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We examine geometric and 6nite-size effects in superconductors, using a purely microscopic
method. The case where the coherence length (0 is short and phenomenological methods cannot
be used is emphasized. We focus on the single-particle density of states, the energy gap, and the
order parameter, and obtain results as a function of temperature, coherence length, system size,
distance to the boundary, and pair-breaking impurity mean free path. We discuss the roles of all of
the relevant lengths and the experimental implications of our results, in particular, how data from
surface probes can yield information on bulk properties.

I. INTRODUCTION

The study of geometric effects plays an important role
in the theory of superconductivity. It is an essential
bridge between the basic theoretical models, usually ob-
tained for infinite systems with periodic boundary con-
ditions, and experimental results obtained on finite sam-
ples, often in films, granular materials, and other confined
geometries. Thus, this question has drawn a strong in-
terest from both theorists and experirnentalists for a long
time.

From the development of the Bardeen-Cooper-
Schriefferi (BCS) theory, and extending into the late 70s,
much was accomplished in the area: Several models ex-
plained quite successfully the variation of the order pa-
rameter (OP) function A(r) near superconductor-normal
metal (SN) and superconductor-insulator (SI) interfaces,
the properties of superconducting thin films, tunneling
data, critical current measurements on small samples,
etc. These results relied heavily on the Ginzburg-
Landau (GL) phenomenological theory, or on non-
self-consistent solutions ' of the microscopic Gor'kov
equations (GE). Such approaches were, in general, satis-
factory for the case of ordinary metallic superconductors,
such as aluminum or tin, due to the long superconducting
coherence length (o of these materials (e.g. , (o = 16000 A.

for aluminum). s During that period, the fact that (o is
much larger than the characteristic microscopic lengths,
such as the Fermi wavelength in ordinary superconduc-
tors, was used as a given, explicitly or implicitly, in treat-
ments of interface, boundary, and geometrical effects.

The discovery of high-temperature superconductivity
brought new attention to this subject. The coherence
length (o of high-temperature superconductors (HTSC's)
has been found to be quite short compared to that in
ordinary superconductors, and the condition k~(o )) 1
does not hold. The entire area of size and interface ef-
fects was, therefore, found to be in need of reexamina-
tion: For example, as first pointed out by Deutscher and
Muller, the straightforward application of GL based the-
ory to the case of short (o superconductors would entail a

drastic depletion of the OP near SI interfaces over an ex-
tended temperature range. We have recently shown, by
using a purely microscopic and fully self-consistent the-
ory, that the results of standard GL based methods could
indeed be seriously in error. In particular, the severe de-
pletion of the OP function near a SI interface in short
(p superconductors, discussed in Ref. 8, is not found in
the microscopic calculation: it is much smaller, and oc-
curs only at temperatures extremely close to T, . The
results in Ref. 9 (in particular from Figs 6—8 there) indi-
cate that, although there is a length f(T), increasing as
T —+ T„associated with the OP behavior, this is not the
only length associated with the function A(r) near the
interface. Thus, one cannot use the single GL coherence
length $GL(T) to phenomenologically describe interfaces.

Experimentally, this issue is important because tun-
neling, the usual probe of the quasiparticle spectrum,
is a surface probe. For small (o, high-T, materials it
gains additional importance because photoemission, also
a surface probe, can be used as well. Photoemission
experiments indicate the existence of a considerable
gap (large in comparison with k~T, ) near the interface.
There are a number of reports of tunneling results in
the basal plane of high-T, materials also showing a sub-
stantial gap, in agreement with photoemission. The val-
ues found are also consistent with those obtained from
a small gap" interpretation of in&ared measurements,
although other interpretations indicating no gap or a
much larger gap are also possible and make this a still
controversial issue. An abrupt variation of the OP near
a SN interface has also been found using scanning tun-
neling microscopy (STM). While one can argue about
the results of any single technique, in our opinion the cu-
mulative experimental evidence against a universal and
severe gap depletion at the surface is very strong.

However, many of the experimental implications of the
OP behavior remain unexplored. In particular, one has
to determine the relationship between the local value of
the OP in a sample, and the value of the energy gap in the
single-particle spectrum. Given that tunneling probes a
sample only within a few coherence lengths of the surface,
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how is the measured gap related to that which one would
find in the bulk. For large (o superconductors, this issue
was examined some time ago. It was concluded that the
measured gap would be the minimum value of the OP in
the sample, coarse grained over a distance (o. For short
(0 superconductors, it was tacitly assumed that normal
edge states would appear in the tunneling spectrum.

