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The phase diagram of chromium alloys sensitively depends on the presence of an electron reservoir.
With the formation of a spin-density wave (SDW), electrons are depleted from the nested electron-hole
surfaces and for a finite reservoir the chemical potential will decrease. If the power p of the electron
reservoir were infinite, then the chemical potential would remain constant and lightly doped CrMn al-
loys would experience a first-order transition from an incommensurate (I) to a commensurate (C) SDW
state with decreasing temperature. With a power less than about 10, the reservoir will flip the phase
boundary from one side of the triple point to the other, allowing a commensurate to incommensurate
transition with decreasing temperature as observed experimentally. A finite reservoir also suppresses the
first-order jumps in the SDW order parameter and wave vector. When p <2, the CI transition is second
order for all temperatures. When p > 2, the transition is second order near the triple point but first order

at lower temperatures.

I. INTRODUCTION

Because they are similar in shape and size, the electron
and hole surfaces of chromium alloys can be imperfectly
nested! by a wave vector Q. The Coulomb attraction® *
between electrons and holes produces a spin-density wave
(SDW) with wave vector close to the nesting wave vector
Q. For pure chromium, the hole octahedron is slightly
larger than the electron jack. Consequently, both the
nesting wave vector Q and the SDW wave vector Q' are
incommensurate with the lattice. The nesting of the Fer-
mi surfaces and the Néel temperature are enhanced by
doping with manganese or rhenium, which enlarges the
electron jack, and worsened by doping with vanadium,’
which enlarges the hole octahedron.

Early experiments®~° on lightly doped CrMn alloys re-
vealed a first-order transition from commensurate (C) to
incommensurate (/) phases of the SDW with decreasing
temperature. By contrast, the theoretical phase dia-
gram'® without damping and with a fixed chemical poten-
tial contains a first-order incommensurate to commensu-
rate (IC) transition with decreasing temperature over a
narrow range of doping, in disagreement with experi-
ment. This phase diagram is drawn in the solid curves of
Fig. 1 for p= . As defined in Ref. 10, Ty =77 meV is
the fictitious Néel temperature of perfectly nested
chromium without impurities. The energy z, is propor-
tional to the mismatch between the electron and hole sur-
faces, which decreases with manganese doping and in-
creases with vanadium doping. The quantity p will be
defined shortly.

Two explanations have been proposed for the observed
CI transition. Because scattering from impurities breaks
electron-hole pairs,’ electron damping suppresses both
the SDW order parameter and the Néel temperature.
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Near the triple point, Nakanishi and Kasuya'! found that
sufficient damping energy I" may flip the phase separation
wave and produce a CI transition. In previous work,!*?
we studied the effects of damping on the phase diagram,
SDW order parameter, and SDW wave vector at all tem-
peratures. In agreement with Nakanishi et al., we found
that electron damping does indeed favor the incommens-
urate over commensurate phases of the SDW. The phase
diagram with T'/T§=0.3 is given by the dashed curves
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FIG. 1. The T/Tx vs zo/Tx phase diagram of chromium al-
loys. The solid curves are plotted for =0 and with the indi-
cated reservoir power. The dashed curve is plotted for
I'/Ty¥=0.3and p=oo.
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of Fig. 1. As well as lowering the paramagnetic phase
boundary, damping also suppresses the critical value of
2.2 When T increases for a fixed zy, the size of the drop
in the SDW order parameter g at the CI phase boundary
decreases. If T' exceeds some critical value I',(z,), the
Néel temperature vanishes and the alloy becomes
paramagnetic. About 4% impurities is required to
render CrV alloys paramagnetic.®

Most theoretical work on chromium alloys,>* includ-
ing our previous studies,'®'? implicitly assumed that the
chemical potential was unaffected by the formation of the
SDW and the concurrent gap A <g in the electron-hole
energy spectrum. This requires an infinite reservoir of
electrons, which replenishes the electron-hole band and
keeps the chemical potential constant. An electron reser-
voir is supplied"!>!* by the electron balls midway be-
tween reciprocal lattice points I' and H and by the hole
pockets at N. The reservoir power p is just the ratio of
the density of states of the reservoir band to that of the
electron-hole band. But even in the absence of other
bands, the nesting electron and hole surfaces centered at
I' and H may adjust to minimize any changes in the
chemical potential. This violation of the rigid-band mod-
el® would produce an effective reservoir of unknown
power.

