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of Fig. 1. As well as lowering the paramagnetic phase
boundary, damping also suppresses the critical value of
zo. ' When I increases for a fixed zo, the size of the drop
in the SDW order parameter g at the CI phase boundary
decreases. If I exceeds some critical value l, (zo), the
N eel temperature vanishes and the alloy becomes
paramagnetic. About 4% impurities is required to
render CrV alloys paramagnetic.

Most theoretical work on chromium alloys, ' includ-
ing our previous studies, ' ' implicitly assumed that the
chemical potential was unaffected by the formation of the
SDW and the concurrent gap 6 ~ g in the electron-hole
energy spectrum. This requires an infinite reservoir of
electrons, which replenishes the electron-hole band and
keeps the chemical potential constant. An electron reser-
voir is supplied" ' by the electron balls midway be-
tween reciprocal lattice points I and H and by the hole
pockets at N. The reservoir power p is just the ratio of
the density of states of the reservoir band to that of the
electron-hole band. But even in the absence of other
bands, the nesting electron and hole surfaces centered at
I and H may adjust to minimize any changes in the
chemical potential. This violation of the rigid-band mod-
el would produce an effective reservoir of unknown
power.

Although several groups"' ' have investigated the
effects of an electron reservoir on the CI transition, none
of these calculations is complete. While two"' involve
Ginzburg-Landau expansions near the triple point, two
others' ' are zero-temperature calculations. Whereas
Kotani' uses an interpolation technique to find the phase
boundary at intermediate temperatures, only Machida
and Fujita' attempt to completely evaluate the phase di-
agram. But an emphasis on higher harmonics of the
SDW leads Machida and Fujita to the faulty result that
the phase boundary is second order for any reservoir
power. However, all of these groups do reach similar
conclusions about the qualitative effects of a finite reser-
voir.

When the power p of the reservoir is finite, the chemi-
cal potential will decrease and the effective mismatch zo
between electron and hole surfaces will increase with de-
creasing temperature. As can be seen from the p=oo
phase diagram, a large value of the effective mismatch zo
favors the incommensurate over the commensurate
states. By inhibiting the growth of zo, the electron reser-
voir favors the commensurate over the incommensurate
phases of the SDW. When p is sufficiently small, the
phase boundary will flip from one side of the triple point
to the other and produce the CI transition. But unlike
damping, the reservoir does not affect the paramagnetic
phase boundary or the position of the triple point.

To clarify the effects of an electron reservoir for all
temperatures and to obtain the order of the CI phase
transition, we have calculated the free energy of chromi-
um alloys in the presence of a finite reservoir but without
damping. This paper is divided into five sections. In Sec.
II we derive the self-consistent equations and free energy
of a chromium alloy with a finite reservoir at nonzero
temperature. Section III repeats those calculations for
T=O and describes a method to solve the resulting self-

consistent equations. In Sec. IV we present our results
for the phase diagram, SDW order parameter, and SDW
wave vector of chromium alloys. Finally, Sec. V contains
a summary and conclusion. We also suggest an experi-
ment which may demonstrate the importance of an elec-
tron reservoir. Expressions for the free energy are given
in the Appendix.

II. FINITE-TEMPERATURE FORMALISM

N„(p p, )
——p„(p——p—)

which assumes that the densities-of-states p,h and p, are
independent of p. Hence, the change in the total grand
potential is

&Q""= N(P p) —,' (p„+—p,h )(P——p)', —

where N =N,h+N, is the total number of electrons.
Defining the free energy through the Legendre trans-

formation F(N)=Q(p)+pN, we find that the change in
free energy produced by a shift in chemical potential is
given by

~F""= ,'(p. +p.h)(P
—V)—'— (4)

So the difference in free energy between the SDW state
with chemical potential p and the paramagnetic state
with chemical potential p is

FSDW(p ) Fpara(p )

—FsDw(p) Fpara( —)+gFpara

=~F"'(@ ,'p.h( I+p»)(P+ p)'——

where p=p, /p, h is the ratio of density of states and
bF' '(p) is the free energy calculated in Ref. (10) for an
infinite reservoir with p replacing p.

Since the free energy F(N) cannot depend on p, Eq. (5)
is subject to the constraint'

Most of the unique properties of chromium alloys are
produced by the nesting electron and hole bands with
electron number N, h and two-spin density of states p,h.
All other bands are lumped into a single electron reser-
voir with electron number N, and two-spin density of
states p, . As the chemical potential p of the alloy de-
creases in response to the formation of a SDW, electrons
will shift from the reservoir band into the electron-hole
bands, buttressing the value of the chemical potential.