In this work we attempt a careful reexamination of
these questions. We focus on interface effects on the den-
sity of states (DOS). We calculate the DOS for short (p
superconductors for the case of finite geometry consist-
ing of a slab of thickness d. When d is sufficiently large,
the behavior of most of the sample is in the bulk regime,
while the presence of the interfaces is still felt in the re-
gion near the surface. We use the same purely micro-
scopic methods as in Ref. 9 to calculate the OP and the
DOS. We have also included the effect of pair breaking
impurities, using an extension of the usual Abrikosov
method to our geometry. Our objective is to sort out the
roles of different characteristic lengths in the problem:
the coherence lengths, the mean free path t, the Fermi
wavelength Ag = 2s'/kg (kp is the Fermi wavevector),
the distance z from the surface, and the thickness d. The
method we use shows many important features of inter-
face and finite-size effects and all of their complexity.

It follows from our results that the energy gap as mea-
sured in tunneling experiments should be close to the
bulk value of the OP function A(z) even for small (o.
Only a very slight reduction due to surface effects should
occur. The DOS for the geometry we consider repre-
sents the single-particle states of the system over a re-
gion of extended depth. We find, however, that it should
be possible to extract information on finite-size effects
from tunneling data on samples of finite thickness d, even
though these effects are not large. We discuss the inter-
play between the length scale for OP variations and sam-

ple thickness, in both the clean and dirty cases. We also
find that the transition temperature of finite-size short

(p superconductors depends on I in the same way as the
bulk T„and is monotonic in d, while on the other hand,
T, for finite I and long (o superconductors exhibits quan-
turn oscillations, as in the clean case. '

This paper is organized as follows: in Sec. II we review
our formulation of the Gor'kov equations, which we use to
obtain self-consistent results. We introduce our method
of solution, and of extracting the DOS. We explain the
modifications to the self-energies in finite geometries, and
the inclusion of a finite mean free path. In Sec. III we

present and analyze our results. Finally a summary dis-
cussion of the results is in Sec. IV.

with a contact pairing interaction acting between elec-
trons within energy range up from the Fermi surface.
The nature of the interaction is unspecified. In the slab
geometry one finds it convenient to perform a spatial
Fourier transform in the x, y plane, and to expand the
normal and anomalous Green's functions G and F', in
terms of the complete set of eigenfunctions u (z) of a
one-dimensional box. Thus,

where

'tv Z = Z V sin(k„z), k —:k, = —
, (2.2)

k~ is the wave vector in the transverse direction (z, y
plane), and u„are the Matsubara frequencies. As dis-
cussed in Ref. 9, this expansion is appropriate provided
k~d is not too small, so that electronic wave function
"leak" outside the sample can be neglected. For thin
films there may be other problems related to modifica-
tions of the electron pairing interaction. At zero mag-
netic field A(r) is effectively only a function of z, the
distance from the interfaces, and one can expand:

(2.3)

The upper limit N of the sum in Eq. (2.3) is determined
by the range of the pairing interaction ~p.. the energy
of a particle with a wave vector k = (k, k~) must lie
in the region (E~ —uo, E~ + era) about the Fermi sur-
face. We consider a system with constant carrier density,
therefore the chemical potential p is a function of thick-
ness d. ' We also assume that the Fermi energy EF is
approximately equal to the chemical potential p. Thus,

kF d 4pp1+
7r EF

(2.4)

where square brackets denote the integer part. The sums
in Eqs. (2.1) extend formally to infinity. However, since
both 6 and I' t are non-zero only in the mentioned region
near the Fermi surface, outside this region g reduces
to its normal metal limit:

gvv'(kJ ~~n) ~vv' (2 5)

G(z, z', k~, (u„) = ) u (z) u (z') g „(k~,u)„), (2.1a)
VV

Ft(z, z', k~, u„) = ) u (z) u (z') f*„,(ki, w„), (2.lb)
VV

I1. MODEL

In this section we review the methods we use. We
consider a system confined to the region 0 ( z ( d,
and infinite in the x, y directions (slab geometry). We
emphasize the details of the calculation of the DOS, and
also show how to include impurities self-consistently in
finite geometry.

Our starting point is the standard Gor'kov equations,

Gp~ = gp~(k~, ~~), Fpp = fp (k~, ~„),
(2.6)

where f„=k&/2m+ k„/2m —p. In practice, values of v
and v' much larger than N are not needed for convergence
in the energy scales we study.

If we define appropriate matrices G, F, C, and X, with
matrix elements:
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where

d

J„„p= dz u„(z) u„(z) up(z),
0

(2.7)

(2.1O)

1F = C —(iu)„—X), (iu)„+ X) (2.8)

and

1
G = —,(iu)„+ X)F (2.9a)

then it is easy to see that the Gor'kov equations be-
come matrix equations, completely analogous to their
bulk Fourier transforms. One easily finds their formal
solution:

Here g is the bulk coupling constant, T is the tempera-
ture. We have taken k~ = 5 = 1. The matrix C, and
therefore the matrices F and G as well, are symmetric.

