
PHYSICAL REVIEW B VOLUME 49, NUMBER 5 1 FEBRUARY 1994-I

Spin-wave study of the magnetic excitations in sandwich structures coupled
by bilinear and biquadratic interlayer exchange
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Using a microscopic and quantum approach, we study the ground-state configuration and the spin-
wave excitations of a model of two ferromagnetic monolayers, interacting via both bilinear and biqua-
dratic exchange, and subject to an easy-plane anisotropy, a quartic in-plane anisotropy and an external
field. In the framework of a Green's-function method, we obtain analytical results for the spin-wave

dispersion curves. Peculiar features are found in the field dependence of the acoustic and optical fre-

quency gaps, in correspondence to the critical fields for which the canting angle between the magnetiza-
tions of the two coupled layers presents discontinuities. In particular, a minimum for the optical gap at
the saturation field is predicted, which could be experimentally observed by Brillouin light scattering in
real systems.

I. INTRODUCTION

Sandwich and superlattice structures consisting of ul-
trathin ferromagnetic films separated by nonmagnetic
spacers have attracted much attention in recent years,
both from the experimental' and theoretical ' point
of view. In their seminal work, Griinberg et al. found
evidence for antiferromagnetic coupling between Fe lay-
ers in a Fe/Cr/Fe sandwich by means of Brillouin light
scattering (BLS). Later on, Parkin, More, and Roche re-
ported the observation of oscillations in exchange cou-
pling and magnetoresistance in metallic superlattice
structures as a function of the nonferromagnetic spacer
thickness.

Recently, sandwich Fe/Cr/Fe structures with a
wedge-shaped spacer were grown to investigate the sign
and magnitude of the interlayer exchange in more detail.
In these epitaxially grown samples, short period oscilla-
tions superimposed onto the long period ones were ob-
served, both using scanning electron microscopy with po-
larization analysis and Brillouin light scattering.

Moreover, in the transition region between ranges of
ferromagnetic aud antiferromagnetic bilinear coupling,
unusual domain patterns were observed by magnetooptic
techniques, and characteristic steps at half saturation
were displayed by the easy axis magnetization curves,
measured by magneto-optical Kerr effect. '

Such unusual features were attributed to a canting be-
tween the magnetization directions of the two Fe slabs,
which cannot be explained in terms of a conventional—
ferromagnetic or antiferromagnetic —bilinear coupling
between layers. Assuming a biquadratic interlayer ex-
change and treating the spins in the classical approxima-
tion, the field dependence of the T =0 magnetization was
calculated in a numerical way. The canting angle was
found to depend on the size of the bilinear and biquadrat-
ic exchange constants and the experimentally observed

preference for coupling angles near m/2 was accounted
for including a cubic anisotropy in the model. Treating
the magnetic structure as a continuum, one can also cal-
culate the long-wavelength (q & 10 cm ') spin-wave en-
ergies, experimentally accessible by the light-scattering
technique.

More recently, also ferromagnetic resonance and sur-
face magneto-optical Kerr effect measurements in
Fe/Cu/Fe trilayers provided evidence for the simultane-
ous presence of bilinear and biquadratic exchange cou-
pling between the magnetic layers.

An explanation for the physical origin of the biqua-
dratic coupling' in such systems was proposed by
Slonczewski, ' in terms of a competition between fer-
romagnetic and antiferromagnetic bilinear coupling in
the presence of interface roughness (atomic steps).
Within this approach, the biquadratic coupling is not of
microscopic origin, but arises from spatial fluctuations of
the microscopically bilinear coupling, caused by terraced
thickness fluctuations, at the monolayer scale, of the non-
magnetic spacer. Numerical calculations by Ribas and
Dieny' confirmed Slonczewski's model in the limit of
small terraces and small deviations of the angle between
the ferromagnetic layers around m /2.

Subsequently, Barnas and Grunberg' ' suggested two
possible microscopic mechanisms, both of which give non-
vanishing biquadratic coupling even for ideally flat inter-
faces. The first one is based on the assumption of bilinear
exchange coupling between next-nearest-neighbor atomic
planes in addition to the nearest-neighbor ones: The bi-
quadratic term then appears as a result of the competi-
tion between interlayer and intralayer exchange cou-
plings. The second mechanism is based on the fact that
the electronic wave functions responsible for the coupling
depend on the relative orientations of the film magnetiza-
tions.

