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Phase transitions in the two-dimensional classical lattice Coulomb gas of half-integer charges
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We carry out Monte Carlo simulations of the two-dimensional (2D) classical lattice Coulomb gas of
half-integer charges on a square lattice, which is believed to be in the same universality class as the fully

frustrated 2D XY model, and find evidence for two transitions. At the lower temperature, we find a
Kosterlitz-Thouless-type transition with a larger than universal jump in the dielectric constant e . At
the higher temperature, we find a second-order charge lattice melting transition with a scaling behavior
different from the pure Ising transition, in contrast to expectations from the symmetry analysis.

Statistical models known as the uniformly frustrated
XY (FXY) models' have attracted a lot of attention,
mainly due to their physical relevance to Josephson-
junction arrays in a transverse magnetic field. The sim-
plest case of such models is the fully frustrated XY
(FFXY) model, which contains both a continuous sym-
rnetry, corresponding to global rotations of the spins, and
a double discrete symmetry, corresponding to long-range
order of the ground-state vortex lattice. Associated with
this continuous symmetry, vortex excitations may appear
as bound pairs at low temperatures. Unbinding of these
bound vortex pairs with increasing temperature, may
serve as a mechanism for the Kosterlitz-Thoules (KT)
transition as in the ordinary XY model. In such a case,
the helicity modulus exhibits a discontinuous jump to
zero from the universal Nelson-Kosterlitz value. Prolif-
eration of domain walls between the doubly degenerate
ground-state vortex lattices may provide a mechanism for
a continuous vortex-lattice melting transition as in an Is-
ing transition.

Even in this simplest case there remain conflicting re-
sults about the nature of the phase transition. The first
work of Teitel and Jayaprakash"' on this model suggest-
ed that there may be combined KT and Ising transitions
at very close, if not equal, temperatures. The possibility
of a larger than universal jump in the helicity modulus
has also been suggested (see also Ref. 4). Subsequent nu-
merical works supported this picture, with some
conflicting estimates on whether the two transitions
should occur at the same critical or at different tempera-
tures, with a slightly lower KT transition. The Ising crit-
ical behavior has usually been supported by observing
logarithmic scaling of the specific-heat peak with the
system size. Grest has studied the Coulomb gas (CG)
model of half-integer charges, "'which is believed to be
in the same universality class as the FFXY model, and
found two separate Ising and KT transitions, but with a
nonuniversal KT jurnp. Very recently Lee, Kosterlitz,
and Csranato have restudied the FFXY model using a
new type of finite-size scaling analysis, and have claimed
a single transition temperature with non-Ising-like criti-
cal behavior. This single transition picture was based on
analysis of the Ising-like order parameter only. Their
conclusion in favor of a single transition was based on the

assumption that when the transitions are separate or
decoupled, one should find a pure Ising transition; any
non-Ising-like behavior should be taken as evidence for a
single transition (see also Ref. 10). To support this single
transition, however, an independent measure of the posi-
tion of the KT transition is still essential. Therefore, the
possibility of having two transitions at close but not equal
temperatures may still have been left out. Recently
Nicolaides" has studied correlation functions in this
model using a large lattice of 128 sites, and found Ising
and KT transitions at equal temperatures. Most recently,
Ramirez-Santiago and Jose' have done a similar study as
in Ref. 11, with even larger lattices of up to 240 sites.
Similar non-Ising behavior was found as in Ref. 9, and a
KT transition was found at the same temperature as the
vortex-lattice melting transition, but with a nonuniversal

jump in the helicity modulus.
Therefore, despite many reinvestigations, there still

remain conflicting estimates as to whether the model has
a single versus two transitions, as well as the nature of
transition itself. To distinguish among these possibilities,
we conduct extensive Monte Carlo (MC) simulations of
the CG model of half-integer charges. We apply different
finite-size scaling analyses from previous works, in order
to determine the critical behavior and transition
temperature(s) accurately.

In the Villain approximation' for the cosine potential
in the XY model, the FXY model can be mapped into the
fractional charge CG on the dual lattice of the XY model

by the standard duality transformation, ' yieMing the
Hamiltonian,

co 2i X ( f)G;J(m, f)— —

Here m; corresponds to the integer vorticity of the phase
at site i dual to the XY lattice, ' f is the same as the
uniform frustration in the FXY model, and the total
charge is neutral, i.e., g;m; =Nf, where N is the number
of all sites in the system. G, is the lattice Green's func-
tion which behaves logarithmically at large distances r,".
The charges at site i are defined by q,. =m, f. For the
fully frustrated case, f=

—,', the lowest magnitude charges
are, thus, —,

' and —
—,'. The ground state in this model con-
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sists of a lattice of charges —,
' and —

—,', which form a
checkerboard pattern with the same symmetry as an Is-
ing antiferromagnet.

