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Spectral and magnetic interplay in quantum spin chains:
Stabilization of the critical phase due to long-range order
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The anisotropic quantum XY spin chain in a modulating magnetic field incommensurate with

the periodicity of the chain is studied. Using Jordan-signer transformation, the model is mapped
to a tight-binding model in fermions. In the absence of symmetry-breaking terms, the fermion model

is identical with the well-known Harper equation exhibiting extended and localized phases with the
onset of transition being a critical point with fractal spectrum and wave functions. The effect of
O(2) symmetry breaking is to fatten the critical point resulting in a critical phase with power-law

localization existing in a finite window of size determined by the anisotropy. In this three-phase

spectral diagram, the transition from critical to localized phase is accompanied by the magnetic
transition to long-range order. Furthermore, the scaling properties of the fractal spectrum vary in

the critical phase. This leads to interesting consequences on the low-temperature thermodynamical

properties of the system.

I. INTRODUCTION

The one dimensional Harper equation,

@;+i+ @; i + A cos(27ron)g„= EQ„,

is considered a paradigm in the study of quasiperi-
odic (QP) systems exhibiting metallic or Bloch-type ex-
tended (E) states and insulating or exponentially lo-
calized (L) states for irrational a.z At the onset of a
metal-insulator transition, the states are critical (t ) with
power-law localization characterized by fractal spectrum
and wave functions. The exotic self-similar energy spec-
trum, known as the butterfly spectrum, has triggered a
great deal of interest in this model. Furthermore since
QP systems are in between periodic and random systems
(having localized states in one dimension), they provide
a useful link for understanding the crossover between pe-
riodic and random systems. The Harper model has also
been extensively studied in other contexts such as two-
dimensional periodic crystals in a magnetic field. Here
the problem of a two-dimensional electron gas in the pres-
ence of a field is reduced to the one-dimensional Harper
equation. The model has also generated a great deal of
interest due to its connection to the quantized Hall effect
and mean-field theory of the Hubbard model. Very re-
cently, attempts have been made to obtain an experimen-
tal realization of the exotic C phase in two-dimensional
mesoscopic systems and in fact some signatures of the
self-similar butterfly spectrum have been experimentally
observed. The Harper equation is also of great interest
in the theory of nonintegrable Hamiltonian systems due
to its correspondence with the two-dimensional area pre-
serving maps. The weak coupling limit of the two prob-
lems shares a common mathematical problem with the
small divisor perturbation theory of KAM. The smooth
Bloch states of the Harper model are analogous to the
KAM tori of the area preserving maps while the discon-

tinuous L states bear a close resemblance to the Can-
tori. This clear-cut correspondence between the eigen-
states of the Harper map and the invariant point sets of
two-dimensional area preserving maps leads to a com-
mon paradigm for breakdown of analyticity in nonlinear
low-dimensional QP systems.

In this paper, our interest in the Harper equation
originated &om the fact that the Harper equation de-
scribes the isotropic XY quantum spin-1/2 chain in a
sinusoidally varying transverse magnetic field of period-
icity incommensurate with the period of the chain. The
Jordan-Wigner transformation reduces the spin problem
to a tight-binding model (TBM) for the fermions. Specifi-
cally, we address the question of how the metal-insulator
transition and the critical point of Harper are affected
by the breaking of the 0(2) symmetry of the XY model.
The anisotropic model has long-range magnetic correla-
tions in the XY spin space. The presence of transverse
magnetic field introduces a competition between the spin
alignment in and out of the XY plane resulting in a mag-
netic transition to long-range order (LRO). We investi-

gate the correlations between the spectral and magnetic
transitions in the model.

Our studies show that in the presence of anisotropy,
the C phase is a fat set (of finite measure) in parameter
space sandwiched between the E and L phases. Stated
differently, the anisotropy fattens or stabilizes the criti-
cal point of the Harper model. Both the E and C phases
sustain finite long-range magnetic correlations in the XY
spin plane while in the localized phase the in-plane mag-
netic correlations vanish. Therefore, the transition to
localization is accompanied by the transition from a mag-
netically ordered to a disordered phase. Unlike the peri-
odic case, where the onset of LRO is determined by the
sum of exchange interactions along the easy and hard
axes, in the QP case this onset is solely determined by
the strength of exchange interaction along the easy axes.
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A short description of these results was presented in an
earlier paper.