In the paramagnetic state, the change of the grand po-
tential Q(p) of the electron-hole and reservoir bands may
be related to the change in the chemical potential by'

gQpara g2Qpara

Q'h '(p) Q'h" (P ) =
g

(p 9)+, (p P )
p

N.h(P p—) p.—h(P —p—)'—
gQpara g2Qpara

Qp"(p) —Qp'"(p) = (p p)+ — —
2 (p —p)

Bp 2 Qp
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which imperfectly nests the electron and hole surfaces at
the Neel temperature. For pure chromium, 5 is approxi-
mately 0.04 so that Q & 6/2—= 2m. /a and the SDW is in-

commensurate with the lattice. If one side of the hole
Fermi surface (translated by the nesting wave vector Q) is
perfectly nested with the electron surface, then the other
side (translated by 6 —Q) will differ by energy zo at the
Fermi momentum, as shown in Fig. 2.

As the chemical potential decreases, the effective
mismatch z0 increases. Assuming that the Fermi velocity
vF is constant, it is straightforward to show that

zo —zo =4(p, P). —
,

We emphasize that the effective mismatch and chemical
potential are defined so that zo(T~)=zo and P(T~)=p.
Hence, Eqs. (5) and (7) can be rewritten as

AF=bF' '(zo) p h(l+p)(zo zo) (10)

p,h(1+p)(zo —zo) =16
'Bz 0

Since hF' '(zo) increases as zo increases and the nesting
worsens, we again verify that zo(T))zo and p(T) &p.
However, when the paramagnetic bands are perfectly
nested with zo =0, the effective mismatch zo( T) vanishes

BhF
Bp

which can also be written

aaF"'(p)
p h( I+p)(P p)

Bp

The reservoir power only enters this relation on the left-
hand side. So when p= ~, p =p and the chemical poten-
tial is unaffected by the SDW. More generally,
db, F' '/BP &0 so the chemical potential P(T) is smaller
than the chemical potential p of the paramagnetic state.

The mismatch between the electron and hole surfaces
in the paramagnetic regime is fixed by the energy z0.
This parameter can be related to the wave vector

Q= (1—5),277

Q(T)= (1—5)—2& ZO ZO

2vp
(12)

Since zo(T) )zo and dzo/dT &0, the nesting wave vector

Q ( T) decreases with decreasing temperature.
Generally, the wave vector Q'(T) of the SDW lies be-

tween' ' the nesting wave vector Q( T) and 6/2. In the
presence of a reservoir, the SDW wave vector must be
written as

277 2K 20 20
Q'(T)= 1+5(A—1) + v (A —1), (13)

a a

where a. =aT&/4vroF =0.013. The difference between the
nesting wave vector Q and the SDW wave vector Q' is
determined by 0& A(T) 1 and reflects the compromise'
between the nesting of each side of the hole octahedron
with the smaller electron jack. When A=1, the SDW
wave vector is commensurate with the lattice; when
A=O, the nesting and SDW wave vectors are identical.
For an infinite reservoir, A jumps to 1 as z0 decreases
through the phase boundary. ' As z0 decreases in the
commensurate regime, the nesting continues to improve
and T& continues to grow' until it reaches a maximum
of Tz when z0 =0. For a finite reservoir, the suppression
of the chemical potential with decreasing temperature
tends to lower Q'. By maintaining the constancy of the
chemical potential and zo, the reservoir opposes the
growth of the second term in Q'( T) with decreasing tem-
perature.

Subject to the constraint of Eq. (11) that it be an ex-
tremum with respect to zO or p, the free energy must also
be a minimum with respect to the SDW order parameter

g and the SDW wave vector parameter A. So in the pres-
ence of a finite reservoir, the free energy can be written

bF(zo, T) =min I sup [b,F' (zo,g, A, T)
gA zo

and the chemical potential P(T) is constant for all T and

P.
Because the mismatch z0 changes below Tz, the nest-

ing wave vector Q depends on temperature. It is simple
to show that

32p h(1+p)(zo zo) )I

b+ ~b-
FIG. 2. The band structure of chromium when the hole sur-

face is translated by either Q (giving energy e~+ ) or G —Q (giv-

ing energy eb ).