In this model there can be two types of excitations. "'
One is a KT-like excitation, which comes from the inter-
change of a given + —,', —

—,
' pair with separation r, and

gives an excitation energy proportional to lnr in the large
r limit. The other is an Ising-like domain excitation,
which results from the formation of oppositely ordered
charge lattice domains, within the ordered phase.

To investigate the critical behavior of this model, we
carry out extensive MC simulations on the square lattice
of linear size L with periodic boundary conditions. Re-
stricting the charges to be either + —,

' or —
—,
' only, the

new configuration is created by exchanging nearest-
neighbor pairs. This change is then either accepted or re-
jected, using the standard Metropolis algorithm. The
averages are taken using five independent runs which
contain both heating and cooling. Typically, a total of 10
MC steps per charge are used for averaging, with an ini-
tial 10000 MC steps at each temperature discarded for
equilibration. Further details of the simulation method
can be found in Ref. 15.

We first look at the charge lattice melting transition in
this model by considering the dependence of the specific-
heat peak on the system size, C„„k—L '. This charge
lattice melting transition was originally suggested to be
an Ising transition. In Fig. 1, we show our data for the
specific-heat peak, which we plot on both a semilog and
log-log scale. The semilog plot shows fair consistency
with the logarithmic scaling behavior as in an Ising mod-
el, i.e., a=0. A better fit, however, is obtained assuming
a power-law divergence, at least for sizes L ~ 12, as seen
on the log-log plot. This gives a/v=0. 503+0.013. Ap-
plying the hyperscaling law, this gives 1/v = 1.251
+0.007, which is different from the pure Ising value of 1.
However, since the power-law scaling appears only mar-
ginally better than the logarithmic scaling, it may not be
very persuasive to determine the nature of transition sole-

ly by this analysis.
As a better check, we analyze the charge lattice order

x, +y,parameter M =(1/X)g, q, (
—1) ' '. From the finite-size

scaling theory, ' the scaling of the singular part of the
free energy f—:—(1/X)lnZ near a critical point is given

by f, (t, h, L)=L f, (tL ', hL "), where d=2 is the
dimensionality of the system, y, = 1/v and yz =d —p/v
are the eigenvalues of the scaling field t and h in the re-
normalization transformation. Since for any finite-size
system L, the order parameter vanishes (M) =0, we
have for the scaling law of the order parameter squared,
M =L "

fz '(tL~', h =0), where fz ' is the second
derivative of f, with respect to h. To determine the criti-
cal exponent, we adopt Nightingale and Blote's scheme'
in analyzing our data for M . Taking the above equation
for M, we can expand the scaling function fh

' about T„
where tL' 'is small as follows:

M (T,L)=L "[4 +4,L' "(T—T, )

+O(L' '(T —T, ) )] (2)

Truncating this expansion at any finite order, we perform
a y fit of our data M, using the Levenberg-Marquart
method. ' Here 2p/v, 1/v, T„C&0, etc. , are unknown pa-
rameters to be determined by this fitting. Since the scal-
ing form is supposed to hold in the large L limit, to
check, whether we have reached this limit, we successive-
ly increase the seize of the smallest system included in
our fit and repeat the fit. We continue this process until
further increase in the size of the smallest system, or in
the order of expansion of the scaling function does not
change the parameter values obtained from this fit,
within the estimated error. The error of the fitted param-
eters is estimated as in Ref. 15.

We show our data in Fig. 2 for lattice sizes from L =6
to L =30. From the second-order expansion of Eq. (2)
for lattice sizes L =10—24, we find the critical exponents
P/v=0. 1291+0.0184, 1/v=1. 1943+0.0728, and T,
=0.1314+0.0004. The value of 1/v agrees with the re-
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FIG. 1. Specific-heat peak as a function of lattice size L in (a)
semilog and (b) log-log plot. The solid lines are least g fits to
L ~ 12 data.