This experimental and theoretical background induced
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us to study, within a microscopic and quantum approach,
the ground-state configuration and the spin-wave excita-
tions for a model of two ferromagnetic monolayers, in-
teracting via both bilinear and biquadratic interlayer ex-
change and subject to an easy-plane single-ion anisotropy,
a quartic in-plane anisotropy, and an external field.
Whatever its origin, in our model the biquadratic cou-
pling is assumed as a phenomenological parameter. In
fact, our purpose is to study the dispersion curves of the
spin-wave excitations with respect to the canted ground
state, in order to have a method for determining the
values of the bilinear and biquadratic interlayer exchange
parameters.

We limit ourselves to the simplified case that each fer-
romagnetic film is made of only one monolayer, because
this allows us to obtain analytical results for the frequen-
cies of the two spin-wave modes of the system, and thus
to control their dependence on the various Hamiltonian
parameters.

Moreover, for the aim of describing the main features
of Brillouin spectra, the results obtained by this simple
model are expected to be valid also for sandwich struc-
tures consisting of two ultrathin ferromagnetic films,
separated by a nonmagnetic spacer of fixed thickness,
provided that the intralayer exchange coupling is much
stronger than the interlayer one: in fact, in this case, the
low-frequency modes measurable by Brillouin light
scattering are determined by the feeble interlayer interac-
tions.

Regarding the ground-state configuration, we find that
the inclusion of quantum effects leads to some
modifications in the boundaries of the H =0 phase dia-
gram with respect to the classical case, ' which is correct-
ly recovered in the limit S~ 00. We also study the field
dependence of the mean of the magnetizations of the two

I

coupled films at T =0 and find changes in its slope at the
critical values of the field, for which the canting angle
presents discontinuities.

Also the frequencies of the spin-wave excitations show
peculiar features in their field dependence, in correspon-
dence to such critical fields. In particular, the gap of the
optical mode goes to zero for the value of the field at
which the magnetization becomes saturated. By inspec-
tion of the analytic expression obtained for the gap, one
can easily interpret this feature as due to the competition
between the in-plane magnetic field and the in-plane four-
fold anisotropy.

The layout of the paper is as follows: In Sec. II we
present the model and find the ground-state
configuration, both in zero and in an applied magnetic
field. Section III is devoted to the calculation of the spin-
wave modes of the system by means of a Green's-function
method. In Sec. IV, the results are presented and dis-
cussed. Finally, we draw the conclusions in Sec. V.

II. THE MODEL AND THE GROUND-STATE
CONFIGURATION

We assume the spins to be localized on the sites of two
parallel monolayers, separated by a fixed distance c (the
thickness of the nonmagnetic spacer) along the y =[010]
direction (the normal to the film plane). Each ferromag-
netic monolayer is assumed to have a simple quadratic
lattice structure, with lattice constant a. The interface
between the two ferromagnetic monolayers is a registered
(010) one. The spin Hamiltonian reads

A =%i+&2,
where the explicit expression for A, is

X Si( ~~) S,(li+5i) ——QSi(li) Sz( i) ——g[Si(l~~) Sz(l~~)] + g[S,(li)]

g[ [Si (li )] + [5 i (li )] ] s g[Si (lg )] gPsHQ[Si (l~~ ) sinP+S i (I&& ) cosP]
II II II

The
l~~

summation runs over the Ei sites of the simple
quadratic lattice and the 5II summation runs over the four
nearest neighbors, within the monolayer plane, of a given
site. %2 is obtained from %, by interchanging S, and S2.

We are particularly interested in the peculiar features
(e.g., a canted ground state) arising from the competition
between a ferromagnetic intralayer exchange (J & 0), a
bilinear interlayer exchange (ferromagnetic, A & 0, or an-
tiferromagnetic, A &0) and an antiferromagnetic (8 &0)
biquadratic interlayer exchange. In real systems, the
character (ferro- versus antiferromagnetic) and the inten-
sity of the interlayer exchange depend on c, the thickness
of the nonmagnetic spacer. In our model, A and 8
are assumed as phenomenological parameters, i.e., we fix
c and consequently the sign and the value of the inter-
layer exchange constants. We also consider an easy-plane

I

anisotropy (D &0), favoring the spins to lie in the xz
plane, and an anisotropy (K & 0), which in the bulk case,
a=1, would have cubic symmetry. In the case of two
coupled films, owing to the reduced symmetry of the sys-
tem in the y direction, we assume c.=0, so that the in-

plane anisotropy K favors the alignment of the spins
along one of the four equivalent crystallographic direc-
tions [100], [100],[001], [001]. We also assume an exter-
nal magnetic field to be applied within the easy plane,
along a direction which forms an angle g with respect to
the z =[001]axis.