Since the reservoir power p does not enter bF' '(zo), the
self-consistent solutions which minimize bF(zo ) need

only be extrema of AF' '(zo). In fact, this set of self-
consistent solutions [g, AJ may maximize the infinite-
reservoir free energy hF' '(zo). By contrast, Angelescu,
Nenciu, and Tonchev' define the free energy so that the
minimization with respect to g and A precedes the ex-
tremization with respect to zo. As we shall see, the ex-

tremum condition will then have no solute'on for ranges of
the energy mismatch z0. To avoid this unphysical situa-
tion, the order of operations in Eq. (14) must be main-
tained.

The infinite-reservoir free energy b,F' '(zo) is taken
from Ref. 10 in the absence of damping' and is given by
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Eq. (Al) in the Appendix. The self-consistent solutions
for {g,A j are obtained from the extremum conditions

Otherwise the paramagnetic state has lower free energy.
Ifp & 1, then g0 is stable when

dhF' '(z, g, A, T) =0,
Bg

Bb,F' '(zo, g, A, T)
BA

(15a)

(15b)

0+z0 &4t— " p+1'
while g& is stable when

4t &z0 &2t .
p+1

(19)

(20)

III. ZERO- TEMPERATURE FORMALISM

For an infinite reservoir, the zero-temperature free en-

ergy is again taken from Ref. 10 in the absence of damp-
ing' and is given by Eq. (A2) in the Appendix. Of
course, the total free energy is then given by Eq. (10).

Some exact results may be derived in the commensu-
rate phase with A=1. When p= ~, the self-consistent
solution for the SDW order parameter can be solved in
three different regimes. If zp & 4t, where t =AT&/y, the—n
only the trivial solution g =0 exists. In the range
2t &z, &4t, three self-consistent solutions are possible:
the trivial solution, the maximum solution g„and the
minimum solution g0. The nontrivial solutions are given
by

g2 ]t2

gf = ,'t(z p2t) . —

(16a)

(16b)

Notice that g &
=g0 when z0 =4t and that g i ~0 as

z0~2t. Finally, when zo & 2t, only the minimum solution
of Eq. (16a) survives. Evaluated at gp and g&, the p= ~
free energy is given by

AF' '(zo go A=1)= —
~peh(g0 &,zo)

bF (zp, g~, A=1}=—
—,~,h(g~

—
—,'zo+4~z

(17a)

(17b)

The last expression only holds in the intermediate regime
2t &zo (4t where g, is a valid solution.

When p & ~, the free energy of the commensurate
solutions may be constructed with Eq. (10) subject to the
constraint of Eq. (11). Ifp ) 1, then go has the lowest free
energy in the range

0&zo &2v'2tV p/(p+1) &2&2t =4.989' . (18)

just as in Ref. 10 except that now both minima and maxi-
ma sets of solutions are retained and tabulated as func-
tions of z0. The extremum condition with respect to za is
given by Eq. (11). Notice that zp is independent of p,h

and depends only on the ratio of reservoir powers p.
Since za=z0 at the Neel temperature, the positions of

the paramagnetic phase boundary and the triple point are
unaffected by the power of the reservoir. However, as we
shall see in Sec. IV, the CI phase boundary can be sub-
stantially changed by the reservoir power. To obtain the
new CI boundary, we cannot simply translate the IC
boundary for an infinite reservoir by the value of z0 —z0
given in Eq. (11). Because the CI transition is first order,
the effective mismatch z0 changes discontinuously across
the phase boundary and the phase diagram must be cal-
culated by matching free energies with Eqs. (10) and (Al).

At the boundary zp =4tp/(p+ 1), g& =gp. So in the sub-

space of commensurate solutions, the minimum of
EF(zp} may correspond to the maximum of hF' '(zo}
These results for the commensurate solutions agree with
the T =0 calculation of Rice, ' who used spheres to ap-
proximate the octahedral electron and hole Fermi sur-
faces.

Of course, the physical ground state is obtained by
minimizing the free energy in the space of all possible

{g,Aj, not just in the subspace of commensurate solu-
tions. Solving for the incommensurate solutions numeri-
cally, we again find both minima and maxima solutions of
the infinite-reservoir free energy hF' '(zp, g, A}. The
minima solutions {gm;„,A~;„j exist in the range
4.37T& & za & 00 and both g;„and A;„
decrease with z0. On the other hand, the maxima
solutions {g,„,A,„j exist in the smaller range
4. 37T~~ &zp &2v'2t =4.989' . Unlike g;„and A;„,
both g,„and A,„are increasing functions of z0 ~ The
starting values of g and A are approximately
{0.95T&,0.39j for both the minima and maxima solu-
tions. But as zo~2&2t, the maximum solution merges
with the minimum commensurate solution so that
{gm» Am»j~{1 248' lj