Although several groups'"'>~!° have investigated the
effects of an electron reservoir on the CI transition, none
of these calculations is complete. While two!"!® involve
Ginzburg-Landau expansions near the triple point, two
others'>! are zero-temperature calculations. Whereas
Kotani!” uses an interpolation technique to find the phase
boundary at intermediate temperatures, only Machida
and Fujita'® attempt to completely evaluate the phase di-
agram. But an emphasis on higher harmonics of the
SDW leads Machida and Fujita to the faulty result that
the phase boundary is second order for any reservoir
power. However, all of these groups do reach similar
conclusions about the qualitative effects of a finite reser-
voir.

When the power p of the reservoir is finite, the chemi-
cal potential will decrease and the effective mismatch z,
between electron and hole surfaces will increase with de-
creasing temperature. As can be seen from the p= o
phase diagram, a large value of the effective mismatch z,
favors the incommensurate over the commensurate
states. By inhibiting the growth of Z,, the electron reser-
voir favors the commensurate over the incommensurate
phases of the SDW. When p is sufficiently small, the
phase boundary will flip from one side of the triple point
to the other and produce the CI transition. But unlike
damping, the reservoir does not affect the paramagnetic
phase boundary or the position of the triple point.

To clarify the effects of an electron reservoir for all
temperatures and to obtain the order of the CI phase
transition, we have calculated the free energy of chromi-
um alloys in the presence of a finite reservoir but without
damping. This paper is divided into five sections. In Sec.
IT we derive the self-consistent equations and free energy
of a chromium alloy with a finite reservoir at nonzero
temperature. Section III repeats those calculations for
T'=0 and describes a method to solve the resulting self-
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consistent equations. In Sec. IV we present our results
for the phase diagram, SDW order parameter, and SDW
wave vector of chromium alloys. Finally, Sec. V contains
a summary and conclusion. We also suggest an experi-
ment which may demonstrate the importance of an elec-
tron reservoir. Expressions for the free energy are given
in the Appendix.

II. FINITE-TEMPERATURE FORMALISM

Most of the unique properties of chromium alloys are
produced by the nesting electron and hole bands with
electron number N, and two-spin density of states p,,.
All other bands are lumped into a single electron reser-
voir with electron number N, and two-spin density of
states p,. As the chemical potential pu of the alloy de-
creases in response to the formation of a SDW, electrons
will shift from the reservoir band into the electron-hole
bands, buttressing the value of the chemical potential.

In the paramagnetic state, the change of the grand po-
tential () of the electron-hole and reservoir bands may
be related to the change in the chemical potential by'®
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which assumes that the densities-of-states p,, and p, are
independent of u. Hence, the change in the total grand
potential is

AQPR=—N(E—p)—Hp, +p)(E—p)?, 3

where N =N, + N, is the total number of electrons.

Defining the free energy through the Legendre trans-
formation F(N)=Q(u)+uN, we find that the change in
free energy produced by a shift in chemical potential is
given by

AFpara=_%(pr+peh)(ﬁ—l_L)2 . 4)

So the difference in free energy between the SDW state
with chemical potential & and the paramagnetic state
with chemical potential y is

AF=FSP¥(g)— Frara(y)
=FSDW(p)_Fpara(ﬁ)+AFpara (5)
=AFO(m)—Lp(1+p)E+p)?,

where p=p,/p,, is the ratio of density of states and
AF() is the free energy calculated in Ref. (10) for an

infinite reservoir with  replacing .

