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Time evolution of proton magnetization in the spin-rotating frame of an ensemble
of interacting pairs of methyl groups: A study of the magnetic4lux eÃect
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The e6'ect of an external magnetic field on a pair of interacting methyl groups in a solid lattice is con-
sidered. Because of the consequent appearance of a gauge potential in the total Hamiltonian of the sys-

tem, its time-reversal invariance is broken, leading to the splitting of otherwise degenerate E levels.
Since transitions between these states influence the time evolution of the Zeeman polarization in the ro-
tating frame, calculations are presented from which the spectra for a particular energy-level scheme are
obtained in the case of a fictitious crystal and a polycrystalline sample. It is shown that the appearance
of spectral features at frequencies other than integer multiples of the rf frequency ~& can be taken as evi-

dence of transitions between magnetic-flux-split E states. The polycrystalline spectrum is compared to
the experimental spectrum of two solids with qualitative agreement if the effective charge on the protons
is 0.15 and 0.10, respectively, of the elementary charge.

I. INTRODUCTION

Studies of the dynamics of molecular systems in a mag-
netic field have shown that the Born-Oppenheimer ap-
proximation leads to a value of the effective charge q,
equal to the bare nuclear charge. ' This value of q (which
is a measure of the strength of the coupling between the
nuclear spins and the external field) does not, however,
take into account the effects of electronic screening ex-
perienced by each nucleus, the magnitude of which is not
yet accurately known.

Consider a "rigid" methyl group undergoing tunneling
motion around its symmetry axis in an external magnetic
field Ho. Since in a nonrelativistic approximation the
spatial and spin degrees of freedom are not coupled, we
may write the Hamiltonian as

is the moment of inertia of the methyl group rotating
around its symmetry axis, y is the angle of rotation, and
4 represents the magnetic fiux through the circular loop
traced out by the protons, equal to

38 4=F3 IQ,
2&C

(1.3)

where c3 is a unit vector along the symmetry axis.
Q=eHo/2m c is the Larmor frequency of the protons in
the field Ho, m is the proton mass, and }Ltit =el'/2mc is
the Bohr magneton. Finally, the potential energies U and
V3 are the Coulomb interactions of all charged particles
in the methyl group and its hindering potential, respec-
tively.

The solution of the eigenvalue equation

$2H=H +
2I

'2

L t. + V, (y)—, (1.1)
hc is sought in the form

+(y, r, )=g g„(y)p„(y;r, ),

(1.4)

where H, is the electronic Hamiltonian,

2

H, = — g V;+U+pttH .L+ H .I, H
2m 8m2C2

(1.2)

where r; is an abbreviation for the complete set
r„r2, . . . , r;. The electronic wave functions p„(y;r, ) are
the orthonormalized solutions of

II,q„(y;r, )= U„(y)q„(y;r, } .
In (1.2), m and —e are the electronic mass and charge, re-
spectively, —ikey; =—p; is the momentum operator of the
ith electron, trtL=+, r,. Xp; is the total orbital angular
momentum of the electrons, and I, is the tensor of inertia
of electrons. All these operators are defined with respect
to the coordinate system (g', g, g) fixed to the methyl
group, with the g axis parallel to the methyl symmetry
axis. (For the time being, the direct coupling of the spins
among themselves and with Ho is omitted. ) In addition, I

The eigenfunction (1.5) is not determined until the
boundary condition is specified. We choose %(y, r, ) to be
single valued with respect to y, i.e.,

%(y+2m, r, )=4(y, r;), (1.7}

which does not imply, however, that 1b„(y) and tp„(y;r; ),
considered separately, ought to be single valued. Our
choice of (1.7) is based on the observation made by
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where q is the effective charge given by

(m /m )A'/2I
(1.10)

Here (mz/m)fi /2IO ——'1.19 eV and yz
' is the ground

electronic state in the absence of the magnetic field Ho,
while Uo ' and U'& ' are the ground and first excited elec-
tronic energies.

The methyl groups encountered in molecular crystals
are always covalently bonded to the molecule on which
they reside, and thus all four bonding orbitals of the car-
bon atom are doubly occupied. Therefore it seems
reasonable to assume that the ground electronic state
closely resembles that of an isolated CH4 molecule. Con-
sequently, yo

' is taken to be an 'A
&

singlet where A, is
the completely symmetrical one-dimensional representa-
tion of the point group C3, . We require, moreover, that

1((y+2~)=f(y'),
in accordance with (1.7). Estimating UI ' —Uo ' =—22 eV
and using the expressions for the bonding orbitals of
methane, we obtain q &0.24e.

It is at this point worth mentioning the view advocated
by Clough, McDonald, and Zelaya. These authors sug-
gest that the proper description of methyl rotational
motion in a nonstationary crystal lattice should employ,
in the low-temperature limit, multivalued wave functions
instead of the single-valued ones as required by (1.11).
However, a description of methyl-group dynamics based
on the use of multivalued wave functions is unitarily
equivalent to the description based on (1.11) if an extra
gauge term is added to (1.9). This ambiguity in the
choice of boundary conditions is a general property of the
Hamiltonian (1.9), which, because it is not essentially
self-adj oint, admits a one-parameter family of self-
adjoint extensions:

g(@+2')=e' f(y ), (1.12)

Merzbacher that the representation of a rotating mole-
cule by a rigid body is an idealization. In reality, the
configuration space of the particles forming the molecule
is simply connected, and consequently (1.7) holds.

The temperature range of interest to us is such that the
methyl group is in the ground electronic state yo. More-
over, the energy difference between the electronic ground
and first excited state is of the order of 10 eV, while the
energy scale of the rotational motion is determined by the
rotational constant A' /2I ='0.65 meV. Therefore, for the
purposes of studying the tunneling motion, we may write
(1.5) as

+(y, r;)=1((y)qo(y;r;) . (1.&)

In addition, p~='5. 7X10 eV/T and e I, /Sm c
='10 ' eV/T, so that when dealing with magnetic fields
of the order of 1 T, we may treat the third term in (1.2) as
a small perturbation, discarding the fourth term altogeth-
er. Finally, it can be shown that g(y ) obeys

T

4 + V3(y ) E.l—((y) =0, (1.9)
3q
hc

where 0 ~ 8( 1. A specific value of 8, or a specific gauge
term, can be selected only on the basis of additiona1 phys-
ical information about the system under consideration, as
illustrated above.

The electronic screening of the nuclear charges (1.10)
can be interpreted also as due to the appearance of an ad-
ditional vector potential distinct from the e(HOXR)/2c
term, describing the interaction of the protons with the
external magnetic field Ho in the symmetric gauge. The
concept of the geometric phase that emerges from this
point of view, brought forward originally by Berry, ' is of
fundamental importance in classical and quantum
mechanics.

It has been shown" that the presence of the gauge-
coupling term in (1.9) results in the splitting of otherwise
degenerate pairs of energy levels belonging to the two-
dimensional representations of C3. It turns out that
when this splitting is of the right magnitude it can be ren-
dered observable through its influence on the time evolu-
tion of the proton Zeeman polarization in the rotating
frame. In order to eliminate the unwanted (and not com-
pletely understood) effect of lattice vibrations on methyl-
group tunneling, the observations must be performed at
low temperatures and in a time interval which is shorter
than the nuclear spin-lattice relaxation time in the rotat-
ing frame. Furthermore, in a magnetic field of 1 T, the
anticipated splitting of the degenerate E levels spans 30
kHz to 3 MHz, for a torsional tunneling frequency be-
tween 0.5 and 50 GHz. In this case the only transitions
having any bearing on the time evolution of the magneti-
zation in the rotating frame are those between the
magnetic-flux-split E levels, driven solely by the inter-
group dipole-dipole interactions.

The molecular system to be investigated by proton
magnetization evolution is constrained by the following
requirements.

(i) The tunneling frequency ( A to E splitting) or fre-
quencies (since in general an ensemble of interacting
methyl groups is studied) must be in the GHz range.

