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DifFraction of x rays at the far tails of the Bragg peaks. II. Darwin dynamical theory
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The Darwin theory of dynamical diffraction by crystals is extended to include the regions between

Bragg peaks as well as situations of grazing and normal angles of incidence, i.e., the whole angular range
extending from 0' to 90'. The modified theory reproduces the usual two-beam Laue dynamical theory in
the close vicinity of the Bragg peaks, while in the regions between the Bragg peaks it predicts
reflectivities in agreement with the kinematical theory. Many-beam effects due to all crystallographic
planes parallel to the surface can be calculated in an extremely simple way making this approach partic-
ularly suitable to artificial multilayered structures. The weak scattering in the region where the far tails
of two neighboring Bragg peaks interfere contains information about the phases of the structure factors.

I. INTRODUCTION

X-ray-difFraction theories' are called either kinemat-
ical or dynamical depending on whether the effects of
multiple scattering within the crystal are neglected or
not. Thus, the predictions of the kinematical and the
dynamical theories can be expected to agree if the scat-
tered intensities are low. That this agreement holds is, in
fact, well known in many situations. ' One example is
the case of Bragg rejections that are weak because the
crystal is very thin or the structure factor is small.
Another example, is the case of the relatively low intensi-
ty scattered slightly away (up to a few tenths of a degree)
from Bragg peaks which may themselves be quite intense.
In a previous paper and in the present one, the issue is
addressed of whether the agreement still holds
throughout the region between two Bragg peaks, and not
just in their immediate neighborhood. In contrast to the
near-tail region mentioned above, in the far-tail region
approximations which are normally made in the dynami-
cal theory fail and have to be corrected.

The diffraction in the far tails of the Bragg peaks has
practical interest in a number of important applications
such as in the study of crystal surfaces ' and in the prob-
lem of diffraction by artificial multilayered structures at
grazing incidence. ' In this latter case Bragg peaks are
closely bunched together, and regions of high and low
reQectivity, which exhibit either dynamical or kinemati-
cal behavior, alternate rapidly. A single theory applica-
ble to both regimes is clearly desirable.

Most dynamical diffraction theories belong to one or
the other of two rather broad groups. Theories in the
first group essentially consist in solving for the self-
consistent propagation of waves in periodic media. They
originated in the work of Ewald and Laue. ' Theories
in the second group, originate with Darwin, ' ' and ap-
proach the calculation of the rejected intensities by di-
viding the crystal as a stack of layers and explicitly con-
sidering the multiple scattering between difFerent layers.
(Some theories belong to both groups. For example, the
basic equations of nuclear resonant difFraction" resemble
Ewald's but the method of solution is Darwin's. Similar-

ly, the differential equations of Takagi and Taupin' are
deduced from Laue's phenomenological wave equation,
but they relate the field amplitudes in successive
infinitesimal layers, very much in the spirit of Darwin. )

All of these theories involve approximations which are
well justified under normal diffraction regimes but may
demand special treatment in some cases. The improved
approximations required to extend the regime of applica-
bility of Laue's theory to the far tails of the Bragg peaks
were the subject of the first paper in this series and also
of a paper by Colella. The purpose of this second paper
is to obtain analogous improvements for the Darwin
theory.

The original Darwin theory' ' involves approxima-
tions which fail in the region between Bragg peaks, or for
small angles of incidence close to the region of total
external reflection, and also for Bragg angles near n/2.
Furthermore, only two-beam cases are considered;
many-beam diffraction efFects, which may be essential
when Bragg peaks are spaced closely together, are nor-
mally neglected. The Darwin theory has been extended
in several directions (to nuclear scattering, " to Laue
transmission cases, ' to asymmetric diffraction, ' ' and
using numerical matrix methods, to strained crystal sur-
faces and three-beam cases' ), but the issue of the scatter-
ing in the far tails of the Bragg peaks has not so far been
addressed.