Our method consists of solving Eqs. (2.8) and (2.9) nu-

merically. The computations are simplified if one recalls
that, as discussed in Ref. 9, the matrix C, and therefore
the matrices F and G, are approximately diagonal both
at large and small k~d, which makes the matrix inver-

sions in Eqs. (2.8) and (2.9) somewhat easier. Writing
then

C=D+0, (2.ii)
1

- —1

x(u„—X —C . C'
ZQJ~ + X

with the self-consistency (gap) equation:

(2.9b) where D is the large, diagonal part, and 0 is the small,
oK-diagonal part of C, and expanding Eqs. (2.8) and (2.9)
in terms of 0, one obtains the formal expansion for F:

D D
2+ X2+ D2 ~ 2+ X2+

D D-=0
2+ X2+ D2 —~ 2+ X2

0 D
D ~ 2+X +D

20
D

+D ~ 2+X +D
~ ~ ~

)

(2.12)

where

1

1+OD 'O = 0+ (iu)„—X) (D OD ) i (i~„+X). (2.i3)

There is also an equivalent expansion for the normal Green's function G.
It is important to realize that the solution (2.12) contains only superconducting excitations of the system: by

analytically continuing G and F onto the real frequencies (iu„~ E), and recalling Eqs. (2.9a) and (2.12), one sees
that there are no normal metal low-energy poles where 6 is nonzero. Then to first order in 0 we have:

d kg ~. C~„ (u„2 + Q„—C„„C„„
(2~)2 l~ ~ 2+( 2+C2 ( )(~ 2+( 2+C2 )(~ 2+(2 +C2 )

(2.i4)

Here we have omitted terms which vanish by symmetry when performing sums over Matsubara frequencies. Equa-
tion (2.14) is the self-consistency equation, the analog of the gap equation in the bulk case. It is easily confirmed that
as expected from the Gor'kov equations, the order parameter b, (z) and its components b,p from Eq. (2.14) can be
assumed to be real without loss of generality. Therefore we have written C = C'.

Performing the analytic continuation for G, i.e., G(z, z', k&, iv) ) ~ G(z, z', k~, E), one finds, to first order in 0,

8+X 1 1
E' —(X' + D') E' —(X' + D') ' ' ' ' ' E' —(X' + D')G =

2 + [DO(E+X + (E+X)OD) (2.i5)

and finally

E+(„C„„(E+f„) + (E+(„)C„,„,) ~ ( ) ( ) E2 ((2 C2 )
~ ( ~~ )(E2 (2 C2 )(E2 (2 C2 )
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Equation (2.14) must be solved numerically, using an
iteration procedure. We start with an appropriate choice
for Ap's, calculate the matrix C from the definition (2.6),
and obtain new Ap's. We stop the procedure when the
relative change in A(z) (0 & z & d), between two succes-
sive iterations, is less than 1 x 10

We can now use Eq. (2.16) to obtain the DOS. We
define the quantity

1
N(z, ki, E) = ——ImG(z, z, k~, F + is), (2.17)

[iur —X —Z (i(u )] G+ (C —g+) F= 1,

[iur„+ X + Z (
—i~„)]G + (C —Z ) F= 1,

(2.18a)

(2.18b)

where Z and Z are the impurity self-energies involved.
We have assumed here that the impurities are pair break-
ing. If they are not, Z takes a plus sign in Eq. (2.18).

In the slab geometry, the self-energies are also matri-
ces. We make the following assumptions: we need E
and Z only to first order in (1/k~d)2, since we are not
considering thin films where k~d 1. We then make the
usual assumption that the impurities are dilute (k~t && 1,
where t is the mean free path) and that the impurity
potential is completely screened at distances of order of
several kF, resulting in

W(r) = W(r) m 0, vari
& (2.19)

where c is a positive infinitesimal. The DOS can then
be found by integrating N(z, ki, F) over the appropriate
range of k~ and z.

The above calculation applies only to pure samples,
and we now introduce random impurity scattering in
the calculation. We assume that the impurity potentials
W(r) are weak, which allows us to use a perturbation ex-
pansion, quite analogous to the well-known methods of
Abrikosov et al. , for the treatment of impurity scatter-
ing in bulk superconducting alloys. We are also interested
only in the Green's functions averaged over impurity po-
sitions. In this case the matrix Gor'kov equations become

in the Born approximation), the error associated with the
exclusion of these terms will be much smaller than the
self-energies, and can therefore be neglected.