(ii) The intergroup dipole-dipole interaction must be
sufficiently strong; i.e., the CH3 groups must be closely
packed, for the spectral lines corresponding to the weak
E to E transitions to be discernible above the noise level.

(iii) The coupling of the rotational motion of the
methyl groups with the lattice vibrations must be weak;
i.e., the temperature must be low, so that the concept of
tunneling in the sense of quantum coherence' is applica-
ble.

(iv) To properly understand the experimental results
showing the effect of the gauge term, one should have at
least an approximate picture of the energy-level scheme
of interacting methyl groups under study.

As already indicated, the calculation to be compared
with experiment is the Fourier transform of the time evo-
lution of the proton Zeeman magnetization in the (spin)
rotating frame. It is well known that in the limit of
strong 90' pulses and at exact resonance the Fourier
transform of the magnetization evolution in the rotating
frame has a nonvanishing intensity only for transitions
corresponding to the change of the magnetic quantum
number AM=+2. If, however, the strength of the 90' rf
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pulse is comparable to the strength of the spin-locking
field pulse, the evolution of the spins during the 90 pulse
has to be taken into account as well. This evolution
brings about an imaginary component in the Fourier
transform at AM=+ l.

In what follows we wi11 analyze an ensemble of coupled
pairs of methyl groups and calculate the Fourier trans-
form of the proton magnetization evolution in powder
samples and in a fictitious planar crystal, for a few special
orientations of the methyl pair with respect to the exter-
nal field. In addition, two inter-methyl-group distances
will be considered, the near pairs corresponding to
strongly and the more separated pairs to weakly coupled
groups.

The calculated polycrystalline spectrum is then com-
pared to the experimental spectra of proton magnetiza-
tion evolution of methyl groups in acetyl acetone and
dimethyltin dichloride. The calculated spectrum agrees
qualitatively with the acetyl acetone spectrum if the
charge on each proton is taken to be 0. le.

levels are significant, this term is also likely to be impor-
tant.

The dipole-dipole interaction is given by

2

HD=ficoD g (
—1)"g U;, "V;, ,

k= —2

where ~D =y A/R o. Here y is the proton magnetogyr-
0

ic factor and Ro =1.78 A is the proton-proton distance
within a methyl group (AD =134 kHz or coD/y ='5 G).
The operators U; and V;, are

Ro
U;, "=(6m/5)' Y "(8;,, Q;, ), (2.5)

R;

where R, includes inter- as well as intra-methyl-group
proton-proton distances. The spherical harmonics
Y2 (8;~,P;i ) are defined according to the convention used
in Ref. 13. (8;,P; ) are the polar angles of the proton-
proton vector R;. in the laboratory coordinate system
(xyz). The spin operators V;" are

II. HAMILTONIAN AND THE EQUATION
OF MOTION FOR THE DENSITY MATRIX

The Hamiltonian of the system describing the evolu-
tion of the proton magnetization during time intervals
short compared to the spin-lattice relaxation time is

H =Hz +H~ +HD +H.t( t )

The Zeeman Hamiltonian Hz is given by

Kz = i kt00I,—,

(2.1)

(2.2)

+ V3„1—cos3() „—5„)

N
where coo is the proton Zeeman frequency; I, —=Q„,I,'"',
with I,'"'=I'&",'+I'z", '+I3",' being the z component of the
total proton spin of the nth methyl group in a system
consisting of X methyl groups. The rotational Hamil-
tonian Htt corresponding to (1.9) and generalized to a
system of 1V interacting methyl groups is written as

2
3g @
hc

(2.6a)

H„ (tt) = fico& [I„cosset—I singlet ],— (2.7)

where cubi
=y~H, and I,—=+~,I,'" and the same for I .

In (2.7) the rf field is considered to be a classical external
field with a given time dependence and magnitude H, .

The equation of motion for the density matrix p„ in the
rotating frame at exact resonance co =~0 is

~Pr

Bt

where p„ is related to the density matrix p in the labora-
tory frame by

(2.6b)

(2.6c)

where we have introduced I; =I,, and I,—+ =—I; +iI, . To
simplify the notation we drop the superscript n because
(2.4) contains both the intragroup and the intergroup
dipole-dipole interactions.

The radio frequency field applied to the sample is the
usual rotating transverse magnetic field. The interaction
of the proton spins with this field is

+ g V(y„,) ),
n (m

(2.3)
p(t)=e ' 'p„(t)e (2.9)

where q represents the effective proton charge defined in
(1.10).

The magnetic fiux 4„ is defined by (1.3) and is

where cz"' is the unit vector parallel to the symmetry axis
of the nth methyl group. The Euler angles (a„,P„,y„)
determine the orientation of the nth methyl group with
respect to the laboratory coordinate system (xyz) with

the z axis parallel to the external magnetic field Ho.
The methyl-methyl interaction is included in (2.3) be-

cause in those cases where the transitions between the F-

It is easy to verify that

i' = Ace,I +H~+AcoD—g U~j V, ,p,
l (j

(2.11)

To make the analogy with the 1aboratory frame stronger,

l CgotI l Ct)OII
e ' 'HDe

2

=AcoD g (
—1)"e ' g U,, "V,", , (2.10)

k= —2 i(j
and since co&/coo ——10,we can drop the rapidly oscillat-
ing k&0 terms in (2.8) to get
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we make a second transformation, defined by

i(m /2)I —i(~/2)Io. =e ~p, e

resulting in

(2.12)

(2.3), we introduce

N (i 3q/hc)4„y„
4(rl YN) g 4(3 1 ' ' YN} '

n=1

i' =[Ho+ V, o ],ao
at

where the notation

(2.13}
The Schrodinger equation for P' reads

(3.5}

and

Ho—= Ace—)I,+Ha ,'A—coD—QUJ V~~J

i(j

V=( —,')'~ A'coD g U; ( V" + V;~ )
i(j

(2.14) ' X
n=1

$2 a2 + V3„[1—cos3(y„—5„)]2I ay„

+ g V(y„,y ) P'=E'"'P', (3.6)
n&m

—
(

3
) 1/2( V2+ V

—2)
S

is introduced.

III. DETERMINATION
OF THE LO%'EST ENERGY LEVELS OF Ho

We rewrite (2. 14) as

(2 15) with the boundary conditions

P'(r ~+P~2~, , rQ+p+2~)
N

Combining (3.7) with (3.4), we obtain

H() —Hz+HR —HD, (3.1)

where HD = ficoDQ; 1
U—J V~. Since [Hz, Ha ]= [Hz, HD]=0, we can obtain the approximate solutions

to the eigenvalue problem

H, % =E% (3.2)

Hag(ri . , y~)=E P(r), . . . , y~),(R) (3.3)

with HR given by (2.3). According to (1.11), the P's satis-

fy the periodic boundary conditions, with respect to all
y's. The symmetry group of HR is assumed to be a direct
product C3(1)XC3(2)X XC3(N), so that the corre-
sponding eigenfunctions are classified according to the ir-
reducible representations of this group. As a conse-
quence, they obey

2' 277
yt+pi re+pe

3 3

ip s 2a/3=II
n=1

(3.4)

where p„=0 or 1, sn =0, 1, or —1, if
P(y„. . . , y„, . . . , y~) transforms with y„according to
the A, E„or Eb irreducible representation, respectively,
of the point group C3. To solve (3.3) with H~ given by

I

as products Py, where P and y are the eigenfunctions of
HR and Hz, respectively. We have

2' ik I0' ran+Pi 3

aU =0, i =1,2,
Vi

(3.9)

exists and is such that the real symmetric matrix
8 U/By„BY,J. is positive definite. Neglecting tunneling
for the moment, we can construct a WKB ground-state
wave function Po(y, —y, &, yz

—y,2) centered at the
minimum y, of the potential U(y„y2) and satisfying the
Schrodinger equation (3.6) with energy eigenvalue Eo.
We normalize $0 on the rectangle y„.—m/3~y; ~y„.
+n. /3 for i =1,2. It follows that we can write P'(y„y2)
in the zeroth-order approximation as

(3.8)

where we have defined the "wave vector"
k—:(k„.. . , kN ) with k„=—(3q4 „/hc —s„) and the
"lattice vector" /:—(p, (2n /3), . . . ,P~(2m/3) ). Since
condition (3.8) is recognized as the Bloch condition of
solid-state physics, we anticipate the solutions of (3.6) to
be Bloch sums as if one were dealing with a particle in a
periodic lattice potential.