FIG. 2. The finite-size scaling behavior of the order parame-
ter M . Symbols with error bars represent the MC data. From
the left, the lattice sizes are L =6, 8, 10, 12, 14, 16, 20, 24, 28,
and 30. The solid lines represent the result of fitting Eq. (2) to a
second-order expansion in T —T„using data from L =10—24.
The fitted values of 1/v= 1.1943 and P/v=O. 1291 were used in

making the axes of the plot. 10 total MC steps per charges
were used.
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FIG. 3. The finite-size scaling behavior of the Binder cumu-
lant U. Symbols represent the MC data, and error bars are not
shown for clarity of the figure. The same lattice sizes as shown
in Fig. 2 are used. The solid lines represent the result of fitting
Eq. (3} to a fourth-order expansion in T —T„using data from
L =10—24 and the fitted value of 1/v=1. 1954. 10 total MC
steps per charges were used.

suit from the specific heat. These values may be com-
pared with those obtained in Ref. 9, P/v=0. 155+0.015
and 1/v = l. 1765+0.0353, and those in Ref. 12,
P/v=0. 1106+0.0065 and I /v= l. 143+0.040. In Fig. 2
we notice that data for sizes L =28 and 30 show the most
deviation from the fitted curves. We believe that this de-
viation is attributed to the poor statistics of the data,
rather than a systematic change in the scaling of the data
as L increases. These poor statistics may have been
caused by the familiar critical slowing down near T„
which usually affects the large system more seriously
than the small system. We have tried to fit our data in-
cluding these two largest sizes, and found, within estimat-
ed error, the same values as above only with a substan-
tially increased y error of the fit.

As another method of analysis, we use Binder's cumu-
lant method. ' Adopting the free block version of
this method, we calculate the cumulant U(T, L)
=1—{M )/3{M ) in each lattice of size L. In the
large L limit above T„U tends to zero. Below T„U ap-
proaches the nonzero value of —'„since the system orders
at either +M or —M. Using fs '(t, h =0}
=N ({M ) —3(M ) )=L "

fz '(tL"' 0) where fz '

is the fourth derivative of f, with respect to h, and the
scaling equation for M, one finds that
U(T, L)=$(tL' '), where P is a scaling function. There-
fore, right at T„where t =0, U should become the non-
trivial universal value, $(0}for all L. This behavior of U
can be seen in our data shown in Fig. 3 for system sizes
L =6—30, suggesting T, =0.132. We can also apply the
same scheme as in the analysis of M, expanding the scal-
ing function P near T„where tL '/" is small as follows:

U(T, L)=go+/, L'/"(T —T, )+O(L "(T—T, ) } . (3}

Here 1/v is the only exponent to be determined. From a
fit to a fourth-order expansion of Eq. (3) for lattice sizes
L = 10—24, we find the critical exponent 1/v
= 1.1954+0.0394, and T =0.1315+0.0003. These
values are consistent with those obtained from the fit of
M . Again, the data for the sizes L =28, and 30 scatter
around the fitted curve. Therefore, from the results of our

0.65,

analysis of both M and U, we conclude that the charge
lattice melting transition is different from the pure Ising
transition.

To check whether this non-Ising behavior can be attri-
buted to neglecting corrections to scaling from slow ir-
relevant variables, we try to fit our data for U to an ex-
pansion of a scaling function including a correction to
scaling:

U y(rL1/v gLx) (4)

where g is the irrelevant scaling field and x is the
correction-to-scaling exponent, x &0. Expanding Eq. (4)
for small t and g, we fit our data to determine the un-
known parameters as was done before. First, we fix 1/v
to the Ising value of 1. Finding stable values for the
remaining parameters would mean that the correction to
scaling is significant and the transition should be taken as
Ising. However, we find that the fitted values x, and the
polynomial coefficients [i.e., P, 's in Eq. (3)] are unstable,
and the y errors of the fit are almost doubled compared
to the previous fit. We also see that the coefficients of the
terms in g grow rapidly in magnitude and suffer from big
fluctuations as we increase the order of expansion. This
may mean that the correction terms from g are free to
change and are not playing any significant role. Repeat-
ing the same fit with I /v as a free parameter, we now find
a stable fit for the coefficients of the terms in t, and the
same value of 1/v as in the previous result ignoring g,
with the same g errors. The same behavior in the
coefficients of g is seen as above. Therefore, we believe
that the critical behavior is not attributed to neglecting
corrections to scaling, and is truly non-Ising-like.