Comparing the free energies of the commensurate and
incommensurate solutions, we find that the maximum
commensurate solution {g&, 1 j never minimizes the total
free energy. So in the commensurate phase {gp 1 j, the
extremum condition with respect to z0 yields

p+1
zp za ~

P
(21)

When p&2, the commensurate solution {gp, lj merges
with the incommensurate maximum solution

{g,„,A,„j at zo=2~2t Then {g,„. ,A»j joins the
incommensurate minimum solution {g;„,A;„j at
z0=4. 37T&. So whenever p&2, the CI transition is
second order at T=0. The phase boundary is then given
by Eq. (21}as

z ~=2v 2r = ~ T~, p&2 . (22)
8.886

1+p y 1+p
Since z0 vanishes as p~0, the incommensurate phase is
stable for all zo & Q at zero temperature in the absence of
a reservoir.

For p & 2, the commensurate solutions become unstable
to the incommensurate solutions {g,„,A,„j or
{gm;„A;„j for zo&2v'2t. Hence, the CI transition is
first order and accompanied by jumps in the effective
mismatch z0 and chemical potential p, .

In the earliest study of a finite reservoir, Shibatani
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cI p8
0 1+ N (23)

which overestimates the incommensurate portion of the
diagram. Part of the reason for this discrepancy may be
that Machida and Fujita include higher odd harmonics in
the SDW order parameter.

As mentioned above, Angelescu, Nenciu, and Ton-
chev' have suggested that the total free energy must be
minimized only in the subspace of the minima solutions

tgo, 1 j and tg;„,A;„j of the p = ~ free energy. If this
procedure is performed, then there will be a gap in zo be-
tween the commensurate solutions (go, 1 j and the incom-
mensurate solutions [g;„,A;„j for small p. Since
chromium alloys can be prepared with any desired value
of doping and paramagnetic mismatch zo, such a gap has
no physical interpretation. The maxima solutions

[g,„,A,„j,which minimize the total free energy of Eq.
(10) subject to Eq. (11), are required to fill this gap in the
phase diagram. It is also simple to show that the free en-
ergy of Angelescu, Nenciu, and Tonchev must be an
upper bound on the free energy of Eq. (14).

The physical effects of a reservoir are easy to under-
stand. Since first-order changes in the SDW order pa-
rameter g are accompanied by discontinuous changes in
the population of the nested bands, an electron reservoir
is required to replenish the electron-hole band. So the
first-order CI transition is enhanced by a large reservoir
and suppressed by a small one. When the power of the
reservoir is too small, first-order changes in the SDW or-
der parameter are prohibited and the CI transition be-
comes second order.

As many authors have noted, there is a close relation-
ship between the BCS theory of superconductivity and
the itinerant theory of antiferromagnetism. In the com-
mensurate regime at T=O, the energy gap between the
two electron-hole bands (the b —and b+ bands of Fig. 2
coalesce into a single hole band) is given by the BCS re-

et al. ' get most of the details right. By minimizing the
energy at T =0, they obtain a phase transition which be-
comes second order when p (p„where p, lies between 1

and 2. When p=O, this phase transition is completely
suppressed. But rather than jumping to 2~/a, the SDW
wave vector jumps to a slightly smaller value and only
reaches 2m/a when z0=0. So instead of a CI transition,
Shibatani et al. obtain a transition between two incorn-
mensurate states, one of which gradually becomes corn-
mensurate.

Despite its success in the commensurate regime, Rice s
spherical model' does not fare quite so well in the in-
commensurate regime, where the octahedral shapes of
the Fermi surfaces become important. Rice finds that the
T=0 transition becomes second order when p(0. 31, a
much smaller critical value than found here. He also ob-
tains a result for zo' which is &2 times larger than in Eq.
(22)

While Machida and Fujita' agree with Rice' that the
incommensurate ground state is stable for all zo when
p=O, they also conclude that the CI transition is always
second order. For any p, their T=0 boundary is given by

suit b, (0)=&2g(0)=1.764', , which uses Eq. (16a) for
go. But in the incommensurate regime with A((1, the
energy gap between the a and b + bands of Fig. 2 is given
by b, (0)=g(0). While the magnitude of the magnetic
moment at the atomic sites is constant in the comrnensu-
rate regime, it varies sinusoidally in the incommensurate
regime. Consequently, the ratio b,(0)/g (0) is smaller by
a factor of &2 in the incommensurate regime.