Thus, one finds

Zpp(ki, i~„) = 8)sd, d()s W(z, kz, k~') gyp(ki', ~„),

(2.20a)

Zd~(kz, ia ) = dd~ f d(d W)z, kx, kz') fdd(ki', d „),

(2.20b)

where iu„ is defined below and

W(z, ki, ki') = N; f dz; dp )W)z —z;, y)]

(2.21)

Here N, is the number of impurities, and p is the angle
between k~ and ki'. In Eqs. (2.20) the same restrictions
apply as in Abrikosov theory, i.e., all vectors must be near
the Fermi surface. With this and the other conditions
discussed above, W from Eq. (2.21) obviously does not
depend either on k~, nor on z and in the limit d —+ oo
it becomes identical to the bulk impurity scattering rate
1/2w. As discussed above, we can neglect corrections of
order (1/k~d)2, and simply conclude W = 1/27 = vF/2l,
where vF is the Fermi velocity.

We then write

l(d = X(d~ Z (2.22)

(where a Matsubara index in i~ is suppressed for clarity)
and obtain a solution for the Green's functions formally
identical to (2.8) and (2.9), except that iu replaces i~„,
and C replaces C. After performing the necessary inte-
grations we find for the diagonal elements of ~ and C
explicitly:

Here we have also assumed that the impurity potential is
spherically symmetric. Our final assumption is that there
is no correlation between the impurity positions and the
location of the boundaries.

From these considerations, it follows that it is suKcient
to calculate the matrices Z and Z within the diagonal
approximation. OfF-diagonal terms would introduce cor-
rections of higher order in (1/kid) (1/k~l). This quan-
tity is not necessarily negligible in the calculations of the
OP in HTSC's. However, since impurity potentials are
weak, and their self-energies are electively only correc-
tions to the Green's functions (calculated to second order

1
~vv = ~n+

2T
~vv+ Cvv

(2.23a)

1C„=C„——
27

~vv + Cvv

(2.23b)

If nonpair breaking impurities are also present, with a
scattering time 7iv, then 1/w must be replaced by (1/~+
1/tv) in Eq. (2.23a), and by (1jr —1/riv) in Eq. (2.23b).

The self-consistency equation (2.14) finally becomes

d kg C &vv'td)v'v' + (v(v' vv v'v'

I +Q+C (~' +@+C )(~' +(' +C„)
C . (2.24)
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In order to obtain the DOS we now perform the analytic continuation from Matsubara frequencies to the real
energies. This is not as straightforward as in the clean case, and requires the definition of a real energy array E:

1 iE„E =E+-
E —C

(2.25)

One then obtains the expression for the DOS in the dirty case:

N( k E) I ) ~
( ) ( )

v (v
g ( g )

vv( v (v ) ( P (v) v v

E„—((„+C„„) (E„—(„—C„„)(E„,—(2, —C„, , )

(2.26)

which is the equivalent of Eqs. (2.16) and (2.17) in the
presence of impurities.

Prior to the solution of Eqs. (2.24) and (2.26) one must
solve Eqs. (2.23) for each value of v, which we did nu-
merically. We performed the integration in Eq. (2.24)
analytically, and the sum over Matsubara frequencies nu-
merically. The integrals over k~ required to obtain DOS
were also obtained analytically.

III. RESULTS

In this section we present the results of our model.
First we emphasize geometric effects in clean systems,
i.e., the interplay of thickness and coherence length. We
then introduce pair breaking disorder. We present results
for the DOS [including the energy gap and its relation to
6(z)], and the OP as a function of temperature, thick-
ness, and geometry. We also discuss the shape of the
OP near a surface in dirty systems, and the transition
temperature.

The physical parameters of our model are the charac-
teristic cutoff frequency ~o, the zero-temperature bulk
OP in a pure superconductor 60, the Fermi energy E~,
the thickness of the slab d, the mean &ee path for pair
breaking impurities l, and the temperature T. However,
since several of the physical parameters are not indepen-
dent of each other, one only needs to consider some di-
mensionless ratios. We choose the same dimensionless
parameters as in Ref. 9: kJ;(o, k~d, b, II/uII, and t = T/T„
with the addition of k~jt. The chemical potential p is cal-
culated as a function of d. The value of k~(o is related
to that of Tg/T, by kJ;(o = 0.36 (TJ:/T, ).

We have used for these dimensionless parameters val-
ues relevant to several experimental situations. Thus, we
have chosen 7rk~(o ——20000 and 7rk~(o ——20 as being
representative, respectively, of typical metallic supercon-
ductors such as Sn, and of short coherence length mate-
rials such as the cuprates. In the latter case, the chosen
value of (o is closer to that in the basal plane. For short
(o materials one must take much larger values of Ap/Idp
than when (o is long. 24 Thus, we take values of bo/ceo
as high as 0.5 in the short (o case, and as low as 0.01 for
long (o. This is appropriate since the order of magnitude
of the zero-temperature OP in HTSC's is 100 K, while
the cutoff &equency is presumably still of the same order
as in long (o materials.