In what follows we shall restrict ourselves to a pair of
coupled methyl groups. Let us denote by U(y„y2) the
potential term in (2.3) describing a pair of groups only.
We shall further assume that the solution y, =(y„,y,2)
of the equation

n n = —ool' 2

ik& n &2m/3 ik2n22m/3 2m' 2Ke '' e ''
Po y, — y„+ 3nz, y2

— y2+
3

n2 (3.10)

where v, , v2E A, E„orE~, and C is a normalization constant. Inserting (3.10) into (3.6), we obtain'

E& &:Egg + %cot] ' 1 cos s](R) ~ (R) 2 2
1"2 3 '

3

a@i. 2~ 2
sin s

&
+—Ace, 2 1 —cos s2

Pic 3 3 ' 3
sin s2 (3.11)
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where fi02„=3(A' /2I) ~a
~

and III0),2=3(IrI /2I) ~b l. The
quantities a and b are given by

n/3 K WO 77a= dy2 $0
—3,y2 a 3,y2—n/3 Vj

ay,—
4'0

3
r2 a V1

(3.12)

r

agob= dri 40 ri ——
—~/3 3 3/2 3

aA

y2.
(3.13)

The energy-level scheme based on Eq. (3.11) together
with the Zeeman energies, but excluding the dipolar
shifts due to HD, is shown in Fig. 1.

The above method of calculation is accurate if the
overlap between pocket states localized in neighboring
minima of the potential U(y „y2) is not too large, though
it should be pointed out that no constraint was imposed
on the magnitude of the interaction V(y), y2). Inclusion
of overlaps between the next-nearest-neighboring minima
reveals, for example, that levels, such as EE E and EE E,

a b a a

are split. The magnitude of this splitting, however, is
small compared to Ace„and Ace, 2 and wi11 not be con-
sidered further.

If there exist several distinct solutions y,"=—(y,",, y,'2),
not related by symmetry operations of the C3 group, we

must form a Bloch sum for each such solution separately,
so that the general solution of (3.6) is then written as a
linear combination of all Bloch sums. The situation is
similar to the application of the linear combination of

l

2

4' Wk k k k
wr

I
I

a ~k(. k: 0
16 stat+s lf li/2- Q ' '

1

(f f )
ta. TT t I I I

!l%$I

(E, E )
MV Y

16 states

3
I

CV

3
CV

3

i ( S states /

(f16, 4)

(E, , A)

(4, fb)

1)

(4, fa)

rj j/ tk I k
T k

T
I

t

I

I

! I

T
T

k k
I j I

I
I

I

T (Qf
(

I T
I T I

I

Pkt k
T j

/kr e j
tkt

k

I j j
ti''W+

tTt
T I I T

-2
-1
0
1

-2
"1
0
1

2

-2
-1

0
1

2

-2
-1

0
1

2

3

'1( 1( 11 16 states

(4, 4)

lk
/ tit

1I j
ii T

-3
-2
-1

0
1

2
3

atomic orbitals (LCAO) method when we have more than
one atom per unit ce11.

The wave function It, , (y„y2) follows from (3.5) and
1 2

(3.10):

FIG. 1. Energy-level scheme corresponding to a pair of in-
teracting methyl groups with arbitrary orientation. Only the
lowest 64 states are shown. 3, E., and Eb label the irreducible
representations of the point group C3. Solid and dashed lines
indicate transitions induced by V.

1' 2n, n

i(2'/3)(n s +n s ) I(3q/hc)41~ yl ycl (2'/3 nl ~ 1 3q/hc)C'2[(y, —rc2) —(2m/3)n2]
e 1122 1 1 cl 1

2% 2%
Xpo (y —y„)— n„(Y—y, 2)

— n2 (3.14)

iI2vrl3)(n )st +n&s&) 2& 2K
e o 'Y)

3
n»r2

1

v'34...,(rI y2)=
nl, n2= —

1

with normalization defined on the square y„~y;~ y „+—1r, i = 1,2. [The unimportant phase factor
i(3q/hc )(4'lr 1++2r,2)' " has been left out in (3.14).]
The wave function ttt, „(y,, y2) as given by (3.14) is defined on the interval y; —Y„E[ vr, ~] and is —periodic with a

1 2

period of 2m. with respect to both variables y;. In the case of small overlap between neighboring minima, we may ap-
proximate it, for the purpose of ca1culating the matrix elements of HD, with

2
1

|',3.15)

where y&
—y„ is replaced by y; and the phase factors

containing the Aux terms are omitted. This is permitted
because 3e@/hc ='0. 24 X 10 at most (when Ho = 1 T).
If the coupling term V(y, , y2) in (2.3) is also dropped,
then

40(l I r2) 00( yl 4)0(y2)

which implies

4...,(r) r2) =0.,(r) )0.,(r2), (3.16)
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where P„(y) is defined as

0o(y)+ ""'0o y+

+ i(2m. /3}s i (3.17)

and s =0, 1, and —1 correspond to v= A, E„and Eb, re-

spectively.
The eigenfunctions of the Zeeman Hamiltonian defined

by the first term of (2.14), associated with the rotational
vectors P „,are solutions of

1 2

Hzg„(I„M&)y (Iz, Mz)

= —(M)+Mz)fico)y (I„M))y„(I2,M2), (3.18)

y„(—'„M)= '

i+++ &,

1 [i++—&+i+ —+ &+I —++ &],v'3
(3.19a)

[i ——+)+i—+ —)+i+ ——)],v'3

and

where v labels the irreducible representation of the point
group C3. The tilde over the subscript v indicates conju-
gation so as to account for the restrictions imposed on
the proton wave functions by the Pauli exclusion princi-
ple; i.e., if, for example, v=E„ then v=Eb. The spin
components y„(I,M) (I takes the values —', and —,

' and
I ~ M ~ I)—are given explicitly as

yx ( —,',M)= '

EAE EAA ++~0 ++~~1 + ~~D(R} (R}

is satisfied and the approximations introduced above are
employed, the Hamiltonian Ho is diagonal in the above
basis. Using the formulas given in Appendix A and
denoting the eigenvalues (3.2) as

1

v'3 [i++—&+ei+ —+ &+a'[ —++ &],

(3.19b)
[)——+ &+e( —+ —&+"(+ ——) ],v'3

where e=e' / and yz ( —,',M)=yz ( —,', M) (the asterisk
a

denotes a complex-conjugate quantity).
To determine the energy eigenvalues of (3.1), we will

neglect the mixing of degenerate levels caused by the
inter-CH3-dipole-dipole interaction. If the CH3 groups
are sufficiently far apart, this becomes an excellent ap-
proximation because of the factor (Ro/R ) in the dipole
Hamiltonian. Here Ro ——1.78 A and R is the distance be-
tween the protons belonging to difFerent methyl groups.
This approximation is not essential in principle; however,
it does simplify the calculations and enables us to obtain
analytical expressions for the energy eigenvalues.

If, on the other hand, the methyl groups are close,
some of the proton pairs may have R's even smaller than
Ro, in which case the intergroup contribution to HD
should not be neglected. This requires, at most, a solu-
tion of an 8X8 secular determinant, which, however,
cannot be factored. In what follows, we will neglect the
intergroup part of HD even if this may not be entirely
justified for all the lattices studied.