Since the free energy F(N) cannot depend on p, Eq. (5)
is subject to the constraint!®
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OAF =0, (6)
au
which can also be written
0)(
per1+p)E—p) =20 B ™

The reservoir power only enters this relation on the left-
hand side. So when p= o, i=p and the chemical poten-
tial is unaffected by the SDW. More generally,
dAF© /3 <0 so the chemical potential fi(T) is smaller
than the chemical potential u of the paramagnetic state.

The mismatch between the electron and hole surfaces
in the paramagnetic regime is fixed by* the energy z,.
This parameter can be related to the wave vector

0= 2‘.71( 1-8), (8)
a
which imperfectly nests the electron and hole surfaces at
the Néel temperature. For pure chromium, 8 is approxi-
mately® 0.04 so that Q <G /2=2n/a and the SDW is in-
commensurate with the lattice. If one side of the hole
Fermi surface (translated by the nesting wave vector Q) is
perfectly nested with the electron surface, then the other
side (translated by G — Q) will differ by energy z, at the
Fermi momentum, as shown in Fig. 2.
As the chemical potential decreases, the effective
mismatch Z; increases. Assuming that the Fermi velocity
v is constant, it is straightforward to show that

We emphasize that the effective mismatch and chemical
potential are defined so that Z,(Ty )=z, and @(Ty)=pu.
Hence, Egs. (5) and (7) can be rewritten as

AF=AF"(zy)— Lp(1+p)Z;—2z4)* , (10)
dAF'0(z,)
Pen(14+p)Zy—2¢)=16— . (11)
0z,

Since AF'%(Z,) increases as Z, increases and the nesting
worsens, we again verify that Z,(T)>z, and a(T)<pu.
However, when the paramagnetic bands are perfectly
nested with z,=0, the effective mismatch Zy(T) vanishes

Zo

b+ €p-
FIG. 2. The band structure of chromium when the hole sur-
face is translated by either Q (giving energy €, ) or G —Q (giv-
ing energy €, _ ).
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and the chemical potential zi(T) is constant for all T and

Because the mismatch z, changes below T, the nest-
ing wave vector Q depends on temperature. It is simple
to show that

Zy—zy
2vp

2
Q(N)==T(1-8)~ (12)
Since Zy(T) >z, and dZ,/dT <0, the nesting wave vector
Q(T) decreases with decreasing temperature.

Generally, the wave vector Q'(T) of the SDW lies be-
tween'®!? the nesting wave vector Q(T) and G /2. In the
presence of a reservoir, the SDW wave vector must be
written as

Zp—z
+ 2 20 A1, a3)
a

Ty

a

1+8(A—1)

where k=aTy /4mvp=~0.013. The difference between the
nesting wave vector Q and the SDW wave vector Q' is
determined by 0 < A(T) =<1 and reflects the compromise'”
between the nesting of each side of the hole octahedron
with the smaller electron jack. When A=1, the SDW
wave vector is commensurate with the lattice; when
A =0, the nesting and SDW wave vectors are identical.
For an infinite reservoir, A jumps to 1 as z, decreases
through the phase boundary.!® As z, decreases in the
commensurate regime, the nesting continues to improve
and Ty continues to grow'? until it reaches a maximum
of Ty when z,=0. For a finite reservoir, the suppression
of the chemical potential with decreasing temperature
tends to lower Q’. By maintaining the constancy of the
chemical potential and Z;, the reservoir opposes the
growth of the second term in Q'(T) with decreasing tem-
perature.

Subject to the constraint of Eq. (11) that it be an ex-
tremum with respect to Z,, or fz, the free energy must also
be a minimum with respect to the SDW order parameter
g and the SDW wave vector parameter A. So in the pres-
ence of a finite reservoir, the free energy can be written

AF(zy, T)=min {sup [AF©(Z,,g,A,T)
A AN

—Lpn(1+p)Zy—20)?]) . (14)

Since the reservoir power p does not enter AF'?'(z,), the
self-consistent solutions which minimize AF(z;) need
only be extrema of AF(O)(EO). In fact, this set of self-
consistent solutions {g,A} may maximize the infinite-
reservoir free energy AF'®(z,). By contrast, Angelescu,
Nenciu, and Tonchev!® define the free energy so that the
minimization with respect to g and A precedes the ex-
tremization with respect to Z,. As we shall see, the ex-
tremum condition will then have no solution for ranges of
the energy mismatch z,. To avoid this unphysical situa-
tion, the order of operations in Eq. (14) must be main-
tained.