Figure 1 shows the DOS calculated for a clean system
of fairly large thickness k~d = 750 and long coherence
length uk~(o ——20000 at T = 0, while Fig. 2 shows the
same quantity for a short (II superconductor, xk~(o ——20,
at t = .0.45 and for k~d = 2000. The quantity plot-
ted is obtained from N(z, k~, E) as given by Eq. (2.17),
summed over a small range of k~, ~k~] ( 0.01 k~, chosen
&om an estimated angular resolution of tunneling exper-
iments. This would correspond to a high resolution ideal
STM-type measurement in the sense that we assume
a very small transverse momentum distribution for the
electrons. In a real STM measurement, however, one has
appreciable energy resolution, and the theoretical results
for N(z, k~, E) should be convolved with this resolution.
This effect, which would lead to the smoothing out of the
small wiggles in Fig. 2, is not included in our plot. The
results given are normalized to the normal metal limit
at high energies. The dashed line represents an integra-
tion over all values of z &om 0 to d, that is, the density
of states approximately equal to that in the bulk. The
solid line is obtained by integrating over a region of z
near the interface (Z—:k~z ( 10), representing a typ-
ical surface measurement. The results shown indicate a
gap near the surface not even marginally smaller than
the bulk gap. There is no sign of any states in the gap.
Indeed, one can conclude from Eqs. (2.16) and (2.17)
that, in a slab geometry, this should be the case. Thus,

10

0
O

I I I I I I I I

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
E

FIG. 1. The DOS for small k~, as explained in the text,
normalized to its normal bulk value, as a function of energy,
measured in units of b, o. Here eke $0 ——20000, T = 0, and
k~d = 750. The solid line is averaged over k~z ( 10, and the
dashed line over all z.
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E

FIG. 2. As in Fig. 1, but with s'k~(o = 20, k~d = 2000,
and t = T/T, = 0.45.

these results imply that surface probes measure the bulk
density of states to a very good approximation even in
short (o materials. We can say that in a superconductor
without pair breaking impurities and for the geometry
considered here, a probe of the density of states scans
a wave function extended in the z direction, therefore
measuring the overall energy gap, rather than the local
value of the pair potential A(z). The excitations are es-
sentially similar across the system. A surface probe may
well run into experimental difficulties due to the small-
ness of the region probed. This is definitely the case with
photoemission, for example, but the measured spectrum
will accurately reQect the bulk properties.

For the thicknesses considered in Figs. 1 and 2, we
have that (o )) d in Fig. 1 and (o (( d in Fig. 2. There-
fore, short coherence length superconductors show a more
complicated finite-size structure, at higher energies, than
the long coherence length ones. This is due to multi-
ple refm. ections of electrons at the interfaces, which pro-
duce resonances that disappear when d &( (o.

'

This ef-
fect is difficult to observe experimentally at the thickness
in Fig. 2, due to the above-mentioned energy resolution
problems. However, as kFd decreases, one may begin
to observe finite-size effects in the DOS, since when (o
is small, one is never in the regime d (& (o. Instead of
a single singularity, several can be observed, as shown
below.

In Fig. 3 we use again the parameters of Fig. 2 except
for a higher temperature (t = 0.99). We show results
integrated over a region kFz & 10 only. The energy gap
obtained is approximately the same as the bulk order
parameter at the given temperature. In contrast, if the
gap is assumed to be the minimum of E(z) over the re-
gion considered, is and b, (z) is evaluated using the phe-
nomenological theory, ' the resulting gap in the DOS
is found to be much smaller, as indicated by the arrow
in the figure, equal to approximately 30%%uo of the micro-
scopically calculated value.

In Fig. 4 we show results similar to those in Figs. 1—3,
with several important differences. First, we now inte-
grate N(z, k~, E) over all values of k~ (solid line). Sec-
ond, we have taken here a sinall value of D (D = ky d =
75), and a temperature t = 0.45 so as to emphasize the

FIG. 3. Results for the DOS, for the same parameters as in
Fig. 2, but a higher temperature (t = 0.99). Results averaged
over kFz ( 10 are shown. The arrow indicates the gap value
that one would get from phenomenological considerations (see
text).
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FIG. 4. The normalized DOS, integrated over all k~ and
z, for k~d = 75 and t = 0.45 (solid line). The dashed line is
integrated over small kz, normalized in the same way. The
dotted line is the bulk DOS.