IV. PHASE DIAGRAM, SDW ORDER PARAMETER,
AND WAVE VECTOR

30(

25

20

0.0 0.1
I I

0.2 0.3

T/TN

0.4 0.5 0.6

FIG. 3. The critical value p„below which the CI transition
is second order, vs T/TN for six values of T/T& and a fitted
-curve.

The finite-temperature phase boundary is calculated in
the same way as described in the previous section for zero
temperature. First, we tabulate all the self-consistent
solutions tg, Aj of the infinite-reservoir free energy for a
fixed T/TN. Then for finite p, we compare the free ener-
gies of these solutions subject to the constraint of Eq.
(11). For sufficiently small p(p„ the commensurate
minima solutions merge with the incommensurate maxi-
ma solutions to produce a second-order phase transition.

After numerically evaluating the CI phase boundary
for several temperatures, we find that p, is a monotoni-
cally increasing function of temperature. Calculating p,
for six values of T/Tg', we plot p, versus temperature in

Fig. 3. Although not proven here, we speculate that p,
diverges as T/Tg approaches the triple point value of
0.562. This would imply that the CI transition is always
second order sufBciently close to the triple point. Howev-
er, the steep increase in A near the second-order transi-
tion at high temperatures may easily be mistaken for a
first-order transition.

In Fig. 1, we plot the phase diagram of chromium al-
loys for several values of p. Because it increases the
effective mismatch zo, a small reservoir enhances the in-
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commensurate portion of the phase diagram. For any
value of p smaller than about 10, the phase boundary flips
from the right to the left of the triple point, producing a
CI transition. Since the reservoir power is almost cer-
tainly less than 10, we conclude that damping is not need-
ed to explain the CI transition. However, damping is re-
quired to understand the behavior of the SDW wave vec-
tor and order parameter when chromium is doped with
isoelectronic impurities like molybdenum or tungsten. '"

The phase diagram of Fig. 1 is qualitatively similar to
that of Machida and Fujita, ' except that the latter
slightly overestimate the incommensurate portion of the
phase diagram and obtain second-order transitions
throughout. This phase diagram also agrees qualitatively
with the Ginzburg-Landau expansion of Nakanishi and
Kasuya, " who include both damping and a finite reser-
voir. For large reservoirs, damping pulls the phase
boundary to the left and favors the incommensurate
phase. But for p=O, Nakanishi et al. find that damping
pulls the phase boundary to the right and favors the com-
mensurate phase. So the incommensurate portion of the
phase diagram is largest when both p and I vanish.
Nakanishi et al. also investigate the different effects of
normal and magnetic impurities on the incommensurate-
normal phase boundary.

Using an interpolation technique between large and
small zo, Kotani' (previously called Shibatani) found
that for p=O, the phase boundary bends upwards to-
wards higher temperatures before falling back down to
intercept zero temperature at z0=0. This upwards bulge
persists until p is between 1 and 2. Kotani continues to
find a transition between two incommensurate regimes,
one of which becomes commensurate only gradually as
zo —+0.

The slight bulge of the CI phase boundaries to the left
in Fig. 1 would seem to permit a CIC transition with de-
creasing temperature. This bulge is most noticeable for
intermediate values of p near 2 but is present for all
nonzero values of p which allow a CI transition. Howev-
er, we believe that even a small amount of damping will
wipe out the bulge and eliminate the possibility of a CIC
transition.

In Fig. 4, we plot the T=O SDW order parameter g (0)
versus zo for several values of p. The first-order jump in

g (0) can be clearly seen for p= 00 and 5. For p~ 2, the
CI transition is second order and g (0) changes continu-
ously. When p=0, g (0) does not reach its commensurate
value of t/v 2=1.248TN until z0=0. As zo/Tz in-

creases above 5 or so, g (0)/Tg, becomes relatively insens-
itive to the power of the reservoir.

To plot the results for the SDW wave vector, we define
the parameter A by

1.2

1.0

0.9

~ 0.8

0.7

0.6

0.5
0

I

ZP/TN

I I I I I I

FIG. 4. The normalized T=O SDW order parameter vs

zo!TN for different values of p.

1.0

0.8

0.6

0.2

we set a/5= —,'.
At T=O, A(0) is plotted in Fig. 5. The first-order

jump in A(0) decreases as p decreases until, for p ~ 2, the
CI transition and A(0) are continuous. For small values
of p, A(0) may become negative in some range of zo/Tg, .
A negative value for A implies that the zero-temperature
SDW wave vector Q'(0) is smaller than the nesting wave
vector Q( TN ) evaluated at T~. However, at any temper-
ature T, the SDW wave vector Q'(T) always lies between
G/2 and the nesting wave vector Q(T) evaluated at the
same temperature.

