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An infinite-range quantum Ising spin glass with cubic anisotropy (K) is studied using the
imaginary-time representation with the n-replica approach and the thermo-field dynamic method.
Mean-field-theory phase diagrams in the temperature-anisotropy plane (T, K) for quantum spins S
ranging from 2 to 9/2 are presented. For integer-spin values and large cubic anisotropy (positive
or negative, depending on S) a condensation into a nonmagnetic spin state occurs, accompanied
by the destruction of the spin-glass order as indicated by the finite critical value K, (T = 0). For
half-integer S and sufficiently low temperature the spin-glass phase persists for arbitrary K.

I. INTRODUCTION

Cubic anisotropy plays an important role in sys-
tems with di8'erent types of interactions. Examples
are orientational glassesi [such as the mixed crystal2
K(Br) (CN) i ], ferroelectrically ordered perovskite-
type compounds ' [such as KTa Nbi Os(KTN) or
BaTiOs], or the ferromagnetic TbP. An isotropic ori-
entational glass does not have a glass phase in three di-
mensions at nonzero temperature but this phase is sta-
bilized by cubic anisotropy. Ferromagnets with single-
ion cubic interaction can exibit a particular type of crit-
ical behavior associated with the cubic fixed point of the
renormalization-group transformation.

Anisotropy has a profound inHuence on the spin-glass
phase. For instance, strong uniaxial anisotropy of the
magnetic susceptibility was found experimentally in a
number of hexagonal metallic spin-glass systems and
this has stimulated theoretical research. From a theoret-
ical point of view, anisotropy gives rise to several new
features which have been investigated for classical spin
models both with and without a magnetic field, and a
multiplicity of phases has been found.

The vector-spin-glass Hamiltonian with a cubic single-
ion anisotropy term may be a relevant model for a num-
ber of spin-glass systems. In the present paper we look
at the eH'ect of this single-ion cubic anisotropy which may
be expected to be present if the material possesses one
of the cubic structures. VVe include this anisotropy in
the infinite-range Sherrington-Kirkpatrick (SK) modeli2
as has been suggested by several authors. '

Our paper is motivated by the conspicuous absence of
study of the e8'ects of cubic anisotropy on spin glasses.
To our knowledge this problem has not been treated the-
oretically in the literature, except by Roberts (who in-
vesigated the metastable states of a classical spin glass
with cubic anisotropy at T=O), although experimentally
studied insulating compounds of the magnetic dilution
series Eu Srq S reveal spin-glass behavior in the pres-
ence of cubic symmetry. '

For simplicity, we consider in detail the properties of
an Ising-like model with random exchange interactions

where S, = (S,, S„,, S„) is the quantum spin oper-
ator associated with the local moment S at site i
I, . . . , ¹ The random exchange interactions J,i (i g j)
are governed by independent probability distributions,
each taken to be Gaussian with zero mean and variance
JjijIiI. The second term in Eq. (I) is given by

H„= —K(S.', + S„', + S,', ) (2)

and describes the cubic anisotropy favoring spin align-
ment along the edges (K ) 0) or diagonals (K ( 0) of
a three-dimensional cube with edges along the respective
coordinate axes.

II. IMAGINARY-TIME REPLICA APPROACH

The derivation of the free energy, using the Matsubara
time formalism, is a straightforward generalization of the

and cubic anisotropy. Specifically, we consider the quan-
tum version of the model, analyzing several cases corre-
sponding to the spin values from S = 2 to S = gj2 and
presenting calculations of the phase diagrams.

In general, the quantum spin-glass problem is far from
being trivial due to the noncommutativity of the oper-
ators involved, and diH'erent methods have been devel-
oped to handle it. Typically, quantum mechanics
introduces time-dependent self-interactions and order pa-
rameters, complicating the problem considerably. In the
present paper we adopt two different approaches to deal
with both randomness and quantum features. The first
approach relies on the replica method combined with the
Matsubara "imaginary-time" representation for quantum
operators. The second one is based on the thermofield
dynamic (TFD) method, a real-time finite-temperature
quantum field theory, which has been applied to a num-
ber of quantum systems.