finite-size effects that occur. For reference, the dashed
line shows the corresponding "sharp STM" result, with
k~ integrated over the range ~k~~ ( 0.01 k~ (normalized
in the same way), and the dotted line shows the bulk
result. The range of integration for z turns out to be
unimportant, the results shown are integrated over all
z. Notice the energy scale shown. The DOS, integrated
over all k~, in a finite-size system contains many exci-
tation peaks. The scale of the structure shown is such
that it might be experimentally resolvable in carefully
performed, low field tunneling experiments. The peaks
represent a "splitting" of the bulk square root singularity
due to discreteness of k„and should not be mistaken for
the higher-energy resonances (Fig. 2), which here com-
pletely disappear. This effect is also present to some
extent when ~k~~ is small. There, however, probes "see"
only the few excitations with the minimum gap value.

The overall width of the energy region where this struc-
ture is seen, depends on (o and, through the size of the
OP, on the temperature. The structure is a consequence
of the dependence of A(z) on the discrete k, . From
Eq. (2.4) it follows that this dependence decreases as
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(k~d) i. For short (o superconductors the value of k~d
used in Fig. 4, while still relatively small, is large enough
so that over most of the temperature range ((T) &d, and
finite-size effects occur in the wave functions correspond-
ing to larger k, values. The main peak in the solid line is
very close to the bulk gap, and it is due to small k, elec-
trons. The bulk gap, obtained using standard methods
and indicated by the dotted line, is larger than the gap
calculated here, due to the small thickness. The elec-
trons with larger k, produce the peaks corresponding to
smaller energy values.

On the other hand, quantum finite-size effects on the
average value of the OP and the energy gap are present in
long (o superconductors, as shown by many authors both
theoretically and experimentally. '2 However, in
short (o superconductors, at any physically significant
thickness, this effect is smeared out. The OP in these
systems should reach its bulk value from below, and that
is why we see the gap slightly below its bulk value in
Fig. 4. The gap there is simply the OP value averaged
over the slab thickness.

It is interesting to discuss the local order parameter
A(z) in relation to the energy gap in the spectrum, for
a finite system. We begin with Fig 5. The solid line
there shows A(z) for the same thickness as in Fig. 4,
while the dashed line shows the OP in a thicker sample
(kid = 750). Again, the difference between the phe-
nomenological result, shown by the dotted line, and the
microscopic solution for the OP is clearly evident. The
Friedel-like oscillations should be ignored here. The Hat
horizontal lines correspond to the energy gap, as obtained
from our calculation of the DOS for these systems. The
gap is somewhat smaller for the thinner slab, but it is still
considerable. In both cases it is very close to the average
of A(z). This indicates that the results of Ref. 27 hold
only if it is understood that the variations of the OP on
a scale of A~ must be averaged out. It can be seen in
Fig. 5 that, as in Ref. 9, in addition to the sharp rise in
A(z) over a short scale within k+ from the interface,
a smaller increase occurs within a longer, temperature

dependent range f(T) .This is shown more clearly in
Fig. 6 where the results for several additional temper-
atures are shown for the thicker of the two systems in
Fig. 5. Note that the OP shown is normalized with re-
spect to the bulk OP b, (T) at each given temperature.
The results obtained at different temperatures are shifted
by a multiple of 0.2 x b, (T) for clarity. One can see that,
as the temperature approaches T, the depletion of the
OP at the interface becomes gradually more prominent.
We have found that the larger length associated with this
variation of the OP is ((T) (1 —t), with n I/2 as
expected, provided that k~d ) f(T)

Figures 5 and 6 show that, although the OP in short
(o materials exhibits a small variation over long length
scales at temperatures close to T, near a SI interface,
most of the change takes place over a short distance. One
cannot describe the overall behavior by a single coherence
length (&L,(T).s The reason for this discrepancy between
microscopic and phenomenological results is quite obvi-
ous: the basic assumption of all GL based theories is that
the variation of the OP is very small over a range much
larger than the interatomic distance. In other words, the
OP near a SI interface, in the absence of a magnetic field,
should satisfy the boundary condition

—A(z) =0
dz

(3.1)

to a good approximation. The boundary condition (3.1)
assumes implicitly that terms involving, e.g. , the first
derivative of the OP, do not contribute to the free en-

ergy functional even near the interface. This was found
to be approximately correct microscopically for the case
of long (o superconductors, but, as discussed above, the
OP should exhibit, according to GL theories, a signifi-
cant variation near the interface in the case of short (o
superconductors. In that case Eq. (3.1) is no longer satis-
Qed, and therefore the original GL free energy functional
is not applicable near the interface. This is why a purely
microscopic approach must be used.