In Sec. I, we obtain the fermion representation of the
quantum spin chains and review some of the properties
of the periodic spin chain and the Harper equation. In
Secs. II and III, we, respectively, study the spectral and
magnetic properties of the model. In Sec. IU, we study
the global scaling properties of the cantor spectrum. In
Sec. V, we investigate the effects of higher harmonics
and show that unlike the isotropic model, the anisotropic
model does not exhibit fractal boundary between the E
and L phases. In Sec. VI, we summarize our results.

II. ANISOTROPIC SPIN CHAIN IN A
TRANSVERSE FIELD

We study the anisotropic XY model in a QP magnetic
field.

H = —Q[J o' cr +, + Jscrvo' +, + h o' ). (2)

The magnetic field is chosen to be a sinusoidal function
with a period incommensurate with the periodicity of the
lattice,

h„= icos(2aon),

where 0 is an irrational number, which, for convenience,
we will choose to be the golden mean, cr = [Q(5) —1]/2,
however, results of this paper do not depend upon this
choice. The parameter A is the strength of the QP field.
The spin space anisotropy g is given by

g= J„—J. (4)

For g = 0, the isotropic model is the XY model while g =
—1, the model reduces to the Ising model. For any finite
value of g, the model is Ising-like due to O(1) symmetry
and hence at zero temperature, and in the absence of any
magnetic field, spins will align along an axis in the XY
plane. This axis of spin alignment in the plane will be
referred to as the easy axis while the axis perpendicular to
the easy axis in the plane is called the hard axis. Clearly,
for J ) J„, the x axis will be the easy axis and for
J ( J&, the y axis will be the easy axis. As we will see
later, it is convenient to label the exchange interactions
along the easy and hard axes by J, and Jh, respectively.

Using Jordan-Wigner transformation, the spin mod-
els are mapped to fermion models, quadratic in fermion
degrees of freedom:

0 = —) [c„'A„c +c„'B„c' +H.c.]. (5)

Here, t- are the anticommuting fermion operators. The
matrices A and B are, respectively, the symmetric and
antisymmetric matrices with nonzero elements defined as
A„„=2h„, A„„+g ——J + Jy, B„„+g——J —Jy ———g.
Therefore, the presence of the fermion nonconserving
term is due to the existence of anisotropy. It is this term
which results in long-range correlations among spins. Us-

ing the method described by Lieb et al. the diagonal-
ization of the above quadratic form reduces to diagonaliz-
ing the matrix (A+B)(A —B). The resulting eigenvalue
equation can be written as a TBM:

F- /44 = J*J (4' 2+—& +2)

+(J„h„g+ J h„)Q„
+(J„h„+J h„+g)Q„+g

+(J + J„+h„)g„. (6)

It is interesting to note that in the pure XY limit
(J = J„=J), the above TBM is identical to the Harper
equation squared. Both the Ising and XY limits are spe-
cial cases where the TBM underlying the spin system in-
volves only a nearest-neighbor (NN) interaction among
fermions. Therefore, the existence of a next-nearest-
neighbor (NNN) interaction seems to be related to the
existence of two distinct axes in spin space.

The periodic model (0 = 1) can be solved analytically
in the sense that the wave functions and energies can be
determined. The fermion states are always extended and
the energy spectrum has a gap (for nonzero anisotropy)
which vanishes at a critical value of A = J + J„corre-
sponding to the flipping of the spins from the plane to the
z axis resulting in the vanishing of magnetic long-range
correlations in the XY plane. In the Ising limit, , dualtity
transformation (between the site and bond variables) can
also be exploited to infer the magnetic transition to
LRO.