The infinite-reservoir free energy AF'%(z,) is taken
from Ref. 10 in the absence of damping'® and is given by
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Eq. (A1) in the Appendix. The self-consistent solutions
for {g, A} are obtained from the extremum conditions

3AF%(z,,g,A,T)

= 5
o2 0, (15a)
0AF©(zy,g,A,T)
™ =0, (15b)

just as in Ref. 10 except that now both minima and maxi-
ma sets of solutions are retained and tabulated as func-
tions of Z;. The extremum condition with respect to z; is
given by Eq. (11). Notice that Z;, is independent of p,
and depends only on the ratio of reservoir powers p.

Since Z, =z, at the Néel temperature, the positions of
the paramagnetic phase boundary and the triple point are
unaffected by the power of the reservoir. However, as we
shall see in Sec. IV, the CI phase boundary can be sub-
stantially changed by the reservoir power. To obtain the
new CI boundary, we cannot simply translate the IC
boundary for an infinite reservoir by the value of z, —z,
given in Eq. (11). Because the CI transition is first order,
the effective mismatch Z, changes discontinuously across
the phase boundary and the phase diagram must be cal-
culated by matching free energies with Egs. (10) and (A1).

III. ZERO-TEMPERATURE FORMALISM

For an infinite reservoir, the zero-temperature free en-
ergy is again taken from Ref. 10 in the absence of damp-
ing'® and is given by Eq. (A2) in the Appendix. Of
course, the total free energy is then given by Eq. (10).

Some exact results may be derived in the commensu-
rate phase with A=1. When p= «, the self-consistent
solution for the SDW order parameter can be solved in
three different regimes. If Z, > 4¢, where t =7 Ty /¥, then
only the trivial solution g=0 exists. In the range
2t <Z, <4t, three self-consistent solutions are possible:
the trivial solution, the maximum solution g,, and the
minimum solution g,. The nontrivial solutions are given
by

(16a)
(16b)

Notice that g, =g, when zZ,=4¢ and that g,—0 as
Zy—2t. Finally, when Z; <2t¢, only the minimum solution
of Eq. (16a) survives. Evaluated at g, and g,, the p=
free energy is given by

(17a)
(17b)

AF(O)(EO’gO’A=1)=_%Peh(g(z)_ll—sf(z)) ’
AFz,,8,A=1)= —%Peh(g% _%7(2) +3Zot) .

The last expression only holds in the intermediate regime
2t <Z, <4t where g, is a valid solution.

When p < «, the free energy of the commensurate
solutions may be constructed with Eq. (10) subject to the
constraint of Eq. (11). If p> 1, then g, has the lowest free
energy in the range

0<z,<2V2tVp/(p+1)<2V2:~4.989T% .  (18)
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Otherwise the paramagnetic state has lower free energy.
If p =1, then g, is stable when

< P
O_zo<4tp_H , (19)

while g, is stable when
L <zy<2 20
4tp 71 <% . (20

At the boundary z,=4tp/(p+1), g, =g,. So in the sub-
space of commensurate solutions, the minimum of
AF(z,) may correspond to the maximum of AF©(z,).
These results for the commensurate solutions agree with
the T =0 calculation of Rice,'® who used spheres to ap-
proximate the octahedral electron and hole Fermi sur-
faces.