In the theory offered here many of the usual approxi-
mations are avoided. Once we obtain the scattering and
transmission of a single layer, the reQection and transmis-
sion coefticients of the crystal are calculated without any
further approximations This is don. e in Sec. II. This im-
proved version of the Darwin theory offers significant
simplification over the corresponding improved version
of the Laue theory developed in the previous paper,
which has several complicating features such as the re-
quirement of accurate knowledge of the dispersion sur-
face, of the use of exact electromagnetic boundary condi-
tions, and the limitation to a small number of beams. For
example, full many-beam calculations (involving tens or
perhaps even an infinite number of beams ) require only a
very modest numerical effort.
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In Sec. III the scattering by a single atomic layer in-
cluding many-beam effects is calculated using Fresnel
diffraction theory. This is a kind of kinematical theory in
the sense that multiple scattering within the layer is
neglected. However, for grazing incidence intralayer
multiple scattering effects may be appreciable: They are
adequately accounted for by modifying the single-layer
kinematical results to include the effects of absorption,
refraction, and total external reflection. The proof that
this version of the Darwin theory correctly describes
both the close vicinity of the Bragg peaks and their far
tails is given in Sec. IV. As a more practical application
we address in Sec. V the problem of the diffraction by a
thin layer on an otherwise perfect crystal. The nature of
this layer is quite arbitrary, it may represent a rough,
strained or reconstructed surface or even an oxide layer.
Numerical results are given for a couple of idealized sur-
face models. Final comments and conclusions are given
in Sec. VI ~

II. A MODIFIED DARWIN DYNAMICAL
DIFFRACTION THEORY

A. The basic equations

(n-1)d (n+1)d (n+2)d
Z

in the conventional Laue approach, would involve an
infinite number of beams.

Let r, and t, be the amplitude reflection and transmis-
sion coefficients of the single layer located between the
gaps n and n+1, for an incident wave coming from
z = —(x) and propagating in the direction of increasing z,
and let r2 and t2 be the corresponding coefficients for a
wave propagating in the opposite direction. Then the
amplitudes A and B at the nth gap are related to those in
the (n + 1)th gap by

FIG. 1. The crystal is a sequence of N layers of thickness d
and arbitrary profile separated by infinitesimal gaps.

The diffracting crystal considered here is in the shape
of a plate, the surfaces of which are normal to the z direc-
tion, and the dielectric susceptibility is modeled by

and

A„r, +B„+,t2 =B„

An t1+Bn+1r2 = An+1 ~

(2.4a)

(2.4b)

e iH r y+ e 2vrimz/d

0 m

(2.1) The requirement of crystalline periodicity is expressed
by Bloch's theorem in the form

E( ) ( ~g iq(z —nd)+ ~ B —iqiz —nd)
)

iL cosexr = e „e e~ „e e

where K =co/c is the wave number in vacuum and

(2.2)

where H=2qrme, /d, with m integer, are the reciprocal-
lattice vectors. We deal only with diffraction in the sym-
metric Bragg case: The reciprocal-lattice vectors lie
along the normal to the crystal surface (the z direction),
and are those on the truncation rod passing through the
origin in reciprocal space.

Let us imagine the crystal as built up of N layers of
thickness d separated by small gaps (which will eventual-

ly be eliminated) of thickness 2e (see Fig. 1). The fact
that g depends only on z and not on the transverse coor-
dinates x and y implies that the components of the pho-
ton momentum along x and y are conserved. Therefore,
only specular reflection occurs and the electric field in the
nth gap is a superposition of "incident" and "reflected"
plane waves,

ik d i(n+1)k d
(2.5a)

and

ik d i(n+1)k d
B„+1=e ' B„—e 0 (2.5b)

where k, is the z component of the crystal momentum.
Substituting (2.5) into (2.4) leads to

ik d
A„r&+(e '

t2 —1)B„=O, (2.6a)

ik d ik d
(t, —e ' )A„+e ' r2B„=O. (2.6b)

(2.7)

In order that nontrivial solutions exist the determinant of
(2.6} must vanish; this leads to a dispersion relation for
k„

ik —d
e ' =[(1+t,tz r,r2)—

q =K sinO, (2.3)

is the component of the incident wave vector K tangen-
tial to the crystal surface. Notice that independently of
the number of Fourier components appearing in Eq. (2.1),
the exact field, Eq. (2.2), is a superposition of just two
beams; this is important: An involved many-beam
dynamical diffraction calculation, which can normally
only be attacked numerically, reduces to what is essen-
tially a simple two-beam calculation, which can be done
analytically. In fact, one may even calculate cases which,

p~ = [Z+(Z 4r) r~ )' ]-1y2

2r2

where

(2.8a)

Z = 1 —t1t2+r1r2 .