The Harper equation or O(2) spin chain in a QP trans-
verse field has a dual representation in the Fourier space
and has been shown to be self-dual at A = 2J. The
self-dual point is the onset of an E-L transition exhibit-
ing fractal spectrum. The presence of anisotropy breaks
the O(2) symmetry and destroys the self-duality. There-
fore, self-duality of the Harper equation can be viewed
from a different perspective: it is due to the O(2) sym-
metry of the XY model when the easy and hard axes of
the model degenerate.

III. SPECTRAL PHASE DIAGRAM

Ground state properties of the QP anisotropic spin
chain were studied by numerical diagonalization of the
TBM [Eq. (6)]. This requires diagonalizing the TBM for
various chain sizes or Fibonacci orders Fj (u = F~ q/E~)
corresponding to various rational approximants of the
golden mean. We then use finite size scaling arguments
to distinguish between the E, C, and L phases. In our
systematic study, for diferent values of g and A, the en-

ergy spectrum and wave functions were calculated. Un-
der periodic boundary conditions g„+~, = e*" 'g„where
k is the Bloch index, the energy spectrum of the TBM
consists of F~ bands separated by P~ —1 gaps.

In analogy with the self-dual isotropic model, the
anisotropic models for all values of g were found to ex-
hibit a pure spectrum: i.e. , all the quantum states were
either extended, critical, or localized simultaneously. Un-
like the isotropic case, the E phase is always massive
signaling the broken symmetry resulting in long-range
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C and C-L transitions are, respectively, determined by
the strength of the exhange interactions along the hard
and easy axes and the width of the C phase is solely
determined by the spin space anisotropy. In the Ising
limit, one sees a single transition kom the C to L phase
and the model does not support any E phase as was
reported earlier.

It is interesting that the E-C and C-L transitions are,
respectively, signaled by the maxima and minina in the
ratio B which is de6ned as the ratio of the gap to the
width of the lowest band. (See Fig. 3.) In previous stud-
ies of the Harper equation, R was found to converge
to a universal value for the golden mean case (exhibit-
ing period-three behavior as successive rational approxi-
mants are used) at the onset of the E I, tra-nsition. In the

1 0 I I l I
I

I I I I
I

I I I I
I

1 I I I
I

I I I I

anisotropic case, the minimum value of B at the onset of
the C-L transition is always found to converge to a uni-

versal ratio, which exhibits period three as a sequence of
Fibonacci periods are used. On the contrary, the maxima
in R signaling the transition &om the extended to criti-
cal phase shows no such convergence. However, these A
values obtained in the anisotropic case are g dependent
and are diferent from those of the Harper model. For
example, instead of 1.37 and 7.81, the Bq —B2 values
for the g = 1 case are found to be 1.5 and 6.88 while the
corresponding values for the Ising model are 0.62 and 2.4.

Figure 4 summarizes the spectral phase diagram in the
g-A plane for a Gxed value of J . We see that the self-

dual point for the isotropic model or Harper equation is

in fact a tricritical point corresponding to the coexistence
of E, L, and C phases. For any Finite value of g, the C
phase exists in a finite window sandwiched between the
E and L phases. It should be pointed out that the spec-
tral phase diagram is in fact determined by the absolute
values of the exchange couplings J and J„. Hence the
spectral phase diagram for both the ferromagnetic and
antiferromagnetic exchange interactions are identical.

IV. SPECTRAL AND MAGNETIC INTERPLAY
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The eigenvalues and eigenfunctions obtained by exact
numerical diagonalization of the fermionic quadratic form
can be used to compute the long-range spin-spin corre-
lations along the easy axis C„'(N) = (a„'0.„'+~) as well

as along the transverse direction C„'(N) = (0„'0„'+N).
Here N is the maximum possible distance between two
lattice sites on the periodic chain.

Our numerical results indicate that the onset of mag-
netic transition coincides with the onset of the spectral
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FIG. 3. (a) and (b), respectively, show the variation in R
with A for g = 0.5 and g = 0. E-C and C-I transitions in the
anisotropic case are, respectively, characterized by a maxima
and a minima in R. In the isotropic case, R is found to diverge
beyond the transition point, cr = 233/377.