Of course, the physical ground state is obtained by
minimizing the free energy in the space of all possible
{g,A}, not just in the subspace of commensurate solu-
tions. Solving for the incommensurate solutions numeri-
cally, we again find both minima and maxima solutions of
the infinite-reservoir free energy AF®(z,,g,A). The
minima solutions {g..,Amin] exist in the range
4.37Ty<Zy<oo and both g and Ay,
decrease with Z,. On the other hand, the maxima
solutions  {g...,Amax] e€xist in the smaller range
4.37Ty <z, <2V'2t ~4.989T5. Unlike g,;, and A,
both g... and A, are increasing functions of z,. The
starting values of g and A are approximately
{0.95T,0.39} for both the minima and maxima solu-
tions. But as zZ,—2V'2¢t, the maximum solution merges
with the minimum commensurate solution so that
{gmax’Amax} g { 1.248Ty,1 ] .

Comparing the free energies of the commensurate and
incommensurate solutions, we find that the maximum
commensurate solution {g,,1} never minimizes the total
free energy. So in the commensurate phase {g,,1}, the
extremum condition with respect to Z;, yields

pt1
%= 20 - 21
p
When p <2, the commensurate solution {g,,1} merges
with  the incommensurate maximum  solution

{gmax’Amax} at 2022‘/2[‘ Then {gmax’Amax} jOinS the
incommensurate minimum solution {g. ..,Anin} at
Zy=~4.37Ty. So whenever p<2, the CI transition is
second order at T=0. The phase boundary is then given
by Eq. (21) as

Cl —91/5,_P 8.886 p *
=2Vt =~ TY , p<2.
Since z§” vanishes as p—0, the incommensurate phase is

stable for all z, >0 at zero temperature in the absence of
a reservoir.

For p > 2, the commensurate solutions become unstable
to the incommensurate solutions {gn..;Amas} O
{8 min»Amin] fOr Z, <2V'2t. Hence, the CI transition is
first order and accompanied by jumps in the effective
mismatch Z;, and chemical potential ji.

In the earliest study of a finite reservoir, Shibatani
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et al.® get most of the details right. By minimizing the
energy at T =0, they obtain a phase transition which be-
comes second order when p <p_, where p, lies between 1
and 2. When p=0, this phase transition is completely
suppressed. But rather than jumping to 27 /a, the SDW
wave vector jumps to a slightly smaller value and only
reaches 27 /a when z,=0. So instead of a CI transition,
Shibatani et al. obtain a transition between two incom-
mensurate states, one of which gradually becomes com-
mensurate.

Despite its success in the commensurate regime, Rice’s
spherical model'® does not fare quite so well in the in-
commensurate regime, where the octahedral shapes of
the Fermi surfaces become important. Rice finds that the
T =0 transition becomes second order when p <0.31, a
much smaller critical value than found here. He also ob-
tains a result for z§" which is V2 times larger than in Eq.
(22)

While Machida and Fujita'® agree with Rice'® that the
incommensurate ground state is stable for all z, when
p=0, they also conclude that the CI transition is always
second order. For any p, their T=0 boundary is given by

cr_8 P
= T S
Zo y 14p N (23)

which overestimates the incommensurate portion of the
diagram. Part of the reason for this discrepancy may be
that Machida and Fujita include higher odd harmonics in
the SDW order parameter.

As mentioned above, Angelescu, Nenciu, and Ton-
chev!” have suggested that the total free energy must be
minimized only in the subspace of the minima solutions
{801} and {gnin» Amin} Of the p= oo free energy. If this
procedure is performed, then there will be a gap in z, be-
tween the commensurate solutions {g,,1} and the incom-
mensurate solutions {g...,Anin} for small p. Since
chromium alloys can be prepared with any desired value
of doping and paramagnetic mismatch z,, such a gap has
no physical interpretation. The maxima solutions
{8 max> Amax}> Which minimize the total free energy of Eq.
(10) subject to Eq. (11), are required to fill this gap in the
phase diagram. It is also simple to show that the free en-
ergy of Angelescu, Nenciu, and Tonchev must be an
upper bound on the free energy of Eq. (14).

The physical effects of a reservoir are easy to under-
stand. Since first-order changes in the SDW order pa-
rameter g are accompanied by discontinuous changes in
the population of the nested bands, an electron reservoir
is required to replenish the electron-hole band. So the
first-order CI transition is enhanced by a large reservoir
and suppressed by a small one. When the power of the
reservoir is too small, first-order changes in the SDW or-
der parameter are prohibited and the CI transition be-
comes second order.