Therefore, the electric field (2.2} in the gaps is

(2.8b)

Substituting (2.7) back into (2.6) we obtain values for the
allowed amplitude ratios, p+ =B„/A„,which are
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i(k z+Kcosex)E+r =e z (2.9a} and

where the function 4 +(z) for z in the nth gap is given by

—ik +(z —nd)' z z " (~ iq(z —nd)+~ —iq(z —nd))

(2.9b}

i (k+ —q)Nd i(k —q)Nd0= A+p+e ' + A p e

Solving for rz and tD we obtain the desired results,

r (1 r, /—p )
—(1—r /p )

p+(1 r i
—Ip+ )

—
p (1 r i

—Ip )

(2.16d)

Since 4'+(z) is periodic (the function z n—d is periodic
and p+ is independent of n), the field E is explicitly of the
form required by Bloch's theorem.

B. The semi-in6nite crystal

and

p+ —p (1 ri/p+—) (1 r, Ip—)

NtNeqNd p, (1—,,Ip, )N p (1 r, /p )N

To calculate the amplitude reflection coefficient ra of a
semi-infinite crystal we impose boundary conditions at
the crystal surface. For z (—e, the field in vacuum is

E(z) =ee'q'+ e)(( ro e (2.10)

E(z)= A()(ee'q'+ f„p~e '«') . (2.11)

Notice that the boundary at z = —e is a vacuum to vacu-
um interface. This makes the required boundary condi-
tions very simple: continuity of the field and of its
derivative at z = —e. Therefore AD=1, and

~D =p+

The reflectivity is given by

RD = IrD I

(2.12)

(2.13)

The choice of sign in Eqs. (2.11) and (2.12) is determined
by requiring that the net flow of energy be in the direc-
tion of increasing z, that is, into the crystal. In practice,
this condition is very easy to implement: Choose the sign
that leads to RD & 1.

[where for notational convenience a factor exp(iI(.x cos8}
has been omitted], while for —e(z (e, the field in the
0th gap in the crystal is

Some details of the treatment above differ from the
original Darwin theory. ' ' For example, there are no
explicit phase factors in Eq. (2.4); for "thick" mirrors
with varying index of refraction it is more convenient to
incorporate them into t, and t2. The usual Darwin ap-
proach is to search for solutions of (2.4} of the form
A„=a"P where a and P are constants which are not as-
signed any particular physical meaning; it is interesting
that the Darwin ansatz A„=a"P is just Bloch's theorem.
Finally, one should note again that the derivation of Eqs.
(2.17) and (2.18) involves a restriction to reciprocal-lattice
vectors of the form H=2n. me, /d with m any positive or
negative integer. Having made this single restriction the
treatment above proceeds without any further approxi-
mations: Given the reflection and transmission coe@cients
of a single layer, the scattering by the crystal is calculated
exactly. In particular, the equations above are valid both
close to and far from the Bragg peaks, and also for graz-
ing, nongrazing or even normal incidence. Multiple
scattering and many-beam interactions (as many beams
as values of m are included in the calculation of the single
layer scattering) are fully taken into account. This is im-
portant in situations where there are many Bragg peaks
spaced closely together, as in the diffraction by multilay-
ered structures at small Bragg angles.

C. The Snite crystal

E(z)=et' e 'q' . (2.14)

Within the crystal the field is a superposition of the two
modes (2.9),

To calculate the amplitude reflection and transmission
coefBcients of a finite crystal composed of N layers we
proceed as in the last section and impose boundary condi-
tions at both the 0th and the Nth gap. For z (—e, the
field in vacuum is given by (2.10), while for z )Nd +8,
the field is

III. REFLECTION AND TRANSMISSION
BY A SINGLE ATONIC LAYER

When calculating the scattering by a single atomic lay-
er in a crystal, multiple scattering events are unlikely (ex-
cept perhaps at extremely grazing incidence) and may be
neglected: A kinematical theory calculation should be a
very good first approximation. One can then proceed to
include some intralayer multiple scattering effects by
correcting for refraction, absorption, and total external
reflection. The amplitude reflection coefficient (including
refraction and absorption corrections} is '

E(z)=A+e ' 4+(z)+A e ' 4 (z) . (2.15) 2iKd sin8)

4 sinO sinO —sinO
(3.1)

The conditions of continuity of the field and its derivative
at z = —e and at z =led +e lead to where

1=A++A

rD = A+p++ A p
i(k —q)Xd i(k —q)XdtD=A+e ' + A e

(2.16a)

(2.16b)

(2.16c)

sin8—= (sin 8+go))~2 . (3.2)

O is the Bragg angle corresponding to the vector
H=2m. me, /d. The factor P is 1 or approximately cos2O
depending on whether it is the electric or the magnetic
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t, =exp(iKd sin8) . (3.3)

The coefficients r
&

and t j refer to an incident wave com-
ing from z = —~ and propagating in the direction of in-
creasing z. We also need the coefficients r2 and t2 which
refer to an incident wave coming from z = + ~ and prop-

field that is transverse to the plane of incidence (TE or
TM polarization, respectively). The transmission
coefficient is obtained in a similar manner by considering
the electric field scattered in the forward direction. The
result is

agating in the direction of decreasing z: The reflection
coefficient r2 is obtained from r, by replacing y by y
and the transmission coefficient t2 is equal to t, so that
the subscripts 1 or 2 may be dropped.