Furthermore, to ensure that the splitting of E levels
due to the magnetic field can be observed at all, we have
to require (E„'"E' E„'„')/R, —(EF"„' E„'„')/A' —to be of the
order of 1 GHz or more. If the magnetic field is on the
order of 1 T, then the splitting of E levels is approximate-
ly A'coD or larger. The magnitude of the rf field pulse used
in the experiments was usually 15—40 G, implying that
co1 is at least 3coD. Thus, if

Hok, (yi, yz)g, (I„M, )y (Iz,Mz) =E(v,M, ;vzMz)p, „(y„yz)X (I„M,)y„(I2,M2),

we obtain the result

E(v&M&, vzMz)=E'„"' —(M&+Mz)fico& —
—,'(vzMz, v&M& ~Hn(intra)~v&M&, 'vzMz ),

where

(3.20)

(3.21)

(I],M] )y (Iz,M2):—~v]M], vzM2 ) .

Employing the approximations introduced in Appendix A, we obtain

(vzMz, v&M&~HD(intra)~v&M&, vzM2) = —
—',~D(1 3cos P~)fi, „(fi3/2, ~M, [ fi]/2, ~M, [)

s~~D i 2)fiv2 ~(fi3/2, ~M2~ foal/2, ~M2~) (3.22)

5;/ is the Kronecker delta and P; is the angle between the symmetry axis of the ith methyl group and the direction of
the external magnetic field.
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IV. TIME EVOLUTION OF ZEEMAN POLARIZATION IN THK ROTATING FRAME

The equation of motion (2.13) for the density matrix cr in the rotating frame is solved by making a transformation to
the interaction picture in the rotating frame defined by

(i /R)Hot (i—/s)Hotort =e o te
Introducing

' 1/2
(i /A)HO t ( —i /A)Hot 1 p 3V(t)= e — ' Ve ' =exp —H — H —t .

2 8

l2ctP)t 2 + l2co(t i 1 0V e +V e exp ~ ——H ——8 tR 2 D

(4.1)

(4.2)

we can write ot(t) a. s

(4.3)

where the successive approximations o't")(t) are
n

tn —io',"'(t)= —— f dt, f dt, f dt„[V(t, ), [V(t, ), [ [V(t„),o,(0)] ] .
0

(4.4.)

The density matrix at the beginning of the field pulse 8 (Fig. 2) is (see Appendix B)

piirt oot(0) =p(0)+—i z
—Jt ( /2 —8)

kd k JV ( /2 —8)dec
%co) k= —2

(4.5)

where p(0) is the initial density matrix immediately prior to the application of a 90 pulse to the system in thermal equi-
librium, i.e.,

1 —
pL(Hz+Hg+HD ) 1 t3L(Hz+H~ +—HDO)

Z Z (4.6)

Here Z is the partition sum, )(2lL
—=ilk&Tt, ki) is the Boltzmann constant, and TL is the lattice temperature. The

remaining symbols are defined in Appendix B.
The time evolution of Zeeman polarization in the rotating frame is observed as the expectation value of I in the lab-

oratory frame after the end of the field pulse. In terms of the magnetization along the x direction, we have

M„(t)=y, A'(l„(t) ) =y, h Tr[p(t)I„],
where p(t) is the density matrix in the laboratory frame (2.9). Using the expression for o t(t ), we can write

(4.7)

(i /A) Ho t —(i /A)HO t(I„(t))=Tr[ot(t)I, ]coscoot+Tr or(t)e 'I e ' sincoot . (4.8)

Taking Eqs. (4.2) and (4.4) and noting that

e 'I e 0 =exp —H — H t (I cosco—)t I„stnto)t)exp ~ ———Ht( — HD—(i/A)H t —{i/R)H t 1 p

2 2
(4.9)

we conclude that the coefficien of coscoot in (4.8) will

contain only multiples of 2', , while the term proportion-
al to sin~pt will include only odd multiples of co&, to all
orders of the perturbation calculation. Using the basis
defined by (3.20) as well as (4.4), (4.5), and (4.8), we obtain
to second order in coD the result given in Appendix C,
which confirms the above predictions. In higher orders
we would obtain also 3~„4',, etc. It is clear that the
presence of terms with odd multiples of ~, is a conse-
quence of partial dephasing of the spins during the 90'
pulse.

point of observation

t=O

FICr. 2. Pulse sequence used in the experiments. A(m. /2) is

the 90' pulse, while B(t) is the spin-locking field pulse of vari-

able duration.
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V. EXPERIMENTAL DETAILS

All experiments were performed at a proton Larmor
frequency of 30 MHz on a Bruker SXP variable frequen-
cy pulse spectrometer using a Waterloo NMR quadrature
detector. The home-built probe assembly was used in
conjunction with a Janis 5RD cryostat enabling pulse
spin-locking experiments to be carried out to -4 K.
Temperature stability was maintained accurate to +0.1

K using a home-built regulator with a carbon-glass sen-
sor mounted in the sample area. A variety of materials
was studied, chosen on the basis of inelastic neutron
scattering (INS) A ~E splitting assignments' to cover
the range between -0.1 and 15 6Hz.

The samples were sealed under their own vapor pres-
sure in 8-mm-o. d. thin-walled NMR tubes and cooled
over a period of 1 —2 h to 77 K. They were then exposed
to —1 Mrad of y irradiation from a Co source in order
to introduce paramagnetic centers into the lattices, there-

by reducing by orders of magnitude the Ti (time needed

for the saturated nuclear spins to reach equilibrium).
Since Zeeman-tunneling transitions are not, affected by
the spin-lattice relaxation time T&, this technique was in-

valuable in reducing experimentation time, thus minimiz-

ing errors introduced through temperature and rf match-
ing variation, etc.

The experimental technique makes use of the spin-lock
pulse sequence 2 [n/2]„8[Hi(t)] shown in Fig. 2.
Pulse A "rotates" the equilibrium magnetization through
90' into the x-y plane where it is spin locked along the rf
field (pulse 8). The time evolution of the magnetization is

I

obtained by measuring the amplitude of the signal im-

mediately following spin locking as a function of the rf
field pulse duration t. By increasing this time in unit in-

crements b, t ( = 1 ps) for a total of N (-200}consecutive
spin-locking steps (each delayed by 5T, from its prede-
cessor), one obtains a quasicontinuous oscillatory pattern
which is then Fourier transformed to yield the spec-
trum.

Data were acquired at 35 different "time windows" on
the free induction decay (FID) using quadrature detec-
tion, whereby the absorption and dispersion components
of the signal could be separately recorded and analyzed.
Since the frequency profile of the spectra between time
windows varied only in the random distribution of noise
peaks, these could be averaged so as to optimize the sig-
nal to noise (S/N). Even with this optimization the S/N
is only 10.

Although a number of systems with large A ~E tun-
neling splittings were studied, only the spectra from poly-
crystalline acetyle-acetone and dimethyltin dichloride
(shown in Figs. 7 and 8} have features which are indica-
tive of a magnetic-flux effect. These two spectra are also
representative of materials with strong and weak pairwise
methyl-methyl coupling.

VI. DISCUSSION AND CONCLUSION

Equation (Cl) shows that the time evolution of the
magnetization in the rotating frame can in general be
written as

M„(t) Macoscoat =—g p;"'(Pi, y i) [sin[coo —(coi+co;(Pi, y i) ) ]t +sin[too+(coi+to;(Pi, y i ) ) ]t j

+gp'2'(Pi, yi)[ —sin[a)a —(2coi+co.(Pi, yi))]t+sin[aia+(2toi+a) (Pi, yi))]t j

+g pk '(P„y, ) [cos[toa —(2', + to(Pk„y, ))] +tc so[co +a(2' (Pk„y, ))] jt.
k

(6.1)

The Fourier transform of (6.1) is defined as

M„(co}= f dt M„(t)e'"',

and the Gaussian broadening is introduced by

e
—(co—u) /2o.