Denoting by yl the angle formed by the spin Sl(lII)
with respect to the z direction, the relation between the
spin components in the crystallographic frame of refer-
ence (with axes x,y, z) and the spin components in the lo-
cal frame (with axes (,rI, g) is
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In the framework of the spin-wave approximation, valid
at temperatures low with respect to the Curie point, we
express the spin operators in terms of bosonic creation
and destruction operators via the Dyson-Maleev transfor-
mation (g = quantization axis)

S, (I„)=Sf(1„)+iSP(l„)

a/ (1~()a/(I~~ ) a/(1~(),
1

Depending on the actual values of the Hamiltonian pa-
rameters, either collinear or canted ground-state
configurations are obtained from Eq. (8) by minimizing
E(q&i, y2) with respect to qr, and qr2. Equivalently, one
can introduce the new variables y+ =y2+ y, and

=y2 —
y&, in terms of which the ground-state energy

E (y„y2) is expressed as

E(~+,y )/Ni = —[AS' ——,'BS']

Xcos(y ) BS—f, cos (p )

+—,'KS g, [1—cos(2q& }cos(2y+)]

y+—2gp HS cos cosB 2 2

) S~( ill ) iSp( I
II

)

=&2Sa( (Ii),
Sf(li ) =S—a,+(1~~ )a, (l}) .

(4)

Applying the transformations (3) and (4) to the spin
Hamiltonian (1), performing the normal ordering of the
bosonic operators, and retaining up to the quadratic
terms in a and a, one obtains

a=E'+a'"+m" ~, (5)

where E' ', %"', and &' ' denote the parts of the boson
Hamiltonian containing zero, one, and two boson opera-
tors, respectively.

The constant part E' ' is given by

E' '=E, +E(y„p2),

y-
+gp&HS sin

2

y+
cos

2

aE(~„~ ) =0= ,'KS g, cos(2—y ) sin(2y+ )

y+

The conditions for an extremum are

aE(q„q ) =0= [ AS —
—,'BS ] sin(g )

Bg

+2BS f, sin(p ) cos(y }

+ —,'KS g, sin(2y ) cos(2tp+ )

(10)

(1 la)

where

E /X = —4JS —BS S+— +DS1
c II 4

—gp~HS cos
y+

sin
2

(1 lb)

—KS S +(1—e)2 2 3 1

4 4S
(7) A. H =Ocase

and we have defined

1f, —:1—
2S

1
g, = 1—

2S
1

1 ——
S

31—
2S

E(pi, q2)IN~~ = —[ AS ,' SB']c—s—o(y, y, )—
BS f, cos (y—q q),)—

+ ,'KS g, [sin (2g, —)+sin (2y2)]

gp&HS [cos(P —
qr, )+cos(f —tp2—)],

(8)

Let us first consider the ground-state configuration in
the absence of an external field. For H =0, Eq. (lib) is
satisfied either by cos(2q& ) =0 or by sin(2y+ )=0. Exam-
ining the second derivatives, one can easily see that the
former solution corresponds to a maximum, whilst the
minima are obtained solving Eq. (1 la) with
cos(2y+)=+1. Four diferent ground-state configura-
tions are found.

(1) A ferromagnetic (F) ground state, characterized by
cos(y }=1, is obtained, for sin(y }=0 and cos(2y+)
=1, provided that 2A +48S(S —1)+2KS g, )0.

(1) An antiferromagnetic (AF) ground state, character-
ized by cos(y )= —1, is obtained, for sin(y )=0 and

cos(2y+ ) = 1, provided that

In the classical limit S~oo, both the factors f, and g,
tend to 1; moreover, on the right-hand side of Eq. (8) one
can neglect the terms in BS and BS, corning from the
normal ordering of the bosonic operators, with respect to
BS . Qne thus recovers the classical result for the
ground-state energy. '

—2A +28(2S —2S+1)+2KS g, &0 .