FIG. 4. The spectral phase diagram in the g and A plane
for J = 1. The hatched region marked as C shows the critical
phase. The extended and localized phases are, respectively,
labeled as E and L. g = 0 is clearly a special point where the

E, C, and L phases coexist.
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transition &om the C to L phases as shown in Fig. 1
in Ref. 9. Both the E and C phases support long-range
correlations in the XY plane. Furthermore, the spectral
transition seems to have no bearing on the magnetic tran-
sition and the long-range two-point spin-spin correlation
function varies smoothly across the spectral transition.
This is somewhat surprising in view of the fact that the
wave functions are smooth Bloch-type in E phase and
fractal in C phase. We speculate that the averaging as-
sociated with the definition of the long-range correlation
functions wipes out any possible singularities that the
E-C transition could possibly have on the magnetic cor-
relations.

For periodic systems, C„(N) are n independent and in
the large N limit decay to zero as C„(N) (A —A, )i/4

near the critical point A, . For the quasiperiodic case,
C„(N) are site (n) dependent. However, the average
value of C„(N), averaged over all sites, behave like the
periodic system (Fig. 5). Therefore, the quasiperiodic
anisotropic models belong to the nniversality class of the
periodic Ising model. The new feature associated with
the long-range correlations in the quasiperiodic model is
the existence of modulations in C (N) along the chain.
For the isotropic case, due to the lack of preferred direc-
tion in the plane, in-plane magnetization is zero. The
spectral transition from the E to L phase corresponds to
a magnetic transition where all the spins have finite cor
relations in the z direction. [See Fig. 5(b).] The E phase
is always massless (i.e., has a zero-frequency mode) and
the E-L transition corresponds to the disappearence of
the zero-&equency mode corresponding to the breaking
of the translational invariance. A rather complex spatial
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axis, C'(N) vs A for g = 0.5, o = 144/233 with diferent
points along the y axis showing the n dependence of spin
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dynamics is clearly visible near the onset to transition
and requires further investigation.

We further investigate the site dependence of C„{N)
for the anisotropic models in Figs. 6 and 7. These 6gures
describe the complexity and richness underlying the spa-
tial dynamics which is a consequence of quasiperiodicity.
Near the onset of magnetic transition, C (N) exhibits
behavior characteristic of a fractal set (Fig. 6). Fur-
ther insight in the spatial dynamics of the anisotropic
quasiperiodic chain is obtained by studying the return
map of C„(N) (Fig. 7). Our numerical results show that
mapping of C„(N) to C„+i(N) defines a one-dimensional
torus which is topologically equivalent to a circle. We will
refer to this torus as a magnetic torus. It is interesting
to note that this magnetic torus is a smooth curve in
the E phase. However, in the C phase, it begins to get
distorted by becoming more wrinkled as A increases and
disappears in the L phase suggesting a new catastrophic
mechanism for the disappearence of a torus. Therefore,
the magnetic transition in the quasiperiodic model can
be described by this magnetic torus.

In the E phase the scaling is trivial with a single index
a = 1 almost everywhere in the spectrum except at zero
measure band edges with Van Hove singularities where
a = 0.5. However, in the I phase, there is no scaling.
In the C phase, f(n) is a continuous curve. Therefore,
the f(n) computation serves as a useful diagnostic to
confirm the spectral phase diagram shown above. Since
the multifractal set is a fat set in parameter space, the

f(a) curve also summarizes in a rather useful way how

the scaling properties of the &actal set vary as g and A

are varied.
Figure 8 shows how the f(a) curve of the isotropic

model is modi6ed in the presence of g and also how

it varies at different points in the C phase. Our nu-

,6' I I I 1

i
1 I I 1

i
1 I 1 1

j
I 1 1 I

)
I 1 I I0.