For grazing incidence, close to the region of total
external refiection (sin8=0), the refiectivity is high and
the kinematical approximation above fails. This multiple
scattering effect may be partially corrected by replacing
the m =0 term in (3.2) and (3.3) by the correct Fresnel
reflection and transmission coefficients of a homogeneous
slab with susceptibility yp. To be specific, for TE polar-
ization, these m =0 terms are

2 sin0 sin0

2sin8sin8cos(iKd sin8) —(sin 8+sin 8)i sin(iKd sin8)
(3.4a)

and

iXosin(iKd sin8)
rp=

2 sin0 sin0 tp
(3.4b)

IV. LIMITING FORMS

Now we show that the modified Darwin theory of the
previous sections reproduces the usual two-beam Laue
dynamical theory in the close vicinity of the Bragg peaks,
while in the regions between the Bragg peaks it predicts
reflectivities in agreement with the kinematical theory.

In the vicinity of a given Bragg peak sinO=sinO„. Us-

ing

The expressions for rD and tD given in Sec. II when

supplemented by the single layer coefficients given in this
section provide a full solution to the diffraction problem.
Notice, in particular, the ease with which many-beam
dynamical effects are taken into account: Just include
more terms in the summation (3.1) for the single layer
kinematical reflection coefficient.

is the usual incidence variable z of the two-beam Laue
theory [see Eq. (2.20) of Ref. 5]. Thus, Eq. (2.8b) be-
comes

Z= — +O(X ) .
sin 0„

Substituting (4.2) and (4.6) into (2.8) we get

1p+=[ z+(z P—X X —)]-
+—n

(4.6)

(4.7)

p Z
P~ Xm—

4 sinO sinO —sin0
(4.&)

which is precisely the amplitude ratio as given by the
Laue dynamical theory [Eq. (2.21) of Ref. 5]. Thus, in

the close vicinity of the Bragg peaks the modified Darwin
reflectivity (2.13}reproduces the Laue result.

It is only very close to the Bragg peaks that the phase
factor t =exp(iKd sin8} is close to 1 and the variable Z is
small. Far from the Bragg peaks the quantity Z is much
larger, in fact, Z ))4r, r2. Then

2iKd (sin8„—sin0 )

=2i5 „,Kd(sin8„—sin8 )

one obtains

(4. 1)

and the refiectivity of a semi-infinite crystal [Eqs. (2.12)
and (2.13)] turns out to be identical to the kinematical re-
sult [Eq. (2.6) of Ref. 5]. For a finite crystal the proof is

equally simple. Using the identity

in+
PX

2sin 0„
(4.2)

r,
p+p —=

r2
(4.9)

For r2 a similar expression holds with g„replaced by
The calculation of t requires more care: For

sin O))gp we have

XQ
sinO= sinO+

sinO„

and (4.8), we have

Z
p+ ———))p

r2

Then, Eq. (2.17) becomes

D-p (1 —r ),

(4.10)

(4.11}

so that, from Eq. (3.3)

where

kn 7TZ

sin O„

z =yp —2 sinO„(sinO„—sinO)

(4.4)

(4.5)

which is, again, identical to the kinematical expression.

V. SCATTERING BY A THIN LAYER
ON THE SURFACE OF A CRYSTAL

The reflectivity of the crystal substrate covered with a
thin surface layer is given by
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~ —
I rn +rsi. I (5.1)

where the origin of coordinates has been chosen at the
substrate surface so there are no additional phase factors,
rD is given by Eq. (2.12), and rsL is the reflection
coe%cient of the layer. For suSciently thin layers rsL
may be calculated using the same Fresnel kinematical
theory used for the perfect crystal single layer. '

As a specific numerical example we consider the
diffraction of Cuba radiation by a semi-infinite perfect
silicon crystal the surface of which is normal to the I111]
direction. Figure 2 shows the reflectivity for the sharply
terminated ideal surface for incidence angles couering the
full range from 0' to 90'. The calculation includes all 11
beams of the form (h, h, h} for h =0, +1, . . . , +5. For the
nearly forbidden (222) reflection we use the value'
f2&2= —0. 169. We find that although the reflections
(111)and (555} do not show up as sharp Bragg peaks in
the range from 0' to 90', their tails make very appreciable
contributions to the intensity in the regions of low and
high angles.