M„(co,o)= f du M„(u)
00 27TCT

(6.2)

(6.3)

I

the off-field parameter Ii =(to —coo)/y». The remaining

parameters used in the graphs are a= 1 G, H, =20 G,
H', =40 G, and Hn: ton/y» =—5 G, while 6, defined by

(C2a) and illustrated in Fig. 4, corresponds to 15 and 22

G. It follows from the definition (6.2) and the expression

Choosing a,z=P,z=y, 2=P, =O and the results obtained
in Appendixes A and C, we calculated M„(co,o ) corre-
sponding to the energy-level scheme shown in Fig. 4
(which is just a simplified version of the energy-level
scheme shown in Fig. 1). We considered two different
values of the intergroup distance characterized by the
vector a as defined in Appendix C. We chose
a=(2d, 0,0) and (1.75d, 0,0) referred to in the future as
the weak- and strong-coupling cases, respectively.
d =1.78 A is the intragroup proton-proton distance. In-
stead of using the frequency scale, we have introduced

H2

FIG. 3. Geometrical characteristics of a CHz group with

respect to the methyl fixed-coordinate system.
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(6.1) that M„(co) has a real component corresponding to
the cosine terms and the imaginary component corre-
sponding to the sine terms in (6.1). The real component
is shown in Fig. 5 for the two values of the intergroup
vector a denoted as the weak- and strong-coupling cases.
In the limit 6—+0, which is not shown, the real part of
M„(ro) shows appreciable intensity only in the vicinity of
h =—2H, , with a pronounced double peak characteristic of
isolated methyl groups with tunneling frequency large
compared to the strength of the intragroup dipole-dipole
interaction. The splitting of the two dominant peaks in
Fig. 5 is in agreement with this observation and is rough-
ly equal to 5 G. On the other hand, the effect of the
intergroup dipole-dipole interaction is seen in two ways.
We note in Fig. 5, the strong-coupling case, the appear-
ance of an additional line centered exactly at h =2H, . It
is due to the transitions between the E levels, driven by
the intergroup dipolar interaction (it is known that the E
levels are not shifted by the intragroup dipolar interac-
tion). The second more interesting effect of the inter-
group dipolar interaction, and which is the object of our
analysis, is the occurrence of the satellites on the low-field
side of the double peak. The position of the satellites and
their intensities are determined by the magnitude of the
magnetic-Aux splitting 5 and by the strength of the inter-
group dipolar interaction, respectively. As seen from
Fig. 5, the intensity of the satellites is approximately 40%
of the intensity of the dominant double peak in the
strong-coupling case.

C:

L-

STRONG
COUPLING

(J)
z.'

a
WEAK

COUPLING

V)
Z.'

I 0 20 30 40 50 60
H1 (GAUSS)

10 20 30 40 50 60
H 1 (GAUSS }

Q =-22

FIG. 5. Calculated spectra for the case of a fictitious crystal
where all methyl C3 axes are aligned parallel to the external
field Ho. (a) and (b) show the expected line shapes for strong
and weak pairwise coupling between adjacent methyl groups.
Transitions among the magnetic-flux-split E states are clearly
visible in (a). The solid and dotted curves correspond to a
magnetic-flux splitting of 5=22 and 15 G, respectively.

Contrary to the real component of M„(co), the imagi-
nary part shows a nonvanishing intensity, proportional to
1/H'„both at H, and 2H, . When H'I and the intensity
of the spin-locking field pulse H& are of comparable mag-
nitude, the intensity of the imaginary component at
h =2H

&
is about the same as the intensity of the real

component. On the other hand, the relative intensity of
the imaginary component around h -=H, turns out to be
at least one order of magnitude larger than its intensity at
h =—2H&, when H& =40 G and H& =20 G. The satellites
generated by the intergroup-dipolar-driven transitions be-
tween the magnetically split E levels are visible also in
the imaginary component of the Fourier spectrum,
M„(co). However, the satellites centered in the range
H, h 2H, are usually distorted or even hidden be-
cause of overlapping of intragroup dipolar components of
the Fourier spectrum. Also, the satellites on the low-field
side of the strong double peak at h -=H, are not very use-
ful because the experimental spectra in this range of h

values are not very reliable. It is therefore our conclusion
that the real part of M„(to) is much more appropriate for
the analysis of 6 satellites.

So far, we have been discussing M (co) for a crystal,
i.e., for fixed values of pI and yi. To obtain the results
for powder samples, we introduce the powder average of
the Zeeman polarization by

(M„(t))= f dyI f d c sp oMI(t) .
4m. o

(6.4)

&6 states

IA, A)

—3
-2
-1
0
1

2
3

Its Fourier transform (M„(co)) and the broadened ver-
sion (M (to, cr) ) are again defined according to (6.2) and
(6.3), respectively. Using the definition of the 6 function

FIG. 4. Energy-level scheme of a pair of noninteracting
methyl groups, coupled only by their intergroup dipole-dipole
interactions with cosP, = cosP2.

5(x)= f dt e'"'

and its property
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5[g(x)]=+5(x—x )

J

dg(x )

dxj-

+",c, „cos p, (1—cos p)),
1 2

(6.8)

where x. are the simple zeros of g(xj)=0
(dg(xj)/dx. +0), we obtain, considering (6.1), a typical
term of (M„(co}) in the form

2w p p\
(j)

4~ fo ' l~~(p'j", y ))/~ «sp~j"
I

where cosP',~' are solutions of

A=neo, +co( P&, y, ), n =1,2, (6.6)

and 0—=y h. co(P„y, ) and p (P, , y, ) are defined by (C 1},
(C8), (C9), and (6.1).

To calculate the Fourier transform (M„(co)) for an ar-

bitrary relative orientation of the interacting pair is tedi-
ous and will not be done here. However, to illustrate the
general result (6.1), we shall consider the special case
a&2=P,2=y, 2=0. It follows from (C8) that

coD(p2)=~a(p&), and all the frequencies co;, coj, and cok

entering (6.1) depend on cosp& only. In this case (6.5)
simplifies to

d co(cosP',j')

As can be seen from (Cl), in this particular case the y &

dependence enters only through U, . Using (C7), we

obtain

f dy, l
U', „(p,, y, )l

=,' g„„(1—3cos p&) + ~b (1—cos p&}

where the coef5cients a, b, and c for the weak- and
strong-coupling cases are given in Table I.

With the help of (6.7) and (6.8), we calculated
(M„(h, tr)) for a,2=P,2=y, z=O. The resulting imagi-
nary and real components are shown in Fig. 6. The pa-
rameters used are H]=20G H~ =400 HD=5 6 0'=1
G, and b, /yz = 15 and 22 G. Graphs (c) and (d) in Fig. 6,
representing the real part of (M„(h,o ) ), are qualitative-
ly similar to the single-crystal spectra shown in Fig. 5.
We note, however, that the satellite structure is spread
out and its intensity is decreased. The ratio of the satel-
lite intensity and the intensity of the peak centered at
2H ] is approximately 1:10 and as such difficult to ob-
serve. Moreover, comparing the graphs corresponding to
weak and strong coupling we see that the characteristic
double-peak structure has disappeared in the strong-
coupling case due to the transitions within the E mani-
folds driven by the intergroup dipole-dipole interaction.

The imaginary component of (M„(h,o)) shown in
Fig. 6(b) is not very interesting as far as satellites are con-
cerned because of the large intensity of the peak centered
at H &. The ratio of the intensity of this peak to the inten-
sity of the satellites is of the order of 100:1;therefore, the
latter are not visible.

To conclude this section, we emphasize again that the
magnetization as given by (Cl) or (6.1) is evaluated im-
mediately after the end of the field pulse H& (see Fig. 2).
Experimentally, however, the measurement of the FID
signal is delayed for a time r (-6 ps or more) after the
end of the field pulse. For this reason the evolution of the
magnetization in the laboratory frame under the action of

Arnot—,+Htt +HD has to be taken into account Aca. l-

culation entirely analogous to the one described previous-
ly yields

M„(t+r)=y fjjTr e ' 'exp ~ —Htt — HD (t+v) U(r)—I, U (w).