The value of T, as a function of d is given in Fig. 7.
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FIG. 5. The normalized OP b, (z)/As vs Z = ksz for a
clean system, at t = 0.99, zk&gs = 20. The solid curve is
for kid = 75 and the dashed curve is for k~d = 750. The
horizontal Bat lines represent the corresponding energy gaps
obtained from the DOS calculations. The dotted line is the
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We plot there T, versus d for three values of the coher-
ence length. One can see that for small (o, T, is indeed
only very weakly dependent on the thickness, while at
large values of (o we recover the well-known oscillatory
behavior.

We now consider the effect of adding pair breaking im-
purities to our system. The first question is to investigate
the validity of the d m oo formula at finite d for T, as a
function of mean free path I. We write

calculated T, as a function of d and l. At small (o we

conclude that, although T, depends only weakly on d,
thinner samples are slightly more sensitive to pair break-
ing scattering. This can be seen in the inset of Fig. 8
and it can be understood as arising from the destruction
of superconductivity when ((T) )d, as discussed above.
This is also related to the decrease of the energy gap as
decreases (Fig. 5) and the behavior of T, (d) in pure films

At constant d and l, and varying (o, we find after
carefully including terms of order (u)o/EF) in our cal-
culations, that short (o superconductors deviate some-
what from Eq. (3.2): They are slightly less sensitive to
pair breaking impurities than expected by straightfor-
ward application of the scaling formula. Note also that
Eq. (3.2) has been proven approximately valid for infi-
nite d-wave superconductors with a specific dispersion
relation. Therefore we believe that it is a rather gen-
eral property of superconducting systems, treated witnin
the second order self-consistent Born approximation.

In Fig. 9 we show the effect of pair breaking impurities
on the results shown in Fig. 4. All parameters are the
same as in Fig. 4, except that the mean free path is now
finite. Two differences are apparent. First, the gap is,
of course, reduced by the pair breaking impurities. Sec-
ond, the geometric effects are rather broadened, which

dimplies that their experimental observation may be ..ar
to achieve.

Impurities change the value of ((T). In standard su-
2perconductors one has, for nonpair breaking impurities,

where T (d) is the transition temperature for the cleanC

system and @ is the digamma function.
We obtain T, in the same way as in Refs. 9 and 33,

by solving for the lowest eigenvalue of a system of equa-
tions [see Ref. 9, Eq. (3.4)]. The results for T, as a func-
tion of l are given in Fig. 8 for several values of d, and
vrkF(o ——20. T, obviously obeys Eq. (3.2) to a good
approximation. This equation can then be understood
as a "scaling relation" between T, (d) and T, (d). One
does find, however, deviations from this scaling law. We
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where lN is the mean free path. Equation (3.3) holds only
when lN (( (o. This assumption can never be satisfied in
short (o materials, where one is in the regime l, l~ )) (p
even when the disorder is otherwise very significant (e.g. ,

l 50 A.). Superconductivity in these materials is then
extremely robust with respect to pair breaking impurity
scattering. As a result, impurities influence very little the
shape of the order parameter near an interface. We show
this in Fig. 10. There we plot A(z) near the surface of a
superconductor with irk~(o ——20 at a relatively high re-
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FIG. 8. The normalized transition temperature
T, (d, l)/T, (d, l=oo), as a function of I:—k~1 (l is the pair
breaking impurity mean free path) for thicknesses kid = oo
(solid line), k~d = 200 (diamonds), and kid = 50 (crosses).
The inset shows the detail of the region T, = 0.
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FIG. 9. As in Fig. 4, but with pair breaking impurities,
k~1 = 1 x 10 (solid line) and kgl = 1 x 10 (dashed line).



49 SIZE EFFECTS AND CHARACTERISTIC LENGTHS IN. . . 3421

0.2

0.18

E
~ 0.&6

"-„0.&4

0.12

0.10
~ 0.08

~ 0.06
E 0.040

0.02
I

20
I

40
I

60
I

80 100

FIG. 10. A(z)/Ap near the surface of a superconductor
with hark~(p = 20 at t = T/T, (l) = 0.99. The dashed line is
for the clean case, and the solid line is for k~l = 50.

duced temperature t = 0.99. The dashed line represents
the results of Ref. 9 for the pure case (t = T/T, ) and
the solid line the results for k~l = 50 (t = T/T, ). Ex-
cept for the overall reduction of the average value of A(z)
(consistent with the previous discussion), the two curves
are very similar. One can see that the solid curve rises
to its bulk value slightly faster than its dashed counter-
part, which can be interpreted as a slight decrease of the
length ((T) as the impurity concentration is increased.
Note that Friedel oscillations are still present: Random
impurities do not significantly affect the geometrical ef-
fects, although scattering from localized surface inhomo-
geneities would.