Figure 2 also shows the reflectivity for two idealized
models of nonsharply terminated surfaces. For the first
model the susceptibility est'(z) of the surface layer van-
ishes for z & 0 and for z & 0 is given by the perfect crystal
form, Eq. (2.1), multiplied by a smooth exponential decay

In both cases a measures the 1/e decay distance in units
of d'. The corresponding kinematical amplitude
reflection coeScients are

4 sin8 sin8 —sin8 i—/2Kad' (5.4}

and,

(2)— e 2iKd'sine ~x
rSL

1 —e ' """e' 4»n8 sin8 —sin8'm n n m

(5.5)

where 8' are the Bragg angles corresponding to d'. The
calculations in Fig. 2 are for a=2 and d =d'. Two in-
teresting features are, first that sharper boundaries lead
to higher scattered intensities between the Bragg peaks,
in agreement with previous work. 6 And second, the
sharp dip in reflectivity on the high angle side of the 222
reflection which originates in the destructive interference
between the tails of the 222 and 333 reflections. The dip
is very close to the 222 peak because this is a very weak
reflection; one can check that artificially increasing If222 I

shifts the dip to the right.
Thus, we see that the scattering in the far tails of the

Bragg peaks contains information not just about the sur-
face structure but also about the relative phases of the
structure factors of neighboring Bragg peaks..(1)iz ) —~, e 2n.imz/d'e z/ad'

SLgzI —~&m e (5.2)

~ 2 j(Z 5 ~ e 2nimz/d' —N/a
XSL&Z~ —~g m e (5.3)
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FIG. 2. The reflectivity of a silicon crystal cut along the 111
planes for three idealized surfaces structures (abrupt termina-
tion, exponentially smooth, and stepwise exponential termina-
tions).

The layer lattice spacing d' need not necessarily coincide
with the substrate spacing d. For the second model we
choose a form that is perhaps slightly more realistic:
gsi'(z) vanishes for z )0 and for z &0 is given by the per-
fect crystal form Eq. (2.1) multiplied by a stepwise ex-
ponential, i.e., for Nd' &z & ——(N —1)d' we have

VI. SOME FINAL REMARKS AND CONCLUSIONS

The range of applicability of the Darwin theory of
dynamical diffraction has been extended to include the
regions between Bragg peaks as well as grazing and nor-
mal angles of incidence. The modified theory reproduces
the usual two-beam Lane dynamical theory in the close
vicinity of the Bragg peaks, while in the regions between
the Bragg peaks it predicts reflectivities in agreement
with the kinematical theory. An interesting feature,
which should make this theory particularly convenient to
describe the difFraction of artificial multilayered struc-
tures, is that many-beam effects can be calculated in a
very simple way.

Although we have dealt with difFraction in the sym-
metric Bragg case, the improved dynamical approxima-
tions obtained here can be employed, using the method
described by Boric, ' in more general cases such as
asymmetrical Bragg cases, or Laue cases, or even to other
nontruncation rod many-beam cases. Unfortunately, in
these cases, the ease with which many-beam effects can be
calculated is lost. Likewise, our improved approxima-
tions can be incorporated into the theories of Hannon
and Trammel, "Takagi and Taupin, ' Berreman and Ma-
crander, ' and also to the case of grazing incidence
diffraction' of Afanaseev and Melkonyan and of Jach
et al. The reason these theories did not directly apply to
the far-tail region is not due to any intrinsic shortcoming
in the formalism but rather that these authors developed
approximations specific to the problem of their immedi-
ate interest, namely the Bragg peaks themselves.

Finally, we found that the weak scattering where the
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far tails of two Bragg peaks interfere contains informa-
tion about the phases of structure factors. For semi-
infinite perfect crystals the scattering is very weak due to
almost complete destructive interference between the
various crystal planes. On the other hand in artificial
multilayered structures the scattering in the far tails is
readily observable and known to contain phase informa-
tion. ' An interesting question is whether such a method
can be extended to small or imperfect crystals, for which
destructive interference is not nearly as complete, and

which are precisely the kind of crystals for which phase
determination is still an interesting problem.
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