Ecol tI
Xexp —Htt — HD ( t +r ) e— 'o t ( t ) coshoo( t +r )

+y A'Tr e ' 'exp —Htt — HD (t+r) U—(r)Iy U (r).—icoltI ) 1 p

tcoltIXexp —H~ — HD (t+r) e —'0 t(t ) sincoo(t +r), (6.9)

where i 1 pV(s) =exp ——H — Hs V—R 2 D

U(r)=T exp —f ds V(s)
p

(6.10)
Xexp —H ——H s -.l 1 p

R 2 D (6.11)

with T representing the time ordering operator and In the limit H', ~~, the term proportional to
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TABLE I. Coefficients a, b, and c as defined by Eq. (6.8). The upper part of the table cor-
12 12 1 2

responds to a=(2d, 0,0) and the bottom part to a=( l.75d, 0,0), d = 1.78 A.

3.6
9

2.9
9
0

AE,

1.1

9
1

9
0

1. 1

9
1

9
0

0.6
9
1

9
0

E,E
0.5

9
0.6
9
0

14.1/9
13/9

0

6.2/9
6.0/9

0

6.2/9
6.0/9

0

4.3/9
5.3/9

0

3.7/9
4.4/9

0

simoc(t +r) in (6.9) goes to zero and we will consider only
the first term proportional to coscoo(t+r) which gen-
erates the real part of M„(cg,o ) (the Fourier transform is
performed with respect to t). In the lowest order, U(r) is

replaced by 1 and we obtain the ~-independent spectrum
discussed earlier. In the next higher order, we have to
consider

(o) (b) where

U"'( )r= —f 'ds V(s) .
0

o

ho INTERMOLECULAR
CONTRISJTION

(magnified - IOtimes) I-
V)z'
LLII-

STRONG AND WEAK
COUPLING

This term will yield a ~-dependent contribution to the
real part of M„(co,cr) with frequencies centered at 2H&,
including the satellites, and the intensity of some of the
lines could be comparable to the ~-independent part of
the spectrum. When we go to the second order, as far as
the U(~) evolution is concerned, we encounter terms
such as

10 20 30 W 50
H~ (GAUSS)

(c)

10 20 30 e3 50
Ht (GAUSS)

where
2

1

U (7)— —' f d'r, f dr& V(r, ) V(rz) .
0 0

o
JD
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COUPLING

o
Ch

o
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COUPLING

Z,'
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H1 (GAUSS )

10 20 30 W 50 60
H1 (GAUSS)

A=22

FIG. 6. Calculated spectra for a polycrystalline (powder)
sample. (a) The small intermolecular contribution occurring at
H1 and 2H1, magnified times 10 relative to the other figures. (b)

Dispersion (imaginary) component of the powder averaged
transform for both the strong- and weak-coupling cases, show-

ing a split H1 peak and a low-intensity peak at 2H1. {c)and (d)

Absorption {real) spectrum for stmngly and weakly pairwise
coupled methyl groups, respectively. The small feature in the
vicinity of 20 G in both figures is due to transitions among the
magnetic-flux-split E states. The solid and dotted curves corre-
spond to a magnetic-flux splitting of 22 and 15 G, respectively.

Here again we obtain the ~-dependent contribution to the
real part of the Fourier transform, but of lower intensity
than the v-independent part. In addition, we also obtain
a Fourier component centered at 5/y; however, its in-

tensity is down by a factor [HD (inter)/A'b, j compared to
the intensity of the ~-independent 5 satellites. A11 in all,
the evolution in the high field does change the detailed
structure of the spectrum, especially when 6 becomes
comparable to coa, but it has no bearing whatsoever on
the position of the peaks. The most interesting aspect of
the r evolution is the emergence of the line centered at
6/yz, which may become observable for 5's of tke order
of coa.

It has been shown that the magnetic splitting of E lev-

els is proportional to the effective charge q whose magni-
tude is determined by nonadiabatic screening of proton
charges by the methyl-group electrons. This screening
can be interpreted also as another example of the geome-
trical phase effects in molecular systems, the universality
of which has been recognized especially since the work of
Berry. ' In our calculation we have demonstrated that
the optimal conditions to study this effect are obtained in

monocrystals where the satellites resulting from the split-
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ting of the E levels are well pronounced (Fig. 5). This is
unfortunately no longer true for a polycrystalline powder
sample where the spectral features of interest are only
about 10% of the main 2'& peak intensity (Fig. 6). It
should be kept in mind that the oscillatory part of the
proton magnetization represents only 5—20% of the
measured signal Mo, thus making good signal to noise
crucial. Furthermore, the characteristic "A-E" splitting
has to be in the 6Hz range in order to produce the mag-
netic splitting of the E levels comparable to the intensity
of the spin-locking field pulse H, , whose optimal value
was found to be 15-25 G.

Of the 21 materials studied, 9 have A-E splittings be-
tween 5 and 12 6Hz. Only two, shown in Figs. 7 and 8,
show features which could be attributed to the magnetic
flux. The proton spectrum of acetyl acetone in particular
has a small satellite, the center of which is 38 kHz below
the 2'& peak. This satellite shift agrees with the calcula-
tion in which the proton charge is set at 0.1e.

In summary, we have presented a set of calculations
yielding the expected spectra of a system of pairwise cou-
pled tunneling methyl groups, driving nonsecular dipolar
transitions among the magnetic-flux-split E states. These
are visible as small, low-frequency satellites of the
AM=2 dipolar peak in the spectrum of the magnetiza-
tion evolution in the rotating frame. Furthermore, the
shape of the calculated hM =2 dipolar peak itself, which
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FIG. 8. Experimental spectrum of dimethyltin dichloride at
10 K and 30 MHz corresponding to weak pairwise intermethyl
coupling. The reported A -E tunneling splitting is 11.8 GHz.
(a) Absorption and (b) dispersion spectra.

does not depend strongly on the relative orientation of
the neighboring groups, is in good agreement with experi-
ment for both weakly and strongly coupled methyl
groups as shown by the spectra of acetyl acetone and
dimethyltin dichloride (Figs. 7 and 8, respectively). This
agreement supports our calculations conclusively.
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APPENDIX A

The matrix elements of the dipole-dipole interaction, in
the basis spanned by the eigenfunctions of H„+Hz and
denoted by I(t„„Xy y, are calculated most convenient-12v(v
ly if HD is written in the symmetry-adapted form. Let us
write HD defined by (2.4) as a sum of an intragroup and
an intergroup operator,

sili issts -jri~mnr-, .I I r —s I s s

0 10 20 30 40 50 60 70 80 90 100 110

HI (GAUSS)

FIG. 7. Experimental spectrum of 2, 4 pentanedione (acetyl
acetone) at 10 K and a Larmor frequency of 30 MHz illustrating
the strong pairwise coupling case. The reported A —E tunneling
splitting is 10 GHz. (a) Absorption and (b) dispersion spectra
showing the positions of (from left to right) Hl and 2Hl as full-
scale vertical lines.

HD =Hn (intra ) +HD (inter } .

The symmetry-adapted forms are

HD(intra)

(A1)

2

=AcoD g ( —1)"[U„"V„"+U~"VF" +U~ "V~ ],
k= —2

(A2)
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where

Xs
XE

and X; stands for

1 Xi2
C, X23

X3)

U, . or V, ;and

(A3)

with v, E A, E„E&and

3 3

g S„,S„,X;, .
t =1 J=1

(A5)

2

HD(inter)=))'tts) g (
—1)" g U

k= —2
l 2

1' 2

(A4) The matrix S is defined in (A3).
If we take X; to be U;, we obtain

0

UAE.
0

UAE,
0

UE, A
0

UE E
0

UE.Eb
0

Eb A
0

EbE
0

Eb Eb
0

1

3

1

1

1

1

1

1

1

1

1

1 1 1 1 1

1 c' c
1 E

E. E

1

c.* 1 c
C C

c 1 c'
c c' 1

1 1
U))

0

0

U21
0

0
U22

U23
0

0

U32
0

0

In the actual calculations of the dipole-dipole matrix elements, we shall always make the approximation

f f" dy)dying; „(y),y2)p, , (y), yz)(X„(I)M) )X (I2Mz)IHDIX„, (I)M) )X,(I~M', ))
2

((2n/3)(n((s( —s) )+n&(s& —s2))

n&, n2

X (X (I)M, ) „X(I iM)iIHD IX,(I')M') )X,(I2M~ ) ),

2% 2%

3
n ) y 2 3

n

(A6)

and assume moreover that po(y „yz) is so sharply peaked
around the minimum of the potential U(y„yz) that the
matrix element in (A6) can be taken out of the integral.