The Hamiltonian of the model is given by

N N

H= ——) J S S„+) Hp, ,
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work of Bray and Moore. In order to average over the
random couplings (J,z }we apply the replica method and
the Matsubara "time" representation, which allows us to
treat the noncommuting spin operators as c numbers.
Within the replica-symmetric theory for the free energy
per spin one obtains where

1 1

f[R] = q — dr dr'R (r, r')
0 0

e ~ / lnOg[R, q],
QQ 27l

Og[R, q] = Trexp( —PHo)T exp((y 2PJqI(S, ) —q(PJ) I (S,) + 4[R]},
1 1

C'[R] = PJ dr dr R(r, r )Sz(r)Sz(r ),
0 0

1

I(S,) = drS, (r),
0

S,(r) = exp( rPH—o)S, exp(rPHo), and P = 1/kT.

(4)

Here, T denotes the "time"-ordering operator which re-
arranges the operators in the expansion of the exponen-
tial, in order of decreasing "time" arguments 7. The
quantity q corresponds to the Edwards-Anderson2 spin-
glass order parameter and R(r, r') is the dynamic spin
self-interaction. Both quantities should be determined
self-consistently.

In the paramagnetic phase q vanishes and the phase
transition takes place when the coefBcient of q2 in the
&ee energy expansion as a function of the temperature T
becomes zero. Thus, the spin freezing temperature can
be evaluated directly &om an expression calculated in
the high-temperature phase. The equation of the phase
transition line becomes

found to be

f

�+
co

e &'/2((2 —2)Tr exp (HsffAj = O,
2' (10)

+oo
e ~ / (f —2)cosh Q(3PK) +4PJf

where the trace can be calculated by using the eigenval-
ues of H,& given in Appendix A. For example, for 8 = 2
the phase boundary in the temperature-anisotropy plane
is given by

1 1

1 = 2 dr dr'R(r, r').
0 0

The corresponding phase diagram is presented in Fig. l.

The dynamic self-interaction (determined via the saddle-
point evaluation) is given by the self-consistent equation

R(r) r ) = (PJ/2) (S,(r) Sz (r') )z ff . (6)

Here, the angular brackets mean the thermal average
with respect to the effective Hamiltonian de6ned in the
exponent of Eq. (4) with q = 0. Since the exact reso-
lution of Eq. (6) is not yet available due to the difficul-
ties associated with the imaginary-time dependence of
the dynamic spin self-interaction, we are forced to resort
to some approximations. We employ the so-called static
approximation (SA) where the time dependence of R is
neglected, i.e.,

K/J

R(r, r') = Ro.

As a result the &ee energy per spin becomes

fsA = —Ro + ln e Tr exp (H, ff ), (8)
27I

where

H.'„"= PK(S' + S„' + S,') + (/2P JR,S,.

Finally, from Eq. (8), the formula for the critical line is

kT/J

FIG. 1. The anisotropy-temperature phase diagram for
S = 2; solid curve, static approximation (SA); dashed curve,
thermofield dynamic (TFD) method The lines se. parate the
spin-glass (SG) phase from the paramagnetic region. K,
anisotropy constant as defined in Eq. (2); & = ((J,~.)&)
T, temperature; k, Bolt@mann's constant.
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For other values of S the critical K,(T) lines are given
in Figs. 2—6. Two types of phase separation curves are
found. The first type reaches the line kT/J = 0 (as,
e.g. , in Fig. 1 for K/J ) 0) whereas the second one
approches a vertical asymptote kT/ J ) 0 in the limit as

] K ] / J ~ oo (as, e.g. , in Fig. 1 for K/ J ( 0). Hereafter
the critical behavior associated with the latter type of the
phase separation line is called the asymptotic behavior.
The critical behavior in the limiting cases, K/J ~ koo,
is investigated in Appendix A.

We can test our results by comparing them with exact
results available for the cases K = 0 and ] K

~ / J -+ oo.
The case K = 0 corresponds to the classical Ising SK
model for which the exact critical temperature T, as a
function of S is given by

K/J

1 = 2u ln Tr exp(uS, ),
|9 2

kT,
J 2u

(12)

kT/J

I

4

For all spins considered this T is recovered by the SA,
as it should be because the static approximation is exact
for the classical Ising SK model.