As many authors have noted,? there is a close relation-
ship between the BCS theory of superconductivity and
the itinerant theory of antiferromagnetism. In the com-
mensurate regime at 7 =0, the energy gap between the
two electron-hole bands (the b — and b + bands of Fig. 2
coalesce into a single hole band) is given by the BCS re-
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sult A(0)=v2g(0)~1.764T%, which uses Eq. (16a) for
go- But in the incommensurate regime with A <<1, the
energy gap between the a and b + bands of Fig. 2 is given
by A(0)=g(0). While the magnitude of the magnetic
moment at the atomic sites is constant in the commensu-
rate regime, it varies sinusoidally in the incommensurate
regime. Consequently, the ratio A(0)/g(0) is smaller by
a factor of V'2 in the incommensurate regime.

IV. PHASE DIAGRAM, SDW ORDER PARAMETER,
AND WAVE VECTOR

The finite-temperature phase boundary is calculated in
the same way as described in the previous section for zero
temperature. First, we tabulate all the self-consistent
solutions {g,A} of the infinite-reservoir free energy for a
fixed T/Ty. Then for finite p, we compare the free ener-
gies of these solutions subject to the constraint of Eq.
(11). For sufficiently small p<p., the commensurate
minima solutions merge with the incommensurate maxi-
ma solutions to produce a second-order phase transition.

After numerically evaluating the CI phase boundary
for several temperatures, we find that p, is a monotoni-
cally increasing function of temperature. Calculating p,
for six values of T /Ty, we plot p. versus temperature in
Fig. 3. Although not proven here, we speculate that p,
diverges as T /Ty approaches the triple point value of
0.562. This would imply that the CI transition is always
second order sufficiently close to the triple point. Howev-
er, the steep increase in A near the second-order transi-
tion at high temperatures may easily be mistaken for a
first-order transition.

In Fig. 1, we plot the phase diagram of chromium al-
loys for several values of p. Because it increases the
effective mismatch Z, a small reservoir enhances the in-

0 | I I 1 L
0.0 0.1 0.2 0.3 0.4 0.5 0.6

T/Tx

FIG. 3. The critical value p,, below which the CI transition
is second order, vs T/Tx for six values of T/Tx and a fitted
curve.
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commensurate portion of the phase diagram. For any
value of p smaller than about 10, the phase boundary flips
from the right to the left of the triple point, producing a
CI transition. Since the reservoir power is almost cer-
tainly less than 10, we conclude that damping is not need-
ed to explain the CI transition. However, damping is re-
quired to understand the behavior of the SDW wave vec-
tor and order parameter when chromium is doped with
isoelectronic impurities like molybdenum or tungsten.®!!

The phase diagram of Fig. 1 is qualitatively similar to
that of Machida and Fujita,'® except that the latter
slightly overestimate the incommensurate portion of the
phase diagram and obtain second-order transitions
throughout. This phase diagram also agrees qualitatively
with the Ginzburg-Landau expansion of Nakanishi and
Kasuya,!! who include both damping and a finite reser-
voir. For large reservoirs, damping pulls the phase
boundary to the left and favors the incommensurate
phase. But for p=0, Nakanishi et al. find that damping
pulls the phase boundary to the right and favors the com-
mensurate phase. So the incommensurate portion of the
phase diagram is largest when both p and T vanish.
Nakanishi et al. also investigate the different effects of
normal and magnetic impurities on the incommensurate-
normal phase boundary.

Using an interpolation technique between large and
small z,, Kotani!” (previously called Shibatani) found
that for p=0, the phase boundary bends upwards to-
wards higher temperatures before falling back down to
intercept zero temperature at z,=0. This upwards bulge
persists until p is between 1 and 2. Kotani continues to
find a transition between two incommensurate regimes,
one of which becomes commensurate only gradually as
zy—0.