To determine the behavior of the KT-like transition in-
dependently, we measure the inverse dielectric constant,
given by standard linear response theory ' as

e '(TL}=ltm 1—, {qq „)
k o k~TPf

—ik r.
where qk

——g;q;e ' is the Fourier transform of the
charge density. e ' maps onto the helicity modulus of
the FFXY model. "" ' '. In our simulations, e ' is ap-
proximated by averaging over the two smallest allowed
wave vectors (2'/L )x, (2n/L)y for each system size. An
instability criterion, based on the Kosterlitz-Thouless ar-
gument, requires that e ' jumps discontinuously to zero
at TKr, bounded by e '(TKr) ~4TKr. This holds as an
equality in the KT analysis, giving a universal jump pre-
diction e '(TKr)/TKr =4. More generally, it can serve
as giving an upper bound on TKr, TKr & e '(TKr, L)/4,
or equivalently a lower bound on the jump in e
4 e '(TK~, L)/TK~. In Fig. 4, we plot e '(T,L) vs T
for various lattice sizes L. Intersection with the dashed
line 4T gives the KT upper bound on TK~. From the in-
tersection with the largest size L =30, we see that
TKz =0.1297, which is slightly lower than that found for
the charge lattice melting transition, T, =0.1315. We
note that when we estimate Tzz from the smaller size
L =24, where the statistics are better than for L =30, we
see that TKr is still slightly lower than T, (around a 1%
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Fig. 5. (a) The y'„, error for a fit to Eq. (6) as a function of T,
and (b) corresponding Atted value of e„'/T for different se-
quences of L. L =6, 8, 10, 12, 14, 16, 20, 24, 30 have been used.

FIG. 4. Inverse dielectric function e (T) for various square
lattice sizes L. The common intersection of the curves for
different L approximates TKT. Intersection with the dashed line
4T gives the KT bound e '(TKT)) 4TKT. 10 total MC steps
per charges were used.

e '(TTL)=e„' 1+
2 lnL+c (6)

where for the universal KT transition, one has
e„'—=e '(TKr, eo)=4TKT. Following their approach,
we do a least y fit of the MC data at each temperature,
to the form (6), with e„' and c as free parameters. The
temperature at which the y error is smallest, we identify
as the transition TKT, and the fitted parameter e„' gives
the jump in e '. In Fig. 5, we plot ps, and the fitted

difFerence). Since this application of the universal KT
bound gives an estimation of TKT which is very close to
T„considering statistical errors, this analysis alone may
not give a definitive conclusion. We, therefore, use
another analysis to estimate TKT.

For a more precise location of TKT, and estimate of the
jump in e (TKT), we use finite-size scaling. From the
identification of e ' with the helicity modulus, we expect
that the finite-size behavior at TKT should follow the
Josephson scaling relation, e '(T,L)-L "H[L/
g( T) j, where g is the correlation length which diverges at
TKT. Since d =2, we might expect that e '(T„r,L) is
independent of L. Therefore, all the curves for different
sizes L should intersect at the same point TKT. Using
this criterion, and the data of Fig. 4, we estimate
TKT =0.126.

To estimate both TKr and the jump in e '( TKT ), we

follow Weber and Minnhagen's finite-size scaling
analysis, including leading logarithmic corrections to
the Josephson scaling law. Based on the Koserlitz recur-
sion equations, they find

e„ /T versus T, using different ranges of lattice size L.
The transition temperature as given by the minimum yz„
is TKT =0. 126. We find that at this temperature
e '( TKr /Tetr ) =5.35, larger than the KT universal
value of 4. This value is slightly bigger than the value of
5.21 found in Ref. 12. This may also be compared with
the result of Grest, e '(TzT)/T&r=4. 88+0.31 with
TKT=0. 129+0.002. We note here that for T~0. 126,
our fitting yields c)50, giving only very small correc-
tions to Eq. (6), while for T) 0. 126, our fitting yields
c (0.1, which would imply larger corrections.

In conclusion, we have found two transitions at close
but clearly separated temperatures, rather than a single
transition. We remark that the naive application of the
universal KT bound gives an estimation of TKT =0.1297,
which is very close to the lattice melting transition tem-
perature T, =0.1315) (1% difference). When TKT is es-
timated using finite-size-scaling analysis, we find

TttT =0.126, giving a 4% difference. At the lower tem-
perature, we found a KT-like transition, with a larger
than universal jump in e '. At the higher temperature,
we found a continuous charge lattice melting transition
which belongs to a different universality class than the Is-
ing transition, in contrast to expectations from the sym-
metry analysis. Similar results were found for closely re-
lated CG models in our earlier work. ' ' However, how
the pairwise KT excitations couple to the Ising-like
domain excitations, remains fundamentally not under-
stood.
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