U(8)
—I(I +W~ +IID )()

8= to') t, &I—( HI) /f)to), an——d WD =HD /f)to'). ~—e can
write U(8) in a form convenient for later applications as

APPENDIX B

~Pr
i ft = [ftto')I +H„+HD,p„], (B2)

where p„(0)=p(0) and is given by (4.6), and to') =—y H)
(H', is the intensity of the 90' pulse). Equation (B2) has a
forrnal solution

p„(8)= U(8)p„(0)U (8),
where

(B3)

The pulse sequence applied to the sample in thermal
equilibrium at temperature TL in the external magnetic
field is shown in Fig. 2. Consequently, in order to deter-
mine the initial value of the density matrix oI(0), the
evolution of the spin system due to the 90 pulse has also
to be considered. The rf field corresponding to the 90'
pulse is along the negative y axis, with the corresponding
interaction Hamiltonian given by analogy with (2.7) as

H,'t(t) =+fico') [I„sintoot+I costoot ] . (81)

Repeating the calculation outlined in Sec. II, we obtain

—i[s +.e~]gU(8) =e ' ' [1—l'U'(8) ],
where

U'(8)= f d8P+(8))

i f d8) f d8iW~(8))W~(8q)+

and

WD(8) =e " g d()„(8)V"e /fico') .
k

Here

Pk f y UOyk

i(j
and the matrix coefficients do„(8) are given as

d~(8) = (3 cos 8—1)/2,

do+, (8)=+(—', )'/2sin8 cos8,

d (8)=(—')'"
Using the transformation (2.12), we obtain

(B&)
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cr(8)=e "
I o 0(8}+i[o0(8)U" +(8)—U"(8)cro(8)]+ U"(8)cTO(8)U" +(8)]8

where

cr 0( 8)=—exp Pi— fm—o(I,sin 8 I„—cos8 )+Hz +ficon g d Ok ( m/2 . 8—) V"1
(B9)

and

U„(8) i(~I2 8)I—,(8)
—i(m/2 —8)I

(B10)

In the case of an ideal 90' pulse perfectly uniform across the whole sample and a valid high-temperature approximation,
we obtain, for 8=m. /2,

i I flCOO

o(m/2)=o (t=0)=p-(0)+, f d8e " gkd (8)V e
Z M'i 0

(Bl 1)

where p(0) is given by the high-temperature approximation of Eq. (4.6). The result (Bl 1) thus represents the initial den-
sity matrix describing the spin-rotational system at the moment when the spin-locking field pulse 8(H, ) is switched on.

APPENDIX C

Here we give the explicit expression for M„(t) as defined by (4.7). To obtain this result, we had to calculate a number
of matrix elements of the dipolar Hamiltonian. We have done this by using the symmetry-adapted expressions for the
dipolar interactions given in Appendix A; the approximations described briefly at the end of Appendix A were also
used:

[Mpcoscoot M (t))/} &f1

4PI %coo/Z
~ ~ r

9 ND 2 3 3g (1—3cos P;) cos co, + coD(P;) t——cos co, ——coD(P, ) t

27 2

+ g (1—3cos P, )16,.
2

COD

co', [2co,+ ,'con (P—,) ]

CO

+ D

co'i(2coi ——', coD(P; )

3
coscoit cos coi+ con(P; } t

3
coscoit cos coi coD(p; )

UO I2
21 UgE I

3 [fi(&EE ~2cosp2;t}+f, (&EE+62cosp;, t)]+f2(b2cosp2, con(p, );t)
I

UO I2+2IUE ~I
3

[fi(&EE—&,cosp„t)+f, (5EE+hicosp, ;t)]+f2(bicospi, coa(p2);t)

3 fi(&icospi+&2cosp2;t)+ f3(hcoz', ~D(p, ),~I2(p2);I)+f, (g~E,~ (p, ),~ (p, } t }

3 f (~icois p—i b2c»p2', t)+f3(b(oE, ~&(pi), ~D(p2);t}+f (Q~ (p ) (p ) }
T

0 2 3 273cos pi} +
6 IUgg I gi coD(pi);t + (1—3cos p ) +—(U~~ ~

—co (p ) t

4 AA ~ gl ~D(PI )+ D(P2) I +gi coD(P ) co (P )

+ IU'„I'g, (0;I)+— (1—
cpo,s)'+ IU'„„I' g, —~n(p, );I

+
2 32(1—3cos'p, }'+

12
IUD~I' g2 4COn(p2);I
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+——
I U„„I g2

—coD(p, )+ c—oD(p2); t +g2 —coD(p, ) — c—o21(p2); t + ——
I U'„„I'g, (0;t )

+ IU„z I g 52cosp2, 62cosp2+ coD(p, ), t +g 62cosp2, 62cosp2 coD(p, ), t0 2 3 3
a 4

4+ g( 62COSP2, 62COSP2,' t )
3

1+ [g(5zz +62cosp2, 5zz +62cosp2,' t ) +g (5zz 62cosp2, 5zz 62cosp2, t }]3

+IUz „I g b, ,cosp, , b1cosp, + coD(—p2);t +g h, cosp, , b, ,cosp, — coD—(p2);t0 2 3 3
a 4

4+ g( b,—,cosp„b, ,cosp, ; t )

1+ [g(5zz+51cosp1, 5zz+ 6 1COS p'1t )+g(5zz 51cosp1i5zz 6 1COS p'1t )]
3

+ IUz z I g(~1cosp1+~2cosp2, ~1cospl+~2cosp2it }
3 a a

+ IUz z I g(~1C»p1 —~2cosp2, ~1cosp1 ~2cosp2it }
4 0 2

3 a b

3+ IUz z I g +IUz z I g g b,cote, b,Ntt + coD(P, )+ coD(P2)—;t
i=1 l —3

+g(EN", bco"——co (P, )
——N (P );t

3 3

+ g ENtt ~ ENII + ND (p1 ) ND( p2) ti+ g EN1t ~ ENz ND (p1 )+ ND (p2 )i t ' COSNpt
3

(C 1)

The notation used in (Cl) is as follows:

b; =(—', )' co„qep/A'c, (C2a)

where 40=mp H0 is the magnetic Aux through the circle
traced out by the protons of the methyl group. In partic-
ular, if we choose Hp = 1 T and q =e, then

6;=0.6 X 10 co„. For m, =2 GHz it follows that
b ='120 kHz or b, /y =4.5 G. It could be misleading
that co, is given in frequency units, e.g., 2 GHz, yet it is
the angular velocity co, =2mv, . It follows that v, =2/2m
GHz. The A5EE is the difference between the E,E, and

E,Eb levels in the absence of the external magnetic 6eld
I

ND(P) = —
—,'co22(1 —3 cos2P),

ECOtc —(CO(2 C011)+7(/52cosp2 51cospt ) i

ECOz =
(COC2 Cot1 ) Ti( 62cosp2 61cosp1 ),

ENz —( C012 COC1 ) +Ti(62cosp2+ 51cosp1) i

Ec01t —(cot2 co)1} T(52cosp2+klcosp1) ~

(C2b}

(C2c)

(C2d)

(C2e)

(C2f)

and

as discussed briefly in Sec. III and is included for the sake
of generality only; also, Mp =111ypTr[I,P(0) ]:

coD [1—cos(2co, +x )t ] coD [1—cos(2co, —x )t ]
g1(x;t)= +

(2co, +x ) (2co, —x )

(C3a)

g2(x;t)=

g3(x;t)=

cote sin(2co1+x )t coosin(2co1 —x )t
+

co', (2N, +x ) co', (2co, —x )

COD [1—cos(2co, +x )t ] coD [1—cos(2co, —x )t ]

co', (2N, +x ) co', (2co, —x )

(C3b)

(C3c)
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g(x,y;t )=g, (y; t )+
4co' [l—cos(nx/2co, )]—2x l 4coI sin(nx/2co', ) l—g&(y;t )— —gz(y;t) .