IV. CONCLUSIONS

We have performed a study of geometric and finite-size
effects in short (p superconductors. We used a purely mi-
croscopic method, based on the Gor'kov equations in a
slab geometry: they transform into a set of matrix equa-
tions, which we solve to obtain the order parameter and
the density of states. We have introduced pair breaking
disorder in a self-consistent way, using a perturbation ex-
pansion method, analogous to that of Abrikosov et al. ,
generalized to our geometry.

Our results for the DOS indicate that an energy gap
should be observed for a clean system, for all values of

Moreover, this energy gap does not depend on the
distance probed from the interface. In other words, a
surface probe can indeed measure bulk properties of a
superconductor. This may be especially significant for
the case of short (p materials. The DOS does depend on
the probing region (distance from the boundaries), but
only slightly. For both long and short coherence length
superconductors we found that the DOS in a slab of fi-
nite thickness, when integrated over a large transverse
momentum area, exhibits size effects, manifested in the
existence of many peaks in the DOS instead of a single
one. This size effect is due to the variation in electron
pairing, depending on their discrete momentum compo-
nent orthogonal to the slab. This is a purely geometric
effect, and does not significantly depend on (p. Long

(p films also exhibit quantum oscillations of the order
parameter and the transition temperature. However, for
short (p superconductors, the transition temperature and
the average order parameter, as well as the energy gap,
reach their bulk values with increased thickness mono-
tonically &om below. This difference is due to the fact
that the condition (p (( d can never be reached in ordi-
nary superconductors for any thickness d at which size
effects are still relevant.

When pair breaking impurities are included, we find
again that to a good approximation the energy gap is in
all cases independent of the depth of the region probed
near the interface. For a sample of finite thickness, we
find that these impurities destroy superconductivity in
the same way as in the bulk: the relative transition
temperature T,(d)/T, (d), where T, (d) corresponds to
a clean slab, and T, (d) to a dirty slab, satisfies the same
formula [Eq. (3.2)j to a high degree of accuracy. How-
ever, as expected, short (p superconductors are much less
sensitive to impurity scattering. The dependence of T,
on thickness was found to be only minor in the short (p
case. Finally, as in the clean case, we found that the OP
in dirty short (p superconductors is mainly determined
by the size of the system, and that its depletion at inter-
faces is still extremely small even at temperatures close
to T, . This is due to the fact that the coherence length (p
is always much shorter than the mean free path l. These
systems are never in a regime where the behavior of the
system is dominated by impurity scattering, and in the
gapless state the pair potential could still be large. This
result could have important experimental consequences.

A consequence of our results is that (as in Ref. 9) the
temperature dependent length ((T) is relatively unim-
portant. Most of the change in A(z) takes place over a
short length scale, and the relation between the DOS, as
measured in tunneling and other probes, and the order
parameter is approximately independent of the tempera-
ture. This result holds also in the presence of impurities.

We have assumed s-wave pairing. It would be easy
to extend our calculations to other pairing states such
as d-wave pairing. We do not expect that the results
for the amplitude A(z) would change appreciably. The
DOS would be different in the gap region if nodes were
present, but our conclusions concerning its dependence
on the lengths in the problem, particularly its weak de-
pendence on z, should remain the same.

Our results are not without limitations. We have not
included scattering from boundary roughness, nor the
high anisotropy characteristic of many HTSC's, and we
have worked within a weak coupling formalism. This last
shortcoming is more diKcult to remedy than the other
two. Surface roughness scattering, for example, can be
added using the method of Ref. 21. Anisotropy in both
the effective mass and the coupling constants can also
be easily included. Nevertheless, most of our results and
conclusions are determined basically by geometrical con-
straints, and by the ratios of the different characteristic
lengths in the problem as enumerated early in Sec. III.
Hence, we expect them to be quite robust with respect
to our specific assumptions. We believe that the fact
that a large gap is experimentally observed in short (p
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superconductors, in both tunneling and photoemission
experiments, is to a considerable degree a confirmation
of the soundness of our approach. The finite-size effects
in the DOS discussed in Sec. III, might be observable in
tunneling data from experiments similar, for example, to
those of Ref. 14. Last, but not least, our analysis shows

that, when (o is small, one must think about the behav-
ior of superconducting samples in a way which is not the
same as that which most physicists have become used
to through decades of experience with ordinary metallic
superconductors. One must develop, so to speak, a new

intuition.
In addition to the generalizations discussed above, an

obvious extension of our work is to the study of struc-
tures, such as SN and SI multilayers or granular su-

perconducting materials. We plan to proceed with work
along these lines.
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