In order to analyze the large anisotropy limits K/J m
+oo we apply perturbation theory ~ considering the SK
Hamiltonian of Eq. (1) as a perturbation. The effective
Hamiltonian H, H

——PHP acts on the Hilbert space Q
associated with the ground state energy of Ho [Eq. (2)]

P

and P is a projection operator onto H;„. The resulting
0@g 1S

Hs= ——) J, S;, S;

with an efFective spin S, = PS,P. Since the energy
levels of Hp are separated by gaps proportional to

[
K ~,

H ff [Eq. (13)) becomes exact when
~

K ~~ oo.

FIG. 3. The anisotropy-temperature phase diagram for
S = 3. Notation as in Fig. 1.

The spectrum of the cubic anisotropy Hamiltonian (2)
has been calculated for S = 2, . . . , 8. For S = 2 it
consists of a triplet (lowest for K/J ( 0) and a doublet.
The corresponding S; are

1 0 0

S, = 00 0
0 0 —1

0 0
and Sd —— (14)

in the limits K/J m —oo and K/J i oo, respec-
tively. For negative anisotropy the resulting temperature
kT, /J = 0.79 [Eq. (12)] gives the asymptotic behavior of
the original system presented in Fig. 1 [see Eq. (Al)]. In

/2

K/J K/J

/'

I
I

I

I

I

I
I

I

I

I

I
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I 1

4 2 4 6 8

kT/J

FIG. 2. The anisotropy-temperature phase diagram for
S = 5/2. Notation as in Fig. l.

FIG. 4. The anisotropy-temperature phase diagram for
S = 7/2. Notation as in Fig. l.
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FIG. 5. The anisotropy-temperature phase diagram for
S = 4. Notation as in Fig. 1. The reduced temperature for
the asymptotic behavior (K/J ~ —oo) from the SA method
is kT / J = 4.94, and from the TFD method is kT, /J = 4.71.

the opposite limit (K/J ~ oo) the effective spin yields a
paramagnetic state for arbitrary T. Since for K = 0 and
kT/J ( 2.553 there is a spin-glass order, there should be
a finite K (T = 0) at which the transition between the
spin-glass phase and paramagnetic phase occurs. The SA
estimates this critical anisotropy strength as 2.15J. The
cases S = 5/2, 3, . . . , 9/2 are discussed in Appendix B.
For all spins the SA predictions are consistent with the
large anisotropy analysis.

XII. THERMOFIELD DYNAMIC METHOD

A detailed procedure for applying the TFD method to
spin-glass models has been described in Ref. 19. Here we

sketch this approach giving only those points necessary to
explain the position of the phase transition line. We start

FIG. 6. The anisotropy-temperature phase diagram for
S = 9/2. Notation as in Fig. 1. The reduced tempera-
tures obtained for the asymptotic behavior from the SA and
TFD methods coincide for K/J ~ oo and kT, /J = 3.55.
For the opposite limit kT, /J = 7 from the SA method, and

kT, /J = 6.88 from the TFD method.

from the disorder-averaged generating functional for the
real-time finite-temperature causal Green's functions in
the form

1[+]= Trg —ln(I)[Q], (16)

where

(~fv Vv)l)z = f Dq"m( —&IIQI+&(nl), (&5)
ab

where Z[iI, (J;~)] is the unaveraged generating functional
for a fixed realization of random bonds and O[rI)

Tr(goal)/J represents the source term. In the interac-
tion picture with respect to the single-body Hamiltonian

(2) the single-site dynamic effective Lagrangian is

dt'Hq(t, t')
i l

0, P),

Ct' ) Q"(t, t') Q'(t', t),
ab

+co +oo

4[+] = (O, p I
&&exp

l

i t
—OO —OO

and (O, P l

.
l

O, P) = Trexp( —PHo) . . /Trexp( —PHo). Here, the time-ordered exponential results &om the
interaction picture, and. Q (t, t ) = Q (t', t) represents a symmetric time-dependent tensor field. The effective
time-dependent single-site thermal Hamiltonian is given by