(x /co', )(x —4co', ) 2 x —4cog (x /co', )
(C3d)

Finally, the f, functions are

f, (x;t)=
2

COD

4CO1 X

(2co, +x )
[cos(co& —x )t c—osco&t ]+

CO1

2CO1 X
[cos(co,+x )t —cosco, t ]

CO1

(C4a)

CO 1

fz(x,y;t) =
X 4CO1

2
COD

co', (2co, +x +—,'y )
L

2
COD

co', (2co, —x —
—,'y )

3 3
1cos(co +x)t co—s co +—y t + cos co, +x+ —y t cosc—o, t1 4 4

3 3
cos(co —x)t co—s co ——y t + cos co, —x ——y cosco—,t1 1 4 4

2 2
8 COD COD+— [cos(co, +x )t cosco, t—]+ (cos(co, —x )t cos—co, t )

co', (2co, +x ) co', (2co, —x )

COD+
co', (2co, +x —

—,'y )

3 3
cos co +x ——y t cosco—t + cos(co, +x)t —cos co, ——y t

1 4 1 4

COD

1 1 4 4
cos(co —x)t —cos co +—y t + cos co, —x+—y t cosco, t-

co'(2co —x+ —y }1 1 4
L

f3(x yl y2

2
1

~ —4CO',
L

2
COD1

2 co'~[2co&+x —,'(y&+yz)]

3
X . cos co, +x ——(y, +y&) t —cosco, t

(C41)

2
3 3 1 COD+ cos co, +x ——(yz —y, )t —cos co, ——y, 2 co', [2co,+x+-,'y, +y, )

3X cos co, +x+—(y, +yz) t —cosco, t

2
COD+ cos co, +x ——(yz —y, } t —cos co, +—

yz t +—
8 4 2 co', [2co,—x ——', (y, +y~)]

3
X cos co, —x ——(y, +yz) t cosco,t—

COg)
2

+ cos co, —x+ —(yz —y, ) t —cos(co, ——yz)t +—
8 4 2 co', [2co, —x+ —,'(y&+yz)]

3
X cos co, —x+ —(y, +yz) t cosco,t—

3 3 . 3 CO~+ cos co) x+ (yp y)) t cos co)+ y) t ' +—
8 4 2 co&[2co&+x+—'(y& —

y& )]

X cos co&+x ——(y&+yz) t cos co&+ ——
yz
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X ' cos ~1 x +—(y1+yz ) t cos NI

+ cos co, —x ——(y1+yz) t —cos coI+ —y, t

2
1 COD+—
3 co', [2iuI+x ——', (yz

—y, )]

1 ND
2

+—
3 coI[2coI —x+ —,'(yz —y, )]

3
cos co1+x ——(yz

—y1) t c—oscoI t

3
cos oII —x+ —(yz

—y, ) t cost—o, t
(C4c)

gI ', g", etc., are given in Tables II and III. The spheri-
cal polar coordinates (8,', 8,' ), which determine the
orientation of R,J with respect to the coordinate system

(g„zl„gi},are defined with

The quantities U, , are defined in Appendix A and are,
1 2

in general, functions of the Euler angles determining the
relative orientation of the two interacting methyl groups
and their orientation with respect to the external magnet-
ic field Ho. In order to obtain explicit formulas for U

1 2

as functions of Euler angles, we choose the coordinate
system ((I,I11,$1) fixed in the methyl group (labeled 1)

(Fig. 3). The proton-proton distance d =1.78 A deter-
mines p='1.03 A.

The coordinates of the three protons belonging to the
methyl group 1, with respect to the coordinate system
(g„rti, gi), are denoted as (gI",21I",g'I" } and are given in
Table II. The second methyl group (labeled 2) is oriented
in the same manner with respect to its own coordinate
system (gz, rtz, gz). However, the coordinate system

(gz riz gz) Is rotated with respect to the coordinate sys-
tem (g„rt„gi) through Euler angles (a1z,piz, yiz). The
coordinates (gz' ', gz' ', gz ') of the protons belonging to the
second methyl group can be written, with the rotation
matrix D"' (aIz, piz, yiz), in terms of their components
in system (g„ri„gi}. We denote them as (g'I ', 21'I ', g'I '),
and are given in Table III. From now on all vectors will
be written in coordinate system (g„zl„gi). The proton-
proton vector R,J pointing from the ith proton in the first
methyl group to the jth proton of the second group is

( g(12)+ g(21 (111)

cos0,' =
V

(C6a)

(
1121+ (21 11))

tan; =
( g(12) +g(21 g(1))j

(C6b)

Now we can write U;, using the rotation matrices

D' ' (aIPI, yI), as

' 1/2
Ro

U; =
2 R;

3

X [—„'(3cos pi —1)(3cos 8,' —1)

+ —,'sin PIsin O';Jcos2(y, +P';J )

—3 sinp Icospisin8'1 cos8'i. cos( y1+ p'~ )],( g(121+g(2) g(1)

(12)+ (2) (1)
91 Qj

g(12) +g(2) (11))

(C5) where Ro—=d=1.78 A. U„can be obtained by using
l 2

(A5) and (C7).
In the same manner we can express coD(182}, defined by

(C2b), in terms of (a„pi yi) and (aIz, piz, y12). The re-

sult is

where the vector a —=(g" ', I)" ', g" ') points from the ori-
gin of the coordinate system (g„I)„gi) to the origin of
the coordinate system ( gz, I)2, $2 }. The components

KAID(132) oID [ —,'(3 cos pI —1—)(3 cos f12 —1)
TABLE II. Proton coordinates with respect to the methy1-

group fixed-coordinate system (g, I),g).
+ SIII j31sln ~12COS2(y1+Izlz

d &3/3
—d &3/6
—2&3/6

H1
H2
H3

0
—d/2
d/2

—3 sinpI cos~I sin1812cos/312cos( y1+ 1212 ) ]

(C8)

2
6)D

+ cos f1+x+—(y, +yz) t —cos co, ——y, t . +—
4 2 ~i[2~1—x —

-', (yz —y1}l
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TABLE III. Proton coordinates of the second methyl group expressed in the coordinate system fixed with respect to the first

methyl group. The Euler angles (a,2,p„,y, 2) determine the orientation of the second CH, group relative to the first one.

(2)
1

—d 3
6

[(1+cosp, z)sin(a&q+y~q)

+ (1—cosP, g)sin(a, 2
—y») ]

d [(1+cosp~~)cos(a&z+'Y»)

+ (1—cosp~2)cos(a» —y ~~) ]

d&3 .
3

sinp, zsiny»

dv3 v'302
6

(1+cosp») — cos(a»+ y&~)
2

d&3
( I +cosPi2)

dV3 . v'3 1
sin(a, 2+y ~2)

— sinpi2 c»y is+ 2»ny 12

1+—sin(a, 2+ y») +(1—cosP, 2)

v'3
X cos(a&2 —

y &2)

1+—sin(a)2 —y $2)

——cos(a„+y») —(1 cosPl2)1

2

v'3 .
X —— sin(a12 y &2)

2

1+—cos(a~2 —
y ~2)

2

dv3 v3
H3 (I+cosp») cos(a12+y12)

2

1+—sin(a»+ y») + (1—cosP~2)

dv3 v'3 .
(I+cosp~2) sin(a~2+y»)

cos(ct„+y») —(1—cosP&2)1

2

dv3 . v3
sinp)2 cosy(2+ slny»

2

x cos(a]2 —y )2)
v'3

X sin(a)2
2

1+—»n(a]2 —y)2)
1+ cos(a12 y12)

In particular,

cosp~ =cosp, cosp, ~
—sinp, sinp, icos( y, +a, t ) .

In the case of a powder sample, the Euler angles

(a,p, y, ) cover the range O~a, ~2m. , O~p, ~m. , and
0 y& 2~, while (a,2,p, 2, y, 2) are fixed parameters
which are determined by the crystallographic structure of
the material studied.
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