The slight bulge of the CI phase boundaries to the left
in Fig. 1 would seem to permit a CIC transition with de-
creasing temperature. This bulge is most noticeable for
intermediate values of p near 2 but is present for all
nonzero values of p which allow a CI transition. Howev-
er, we believe that even a small amount of damping will
wipe out the bulge and eliminate the possibility of a CIC
transition.

In Fig. 4, we plot the T=0 SDW order parameter g (0)
versus z, for several values of p. The first-order jump in
g(0) can be clearly seen for p=c and 5. For p=<2, the
CI transition is second order and g (0) changes continu-
ously. When p=0, g (0) does not reach its commensurate
value of r/V'2~1.248T% until z,=0. As z,/T5 in-
creases above 5 or so, g (0) /Ty becomes relatively insens-
itive to the power of the reservoir.

To plot the results for the SDW wave vector, we define
the parameter A by

A=A+ K200
5 T

(A—1), (24)
so that the SDW wave vector is given by

Q'(T)=277T{1+6(K—1)} . (25)

Unlike A >0, A may be negative. In the following plots,
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FIG. 4. The normalized T=0 SDW order parameter vs
zo/Ty for different values of p.

weset k/6=1.

At T=0, A(0) is plotted in Fig. 5. The first-order
jump in A(0) decreases as p decreases until, for p <2, the
CI transition and A(0) are continuous. For small values
of p, A(0) may become negative in some range of zo/Tx.
A negative value for A implies that the zero-temperature
SDW wave vector Q'(0) is smaller than the nesting wave
vector Q (Ty) evaluated at Ty,. However, at any temper-
ature T, the SDW wave vector Q'(T) always lies between
G /2 and the nesting wave vector Q(T) evaluated at the
same temperature.

In Fig. 6, we plot the difference between the 7=0
mismatch energy Z, and the paramagnetic mismatch z,
both normalized by Ty. Since zZ,—z,=4(u—p), Fig. 6

*
ZO/TN

FIG. 5. The T=0 wave-vector parameter A vs z,/Tx for
different values of p.
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FIG. 6. The T=0 difference z,—z, normalized by Tx vs
2o /Ty for different values of p.

can also be interpreted as a plot of the chemical potential
versus doping at zero temperature. When p= o (not
drawn), Z,=z, and the chemical potential is constant.
For finite values of p larger than 2, Z; increases discon-
tinously as z, decreases through the CI transition. So as
the SDW order parameter jumps up with Mn or Re dop-
ing,® the chemical potential must jump down to keep the
particle number constant. For p <2, the CI transition is
second order and Z; is continuous. Note from Eq. (21)
that z,—z,=z,/p for any p below the CI transition.
When p <2, Eq. (22) indicates that z,~4.989Ty at the
CI transition. If p=0, the incommensurate phase is al-
ways. stable and Z;—z, is a monotonically decreasing
function of z,.
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FIG. 7. The normalized SDW order parameter vs T /Ty for
2o/Ty =4.28 and different values of p.

—-0.2 1 1 L | L | | L
0.0 0.2 0.4 0.6 0.8 1.0
T/Tx
FIG. 8. The wave-vector parameter A vs T/Ty for

2o/ Ty =4.28 and different values of p.

While the method outlined above and in Sec. III only
works for a fixed T /Ty, we can still learn about the tem-
perature dependence of the SDW order parameter and
wave vectors by fitting our results to a power law. If
zo/Ty is set to the triple point value of 4.28, then g (T)
and A(T) are plotted in Figs. 7 and 8. At T=0, the com-
mensurate phase is stable for p larger than about 10, so
g/Ty then assumes its maximum value of
w/yV2=~1.248. Of course, A approaches 1 for all p as
T — Ty at the triple point. As shown, both A and g/T%
are monotonic functions of p for any fixed T/Ty.

V. CONCLUSIONS AND DISCUSSION

The earliest measurements® ® of the CI transition in
chromium alloys revealed a first-order transition charac-
terized by hysteresis but also by a large temperature
width between the two phases. Some workers”?! specu-
lated that the commensurate and incommensurate rate
phases may coexist in certain ranges of the phase dia-
gram. Latter, more precise measurements?’ confirmed
the first-order nature of the transition and revealed that
the large width of the transition regime in earlier mea-
surements was caused by inhomogeneities in the experi-
mental samples.