(a)

V. GLOBAL SCALING IN THE CRITICAL
PHASE
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In the C phase the cantor spectrum of the fermions is a
multi&actal with a distribution of continuously varying
exponents a varying in a range (a;„,a „) with each
n value associated with its own fractal dimension f(cr).
Hence this multi&actal is fully characterized by the f (n)
curve. The exponent n is related to the scaling of inte-
grated density of states D(E) as follows. The spectrum
has a scaling index n at energy E if D(E) behaves as r
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where E and E+AE are both in the spectrum. This scal-
ing index o. is different in different parts of the spectrum.
Therefore, all the information about the global scaling
properties of the system are contained in the f(ci) curve.
The Hausdorff dimension DH of the energy spectrum is
the maximum value of f(o.) The f(c.i) curve and the
denumerable set of dimensions can be determined using
the thermodynamical formalism. For ir = FI i/FI, we
de6ne the partition function of the set of I"I, bands as
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where u; is the width of the i band and E& is its mea-
sure. The condition I'(q, r) = limI FI = 1 gives r(q)
The generalized Renyi dimensions

characterize the &actal set in terms of oo of dimensions
with Do being the Hausdorff dimension. This spectrum
of dimensions is linked to the spectrum scaling indices
f (cr) by the Legendge transformation,
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PIG. 8. (a) The f(n) curve for fixed A = 2 and g = 0
(solid line), g = 1 (dashed line) and g = 0.5 (dotted line). (h)
f(n) for fixed g = 1 and A = 2 (solid line), A = 3 (dashed
line), and A = 3.5 (dotted lines). Curves are calculated from
I'ii/I'i4 ——1.
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merical results show that for all values of g and A the
f (n) shows a peak at a = 0.5. However, the range of a
values (u;„,o. „) show considerable digerences in the
isotropic and nonisotropic cases. For Bnite Bxed g, as A is
varied, the f(a) curve shows significant variation in the
vicinity of the E-L transition and cease to exist beyond
the C-I. transition.

o. ;„and o. „, respectively, correspond to the scal-
ing of the most dense and most ramified regions of the
spectrum, i.e. , D(E) varies as AE '" as E ~ 0 and
AE " as E + E „.o. ;„determines the specific heat
and zero-Beld susceptibilty exponents at; low tempera-
tures. Hence for Ising-like QP spin chains the scaling
exponents vary continuously in the C phase.

VI. HIGHER HARMONIC MODEL

In a recent study, the extended Harper model, where
the sinusoidal variation of the potential or magnetic Beld
contains two harmonics, was studied:

h„= [cos(2vron) + n cos(4m un)).
(1 + Cl2)

Unlike the single harmonic case, the model exhibits a
mixed spectrum where different quantum states undergo
E-I transition at different values of the parameter. Fur-
thermore, each quantum state exhibits a cascade of E-L
phases where the boundary between the existence and
nonexistence of the two phases was a &actal in the A, o.

plane. Therefore, the isotropic XY model has a devil-
fork phase diagram in the two-parameter space. Under-
lying these cascades of transitions are cascades of band
crossings between the two lowest-energy bands of the XY
model. The band crossings which are absent in the single
harmonic XY model have a very special significance in
the two-harmonic model. They were sandwiched between
two successive metal-insulator transitions of the incom-
mensurate model. Furthermore, the band crossings were
found to exhibit additive rules: the number of crossings
in the nth order Farey tree is equal to the sum of the
crossings in the two previous Farey daughters. These ad-
ditive rules in the incommensurate limit imply the fractal
boundary which is believed to be a cantor set of measure
zero.

In view of the exotic behavior of the isotropic XY
model, we investigate the effect of spin space anisotropy
on the fractal boundary and the band crossings. Our
studies show that some of the band crossings disappear
in the presence of infinitesimal anisotropy. (See Fig. 2
in Ref. 10.) Extensive numerical studies showed that
the anisotropy destroys the additive rules for the band
crossings and hence the fractal boundary. However, the
system could have a Bnite number of E-L transitions cor-
responding to a Bnite number of reentrances to the local-
ized phase. We speculate that the existence of long-range
spin-spin correlations destroys the fractal phase bound-
ary of the isotropic model.