In Fig. 6, we plot the difference between the T=O
mismatch energy zo and the paramagnetic mismatch zo,
both normalized by Tg, . Since zo —z&=4(p —P), Fig. 6

K zo zoA=A+ — (A —1), (24)

so that the SDW wave vector is given by

Q'(T)= I 1+5(A—1)I .
a

(25)

Unlike A &0, A may be negative. In the following plots,

—0.2
0

I i I

2 3

ZP/TN

I i I

4 5

FIG. 5. The T=O wave-vector parameter A vs zo/Tz for
different values ofp.
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1.0

0.8

0.0

0
0
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V. CONCLUSIONS AND DISCUSSION
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transition is always first order. While it
g o est this prediction closer to the tri le

first-order jumps in the order a
e ripe point,

p rameter and wave vector
may e i cult to distinguish from second- d h-or er c anges
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in this regime.
Since the observed CI phase transition is strongly first

order at low temperatures and occurs within a narrow
window of manganese concentrations, we estimate that p
lies between 3 and 7. Such a large reservoir may not be
provided by the extra electron and hole pockets in the
band structure. ' ' For pure chromium, Asano and
Yamashita' find that the total density of states p, de-
creases from 12.1/atom Ry in the paramagnetic state to
8.6/atom Ry in the incommensurate SDW state. If
we attribute this difFerence to half the electron-hole
density of states, then p,h=7. 0/atom Ry, p„=p, —p,„
=5.1/atom Ry, and p=0. 73, which is much too small to
account for the observed phase diagram. We note that
other authors"' obtained a much higher value of p=2. 4
after underestimating p,h by half.

While the extra pockets in the band structure may not
provide an adequate electron reservoir, the nested
electron-hole band may itself oppose changes of the
chemical potential and provide an effective reservoir of
electrons. Since the dependence of the band structures
on magnetic ordering is poorly understood, we cannot
estimate p more quantitatively.

Because the theoretical phase diagram is constructed
in terms of the energy mismatch zp of the paramagnetic
state, experimental measurements of this quantity are
rather important. Using optical reAectivity measure-
ments, Lind and Stanford estimated that zp =450 meV

for pure chromium. But the dramatic effects of doping
pure chromium with a small amount of manganese or
vanadium confiict' with such a large estimate of zp,
which is too far above the triple point. However, the
measurements of Lind and Stanford actually yield the
effective mismatch zp at low temperatures rather than the
paramagnetic mismatch zp at TN. We see from Fig. 6
that if p= 5, the effective mismatch zp for pure chromium
(just above the triple point) exceeds zo by about 10%. So
the paramagnetic mismatch probably lies closer to 400
meV, in better agreement with other indications.

To conclude, we have investigated the effects of damp-
ing and an electron reservoir on the phase diagram of
chromium alloys. While either suSciently strong damp-
ing or a suSciently small reservoir can explain the CI
transition, we believe that a combination of the two is re-
quired to explain the detailed phase boundary. Experi-
ments close to the triple point may reveal second-order
CI transitions and confirm the importance of a finite elec-
tron reservoir.

ACKNOWLEDGMENTS

We would like to acknowledge support from the U. S.
Department of Energy under Contract No. DE-
AC0584OR21400 with Martin Marietta Energy Systems,
Inc. Useful conversations with J. F. Cooke and B. Stern-
lieb are also gratefully acknowledged.

APPENDIX

The expressions given below for the free energy were derived by the authors in Ref. 10. When p= ~ and T)0, the
free energy is given by

hF' '(zo, g, A, T)=p,„g ln
00 2l ct)+ zp +2z—phd Tf dzln 1 —g

Tg, „=v — (ice„—z)[(iso„—z&/2+z) —(zv(A —1)/2) ]

1

n+1/2 (A 1)

where co„=(2n + 1)m.T are the Matsubara frequencies.
When p= ~ and T=O, the free energy is given by

zo
—2

hF' '(zo, g, A, T=O)= ,'p, „g .ln, A—(2—A) +2ln

Peh 2lv zp +2z
dz dv ln 1 —g

(iv —z) [(iv —zo/2+z) —[zo(A —1)/2] ]

where lny =0.577 is Euler's constant.

+g Re
2tv —zp+2z

(iv —2) [(iv —zo/2+z) —[zo(A —1)/2) ]
(A2)
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