H~(t, t') = —) (e.e,)'/'JQ'(t, t')S;(t)S,'(t'), (17)

where a, b = 1, 2 are the TFD "dynamic replicas" (ei ——1, c2 ———1) labeling the collective fields JQ ~ which act as
dynamic self-interactions between time-dependent spin operators S, (t) = exp( —iHot)S, exp(iHot). From Eq. (17) it
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can be seen that the quantum generalization of the problem results in a time-dependent self-interaction JQ (t, t')
between spin operators at the same site, which must be determined self-consistently. In the limit X ~ oo the steepest,
descent method can be used giving the following equation for the stationary-point value of the dynamic self-interaction:

Q (t, t') = (~—.eb)
'~' JG'(t, t'),

2

where the causal Green's function is defined as

(18)

(0,P i
T~ S, (t)S,(t') Uq, (—oo; +oo)

~

0, P)
(0, P i

T,Uq, (—oo;+oo)
~

0, P)
(19)

The correspondence with measurable quantities is achieved by the following decomposition of the Fourier transformed
Gab.

G (~) = [U&(~)~G((u)UR(~)]

where UR(cu) is the thermal transformation matrix, while G (ur) is the matrix of retarded (advanced) GR~gl(tu)
Green's functions,

G (~) =
~

)
~

and
0 G~(u)) p I 0 —1 (20)

-i( )
&GR'(~)

0(d
(21)

To locate the temperature-anisotropy critical line one ob-
serves that the generalized damping function

Q'(t —t') = -(..eb)'~'J~b(t —t')b. b
2

(26)

fects of quantum Huctuations on a time scale such that
the Rnite-time part of the dynamic self-interaction can
be presented by an instantaneous term

~R(~)'"( ) = 1-JG (.) (22)

diverges in the static limit (tu ~ 0) along the line K,(T).
The dynamic response function GR(w) itself obeys the
Dyson equation

It follows that

DzAg(h)

g=].

where

h, =o
)~e, (»IDAg(k)

AL=0

»R'(~)/~~
1 —J'GRz(~)

' (23)

where ZR(u) denotes the self-energy part. Differentia-
tion of Eq. (22) with respect to ur leads to exp[ —Pig(0)]

~' =
2S+i

) exp[ —PAb(0)]

(28)

The condition for divergence of the damping function
'(cu) is

Here, Ag(h) (l = 1, . . . , 2S + 1) represents an eigenvalue
of the effective single-site quantum spin Hamiltonian of
the instantaneous approximation (IA) [Eq. (26)]

1= Jy, (24)

where

y = lim GR((u) = lim G~((u).
m —+0 Gd~0

(25)

HIA J2 (S )2 K(S4 + S4 + S4)
1 2 (29)

Because of the appearance of the dynamic self-
interaction JQ (u) in the effective thermal Hamilto-
nian (17), the explicit resolution of Eq. (19) is rather
a formidable task. For this reason we focus on the ef-

These eigenvalues have been calculated (see Appendix
A).

The critical line equation for S = 2 is 1 = Jy [Eq.
(24)], where the static susceptibility is given by

8 exp(3I9K + 2Py J ) sinh(3P ]K~) + 6P exp(Py J /2) ~K~

6exp(3pK+ 2pyJz) (K) cosh(3p]K)) + [3exp(6pK) + 6exp(pyJz/2)] ~K(
(30)
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The corresponding phase diagram is presented in Fig.
1. For the remaining values of S the critical lines K,(T)
are presented in Figs. 2—6 and the asymptotic behav-
ior K/J -+ koo is considered in Appendix A. In the
limit K m 0 the IA yields the exact critical temperature
T,(K = 0) [Eq. (12)] for all spins. A qualitative differ-
ence between the large anisotropy analysis and the IA is
found only for S = 2. For K & 0 the IA predicts the
phase transition at finite K,(T = 0) whereas the former
method and the SA yield an asymptotic behavior. We
do not know at present why this difference occurs.

