induce direct hops of the hole to the second or
third neighbors. Since t' = J = t/U, both effects con-
tribute at t/U to the bandwidth and vanish for U ~ oo.
In both t-J and t-t'-J models, the Buctuations of the
ground state with respect to the Neel state can also con-
tribute to the coherent motion of the hole. The CCM
offers a simple picture for this effect since the y@ terms
introduced in S fIip two neighboring spins and can also re-
store the correct antiferromagnetic order after two hops.
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This contribution does not vanish at large U.
In the presence of one hole, the wave function is written

IITlQ} = CTl0) + El0}, (3.4)

l@}L,= T exp(S)l0) = exp(S)TIO) (3.2)
where C represents the terms obtained in the half-6lled
case [Eq. (2.7)j, with CTlO) = TClO) = EoTlO). We thus
have to solve

where T represents some quasiparticle operator associ-
ated with one vacancy. Since T contains exclusively
creation operators, it commutes with exp(S). The
Schrodinger equation is

(3.5)

I et us take a simple Bloch wave as a 6rst approximation
for T:

(3.3) To ——) a&& exp(ik R~) . (3.6)

The left hand side can be split into two parts: We obtain

r]~0) =
I

—ap (k) ) a& exp(ik. R&) + ) ]aU+ Xap(k) exp(ik a)]a&&J&&a&e &exp]ik R&))]0),
1 T

(3.7)

w ith p(k) = P exp(ik v); v C fkx, +y) joins two
nearest neighbors. The prefactor of the first sum gives
the zeroth order approximation for the energy of one hole.
The second sum cannot be set to zero. It represents
nearest-neighbor hops of the vacancy. At the next level,
to cancel these terms, we take

Tz ——) ai& + ) u~a&&a&&a&+ &
exp(ik . R&) . (3.8)

From Eq. (3.5), the u appear as a solution of a linear
eigensystem with lowest eigenvalue eq, representing the
ground-state energy of a hole.

The most important terms to reintroduce in T at the
next step to cancel the remaining terms are those describ-
ing two successive nearest-neighbor hops of the vacancy:

T2 = t t t t t r stu a(ta)ta)+ $a$+ ta)+ +, /exp(t'- P()
T )T g T

+T$ ~ (3.9)
We shall neglect other more intricate terms which are of
higher order in t/U or appear with various phases and
are expected to cancel partly. For the same reasons,
at the step T3, we shall only add terms corresponding
to three successive hops, etc. In that way, the succes-
sive approximations Tq l0), T2l0), Tsl0) . , with one, two,
three, ... hops strictly correspond to the states retained
by Trugman. However, these states are improved here
by the exp(S) operator which through the yE terms takes
into account the xnost important part of the quantum
Buctuations. In the infinite U limit, if we set y~ to zero,
our formalism is strictly equivalent to Trugman's. The
construction of the operators Tq, T2, T3, ... is similar
to that proposed, within a more general &amework, by
Dagotto and SchrieH'er to describe the behavior of quasi-
particles in the t-J model.

These quasiparticle operators lead to an accurate de-
scription of the single-hole wave function, which is com-
pletly di8erent &om that proposed by Lo et al. through
a more intricate coupled-cluster approximation scheme.

Figure 2 represents the minimum energies Ey, 62 E'3,

corresponding to Tq, T2, T3. For any U, the minimum
occurs at k = (vr/2, n /2) and the maximum at k = (0, 0).

(3.10)

with e = —3.40, b' = 8.9, and v = 0.70, in good agreement
with results obtained for the t-J model, through exact di-
agonalization and 6nite-size scaling on small clusters up
to 26 sites. ~s ~r Comparing with Eq. (3.1), we confirm by
a completely diHerent approach the idea that the "string
scenario" keeps some relevance for the Hubbard Hamil-
tonian in spite of the strong quantum fiuctuations.

The e8'ective mass de6ned &om the inverse bandwidth,

U/t 20

~ ~ E3~ ~ ~ ~

FIG. 2. Successive approximations of the minimum energy
at k = (vr/2, n'/2) of one hole, with one, two, and three hops
(solid curves). The extrapolation (dotted line) is obtained as
shown in the inset.

In the infinite U limit, and setting y@ ——0 the results
are identical to those obtained through the first moments
of order 2,4,6 within the retraceable path approximation,
if we neglect the "one and a half cycle" of Trugman. In
that case Heritier~s has shown that a linear extrapolation
of 1/e2 as a function of 1/(2n —1) is relevant. Although
there is no theoretical support for that with 6nite U and

g 0 the points representing 1/e„as a function of
1/(2n —1) remain approximatively aligned (cf. inset).
For every U, we deduced from such plots the extrapolated
dotted line. As shown in Fig. 3, this extrapolated energy
can be

fit

in

widerange 10 & U/t & 80 through a simple
function
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FIG. 3. Log-log plot of the extrapolated energy (dotted
line of Fig. 2). A linear St to In([e —e j/t) as a function of
In(U/t) is made. The value e = —3.40 is then adjusted to
minimize the mean-square deviation.

m' = 8t/W with W = e~ i~i2 ~i2) —e~ (o o), and ob-
tained with Ts (three hops) is represented in Fig. 4. In
the range 5 ( U/t ( 20, it is roughly proportional to
U/t: m' 0.845U/t in agreement with Refs. 11, 16, and
18. In the "string picture, " the mean excursion of the
hole is l = 1.9(4t/U) s, giving t ( 3 for U ( 16. Hence
we expect our approximation with three hops to be quite
accurate in that range.

For U -+ oo, the effective mass saturates to a con-
stant value m' . The quantum Buctuations around the
Neel state (g@ terms) have an important contribution
to this limit. At the successive steps Ti, T2, T3, we ob-
tain respectively m' = 12.8, 23.3, 84.0. Such a drastic
increase has two origins: (i) The y@ terms contribute
essentially to the coherent motion to next-nearest neigh-
bors. More complex paths included in T2, Ts decrease
their relative weight. (ii) At the last step Ts, the "one
and a half cycle" around a plaquette contributes to the

FIG. 4. Effective mass of a hole.

bandwidth. However, this contribution gives a minimum
energy at k = (0, 0), whereas the y@ terms give a max-
imum at k = (0, 0). Since the effect of the y@ term is
more important, the global minimum energy remains at
k = (m/2, 7r/2); however, both effects partly cancel and
the effective mass is enhanced. We should go further in
our approximation scheme to conclude definitively. How-
ever, we can say that the asymptotic value m is high
and it is reached for values of U/t which are beyond the
transition to the polaron regime U/t = 350 (Ref. 16) (see
inset of Fig. 4).

The same approach has been applied to the two-
vacancy problem. No binding has been observed over the
whole range of U. The details will be reported elsewhere.
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