In this paper, we have studied the CI transition in the
presence of an electron reservoir, which can replenish the
electrons lost by the electron-hole bands during the for-
mation of the SDW. The present work suggests that
whenever p is finite, the CI phase transition will become
second order sufficiently close to the triple point. Experi-
ments> %2122 on the CI transition have been performed
far enough away from the triple point that the observed
transition is always first order. While it would be in-
teresting to test this prediction closer to the triple point,
first-order jumps in the order parameter and wave vector
may be difficult to distinguish from second-order changes
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in this regime.

Since the observed CI phase transition® is strongly first
order at low temperatures and occurs within a narrow
window of manganese concentrations, we estimate that p
lies between 3 and 7. Such a large reservoir may not be
provided by the extra electron and hole pockets in the
band structure.'>'* For pure chromium, Asano and
Yamashita'® find that the total density of states p, de-
creases from 12.1/atom Ry in the paramagnetic state to
8.6/atom Ry in the incommensurate SDW state. If
we attribute this difference to half the electron-hole
density of states, then p.,=7.0/atomRy, p,=p, —pen
=5.1/atom Ry, and p~0.73, which is much too small to
account for the observed phase diagram. We note that
other authors'""!® obtained a much higher value of p=2.4
after underestimating p.;, by half.

While the extra pockets in the band structure may not
provide an adequate electron reservoir, the nested
electron-hole band may itself oppose changes of the
chemical potential and provide an effective reservoir of
electrons. Since the dependence of the band structures
on magnetic ordering is poorly understood,® we cannot
estimate p more quantitatively.

Because the theoretical phase diagram is constructed
in terms of the energy mismatch z; of the paramagnetic
state, experimental measurements of this quantity are
rather important. Using optical reflectivity measure-
ments, Lind and Stanford?® estimated that z,~450 meV
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for pure chromium. But the dramatic effects of doping
pure chromium with a small amount of manganese or
vanadium conflict!? with such a large estimate of z,
which is too far above the triple point. However, the
measurements of Lind and Stanford actually yield the
effective mismatch Z, at low temperatures rather than the
paramagnetic mismatch z, at 7). We see from Fig. 6
that if p=35, the effective mismatch Z, for pure chromium
(just above the triple point) exceeds z, by about 10%. So
the paramagnetic mismatch probably lies closer to 400
meV, in better agreement with other indications.

To conclude, we have investigated the effects of damp-
ing and an electron reservoir on the phase diagram of
chromium alloys. While either sufficiently strong damp-
ing or a sufficiently small reservoir can explain the CI
transition, we believe that a combination of the two is re-
quired to explain the detailed phase boundary. Experi-
ments close to the triple point may reveal second-order
CI transitions and confirm the importance of a finite elec-
tron reservoir.
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APPENDIX

The expressions given below for the free energy were derived by the authors in Ref. 10. When p=« and T >0, the

free energy is given by

AFO(Zy,g,A, TV =pg’ln | = | —peu S |T [~ dzln|1—g> e
G B N - (0, —2)[ (0, —Z /2+2) —(Zo(A—1)/2)%]
—gl—— Al
& n+1/2| Ab
where w, =(2n + 1) T are the Matsubara frequencies.
When p= and T'=0, the free energy is given by
=2
= PN Z9
AF‘O’(zo,g,A,T—O)—%Pehgz{ln gz A M) | +2In 3’;“
I ® 2iv—Z,+2z
—pehf dzf dv{ln|1—g? 02
2r Y -w Yo (iv—2){(iv =2y /2+2)*—[Z,(A—1)/2]?}

+g2Re[

where Iny =0.577 is Euler’s constant.

(A2)

(iv—=2){(iv—Zy/2+2)*—[Z,(A—1)/21*}

2iv —Zy+2z ] ]
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