IV. SUMMARY

Cubic anisotropy leads to a strong modification of the
phase diagram of a spin-glass model. The cases of integer
and half-integer S are quite different. In the systems with
integer spin for large negative or positive anisotropy K
(depending on S), a condensation into the nonmagnetic
state results, accompanied by the destruction of the spin-
glass order indicated by the finite critical value K, as
the temperature approaches zero. We have shown that
this behavior results from a nonmagnetic ground state
of the anisotropy Hamiltonian (2), occurring for integer
S. This state becomes the ground state of the whole
system in the large anisotropy limit. For half-integer
spin we observe an asymptotic behavior for negative and
positive values of K. Since the same type of phase di-
agram results also from the Hamiltonian (1) in which
the random interactions are replaced by ferromagnetic
short-range interactions, it is clear that the anisotropy
energy is very important. In all cases, in the vicinity
of T, for small K & 0, there is a temperature region
with a reentrant behavior in the temperature-anisotropy
phase diagram. In this case, as the anisotropy is lowered,
the system passes from the paramagnetic (P) phase to
the spin-glass (SG) state, and, by further lowering the
anisotropy, the system reenters the paramagnetic region.
Similar reentrance was observed experimentally in rare-
earth spin glasses with uniaxial anisotropy and reported
in several theoretical papers dealing with the quantum
version of the model. ' Generally, such a type of
P —SG—P reentrance was predicted theoretically to
be present in randomly mixed magnets at dimensional-
ities d & 6. It is interesting to note that the character
of the phase diagrams of the systems with cubic single-
ion anisotropy is like that due to the presence of uniaxial
anisotropy. In the systems with integer spins, uniaxial
anisotropy also leads to the destruction of magnetic or-
der in the presence of both the long-range (random )
as well as the short-range (antiferromagnetic2 ) interac-
tions.

For the quantum spin-glass problem an exact
calculation of the transition lines requires precise
knowledge of the time dependence of the dynamic
spin self-interaction involved. This means that the
calculation of the exact phase boundary will de-
pend on the detailed time dependence of Q (t)
(in the TFD method) and of R(r) (in the Mat-
subara approach with the replica method). It seems
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APPENDIX A

The listing of the eigenvalues corresponding to the ef-
fective single-site Hamiltonian H~&+ (29) is given below
for several values of the spin quantum numbers S. For
the eigenvalues relevant to Hsg (9) one has to substitute
y ~ 0, h ~ (/2/3Rs, and K ~ PK, respectively.

1. S=2

Ai(h) = -24K,

isK
2

A4 5 (h) = —2yJ —21K + /4h2 + 9K2.

A2 s(h) =

The temperature for the asymptotic behavior (K/J -+
—oo) &om the SA method is determined by

that the complexity of the problem prevents an analyti-
cally tractable approach which goes beyond the An86tze

(7) and (26). A difference between the Matsubara
imaginary-time static approximation and the thermo-
Geld dynamics instantaneous real-time approximation is
found for the case S = 2, where, for large negative
anisotropy K, the former method predicts asymptotic
behavior, whereas the latter yields a finite critical value

K,(T = 0). The investigation of this S = 2 case us-

ing methods along the lines given in Ref. 30 is currently
under way. As was pointed out earlier, the static and
instantaneous approximations will give rough upper and
lower bounds, respectively, for the critics, l line K,(T).
In conclusion, the exact phase boundary should be lo-
cated in the region between two curves corresponding to
the above-mentioned approximations. It is interesting to
note that for S ) 2 the phase boundaries determined by
both methods are closer together as S increases.

We expect a similarly rich behavior for other models
with cubic anisotropy, e.g. , the XY or Heisenberg sys-
tems, where the presence of additional vector spin com-
ponents will give rise to a multitude of spin-glass phases,
such as transverse or longitudinal phases. A precise cal-
culation of phase boundary lines, especially of those sep-
arating different spin-glass orderings (i.e., in the non-
ergodic regions), would presumably require a quantum
analog of the replica-symmetry breaking scheme. An ex-
tension of this work covering the above-mentioned issues
is under investigation.
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(1
exp

(

P-J
I

2PJ & )
(11+2exp

~

—PJ
~

(Al)

(9 ) exp(3P J) =1
(2 ) 1+ 2 exp(3P J)

with kT, /J = 2.02.

with kT, /J = 0.79.

2. S=5/2

+4h —y J2 803K
8 16

—(8h+ 34yJ'+ 659K)
As 4(h) =

16

+Q(9K + y J2 + 2h) —12K(yJ + h)

As s(h) = As 4(—h).