VII. CONCLUSIONS

The spectral phase diagram of the anisotropic quantum
XY spin chain consists of a fat critical phase in addition
to extended and localized phases. In the isotropic limit,
the critical phase degenerates to a tricritical point where
the E, C, and L phases coexist. In other words, the
anisotropy fattens the critical point of the isotropic model
stabilizing it in a finite measure window in parameter
space. The transition to exponentially localized states
is accompanied by a magnetic transition to LRO. Unlike
the periodic case, the onset to LRO is determined by the
strength of the exchange interaction along the easy axis
only. The onset of E-C spectral transition determined

by the exchange interaction along the hard axis has no
effect on the magnetic transition.

Our studies provide a new paradigm in the theory of
metal-insulator transition in one dimension where the
metallic phase with smooth Bloch states remain singu-
lar continuous for a while before becoming discontinous.
The existence of a critical phase with power-law localiza-
tion has rather interesting consequences on the thermo-
dynamical properties of the system. Our studies show

that the low-temperature specific heat exponent varies

continuously in the C phase.
The ypresence of LR interactions in the model are

known to. reduce the critical dimensionality of various

phase transitions. Our spin Hamiltonian involves only
NN interactions. %e speculate that the dynamically gen-
erated long-range magnetic correlations lower the critical
dimensionality of power-law localization resulting in the
existence of such a phase in one-dimensional models. For
our spin model, the QP disorder is trying to localize the
system whereas the long-range correlations try to resist
localization. The intermediate C phase is like a com-

promise phase where the system is neither extended nor
exponentially localized. This picture is consistent with

the fact that the onset to localization is accompanied by
the vanishing of LRO. This second-order phase transition
accompanied by the appearance of a zero-frequency mode

is believed to play an important role in the three-phase
spectral diagram. Preliminary studies of an anisotropic
spin chain in the presence of an analytic pseudorandom
magnetic Beld indicate the existence of a fat C phase
in the neighborhood of a magnetic transition (signaled

by a zero mode), sandwiched between localized phases.
In summary, the isotropic model remains extended until

the QP disorder is strong enough (compared to the ex-

change interaction) to localize the system resulting in a
two-phase diagram. However, the anisotropic model pro-
vides an additional competition between the long-range
correlations and QP disorder resulting in a three phase-

diagram.
The spectral phase diagram with E, C, and L phases

also have interesting and perhaps experimentally real-

izable consequences on the magnetic properties as well.

The return map of the site dependent long-range cor-
relations is an attractor which happens to a be a one-

dimensional torus. This magnetic torus is smooth in the
E phase and gets much more wrinkled in the C phase
and disappears beyond the onset of the C-L transition.
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This scenario for the disappearence of the magnetic torus,
although reminiscent of the breakdown of KAM tori in
Hamiltonian maps, is characteristically different kom it.
Unlike the KAM torus, which degenerates to a cantorus
beyond the onset of transition, the magnetic torus disap-
pears at the onset of transition. This behavior is sugges-
tive of a new type of catastrophic behavior for the dis-
appearence of a torus in nonlinear systems and requires
further investigation.

In view of the similarity between the TBM model and
area preserving map, it is interesting to conjecture what
bearing these results may have on the Hamiltonian maps.
Our new scenario for metal-insulator transition suggests
a new paradigm for the breaking of the KAM tori where
the torus will remain critical in a finite regime of the
parameter space before breaking. However, the existence
of such a scenario in area preserving maps has not been
known.

The emergence of a new scenario for breakdown of an-
alyticity in one-dimensional QP systems associated with
the existence of fat critical set is an important result.

This paper describes a class of spin models exhibiting
this behavior. Our conjecture linking the fattening of the
critical point to the magnetic long-range correlations may
be one of many possible mechanisms for the stabilization
of the C phase. General conditions and criterions for
this novel behavior remain an open question. Since the
C phase exists in a 6nite measure interval, the physical
realization of fractality and its consequences in experi-
ments involving magnetic superlattices may be possible.
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