The reduced temperature kT/J for the asymptotic be-
havior (K/ J + —oo) obtained by the SA and TFD meth-
ods is kT, /J = 25/36. For K/J -+ +oo the SA gives

f'121 ) (1
121exp

~
PJ

~

+ Qexp
~

—PJ
~

exp J + exp — J

which yields kT, /J = 2.31. From the TFD method we

have, in the limit K/J i +oo,

t'67 & (1
121exp

(

—PJ
)
+ 9exp

(

—PJ
)

&24 ) &8 )
( 36) (67 l (1

exp
/

—PJ
/

+ exp
/

PJ f-
424 ) E8

giving kT, /J = 2.552.

3. S=3
Ai (h) = -102K,

A2 s(h) = —2y J' —63K + /4h' + 225K'
—(2h+ 5yJ + 180K)

A4 s(h) =

+2/(6K+ yJ'+ h)' —9K(2yJ'+ h),
AQ 7(h) = A4 s (—h).

The reduced temperature kT/J for the asymptotic be-
havior K/J ~ +oo obtained by the SA method follows
from the equation

(9
exp

/

—PJ
/9 i8 )

2 r'9
1+exp

~

-PJ
I

with kT / J = 1.78, and from TFD method

4. S=7/2
—(8h+ 34'J'+ 1947K)

A, 2(h) =

y g(30K + ~J' + 2h)' —90K(yJ' + 2h),

As 4(h) = Ai g( —h),
—(24h + 50'J2 + 2715K)

A, s(h) =

+Q(18K + 3yJ2 + 2h) 2 —42K(3&J~ + 2h),

A7 s(h) = As s(—h).

The reduced temperatures kT/J for the asymptotic be-
haviors (K/J ~ +oo) from the SA and TFD meth-
ods are respectively kT, /J = 49/36 (for K ) 0) and
kT, /J = 9/4 (for K ( 0).

The expressions corresponding to the eigenvalues for
S = 4 and S = 9/2 are given in terms of the roots of a
cubic equation and are not reproduced here.

APPENDIX 8

In the large anisotropy limit the cases S = 3 and S = 4
are similar to that of S = 2 where condensation onto the
nonmagnetic state occurs. For S = 3 the eigenenergies of
Hp [Eq. (2)] form a singlet (lowest for K/ J ( 0) and two

triplets. The respective forms of S; are given by [0] and

3/2Si [see Eq. (14)]. Thus, the paramagnetic —spin-glass
transition occurs for finite negative K,/J, whereas in the
limit K/ J ~ oo the asymptotic behavior is characterized
by kT, /J = 1.78 (see Fig. 3).

In the case S = 4 we have the lowest triplet for K/ J ~
—oo and a singlet ground state for the opposite limit. The
corresponding S;+ have the following forms: 5/2S, and

[0]. In the limit K/J -+ oo, we have the paramagnetic
state, with the paramagnetic —spin-glass transition at T =
0. The opposite anisotropy limit yields the asymptotic
character with kT, / J = 4.94 (Fig. 5).

All systems with half-integer spins that we studied re-

veal a spin-glass order at low temperature in both the
limits (K/J + +oo). For S = 5/2 the spectrum of
Hp [Eq. (2)] is a doublet and a quartet (lowest for

K/ J ) 0) with the respective SP operators 5/6o, (cr, is
a Pauli spin matrix) and a diagonal operator with a di-

agonal: (ll/6, 1/2, —1/2, —11/6). The resulting kT, /J
are respectively equal to 25/36 (K/J i —oo) and 2.31
(K/J —+ oo). For S = 7/2 in both the limits (K/J +

koo) the lowest energy level is doubly degenerate. The
resulting S; operators have the forms 3/2o, and 7/6o,
for the —oo and oo limits, respectively. The resulting
kT, / J are 9/4 and 49/36 (see Fig. 4). A similar analysis
for S = 9/2 yields the asymptotic behavior character-
ized by kT, /J = 121/36 (K/J i oo) and kT, /J = 7

(K/ J i —oo) as shown in Fig. 6.
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