(3}A canted ground state (B), characterized by

2A —B
cos(y )= —2KS g, —48S f,

(12a)
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is obtained, for cos(2&p+ ) = 1, provided that
I/&2& ~cos(y )~ &1 and 2—KS g2 4—BS f, &0. In
Fig. 1 this canted ground state corresponds to the region
between f i and f&.

(4) A canted ground state (C), characterized by

2A —B
cos(y ) =

2KS 4BS—f (12b)

B. HAOcase

It would be rather laborious, and beyond the scope of
the present paper, to extend the phase diagram calculated
for H =0 to the general case of finite field. Here we
limit ourselves to calculate the field dependence of the

I

is obtained, for cos(2y+ ) = —1, provided that
~cos(y )~ &I/&2and2KS g, 4BS—f, &0.

In the classical limit S~~, one recovers the results
previously found in Ref. 5 for the ground-state
configurations in zero field. Owing to the inclusion of
quantum e8'ects, we find some modifications in the phase
boundaries with respect to the classical case: see Fig. 1,
where the phase diagram in zero field is shown for S =2.
The analytic expressions for the various phase lines are
reported in the Appendix. Here we only observe that the
curves fo for a & 0 (where a =—A /K and P=B/K) a—nd f,
for any n are of second order, whilst all the other ones
are of first order.

First, it should be noted that the canted ground-state
configuration of type B, not studied in Ref. 5 because of a
more limited range of parameters, is possible only for
high values of the ratio a and f3. Since the interesting
range, for the purpose of studying coupled ultrathin
films, corresponds to small values of a, in the following
we will limit ourselves to consider the canted ground
state of type C (and the excitations with respect to it).
However, the most striking efFect, due to the inclusion of
quantum corrections, is an asymmetry in the phase boun-
daries for a reflection with respect to the +=0 axis.
This leads to the possibility —quite unexpected within a
classical approach —of having an antiferromagnetic
ground state even for 3 )0. Such a feature is clearly a
consequence of the quantum treatment of the biquadratic
exchange in the model.

1.0

0.5

0.0
CQ

II -0.5

-1.0

-1.5
-4 -3 -2 0 1 2 3 4

a= A/K

FIG. 1. Zero-field phase diagram for the ground state of a

system made of two ferromagnetic monolayers, with a fourfold
in-plane anisotropy (E), coupled via bilinear ( A) and biquadrat-
ic (B) interplane exchange and with spin S =2. The insets show

the different arrangements of the magnetizations in the two cou-

pled films. The equations for the phase boundary lines are given

in the Appendix. First- and second-order transition lines are
denoted by heavy solid and light solid line-types, respectively.

magnetization when the field is applied along a direction
of high symmetry for the in-plane anisotropy E, i.e.,
along a hard axis (e.g. , [101]),or an easy axis (e.g. , [100]).

1. H along a hard axis

Starting from a canted ground state of type C in zero
field, let us now suppose to apply a magnetic field parallel
to the film plane along a hard axis:
P=(2n+1)(m/4)(n =0, 1,2, . . . ). Since, for H=O, the
magnetizations of the two films are disposed symmetri-
cally with respect to the hard axis (see Fig. 1), the effect
of increasing the magnetic field will simply be to reduce
the canting angle y, while leaving cp+ unchanged with

respect to the H =0 case. For sufficiently high values of
the field, a ferromagnetic ground state will be found, with
the magnetizations of the two films completely aligned
along the field direction. In conclusion, for H applied
along a hard axis, by symmetry reasons one has
cos(2g+ ) = —1 and cos(g —y+ /2) =1, so that Eq. (11b)
is satisfied and Eq. (1 la) takes the form

' cos
1 1+
2

2A —B
cos

2KS g 4BSf—l gP~H
- sin

2S 2KS g 4BSf— (13)

In the liinit of zero field, it is immediate to solve Eq. (13),
and the ferromagnetic (F), antiferromagnetic (AF) and
canted (C) ground states discussed at the previous para-
graph are correctly recovered. For HWO, the antiferro-
magnetic ground state is no more allowed. One finds ei-
ther a canted ground state, when the term in braces in
Eq. (13) vanishes, or a ferromagnetic one, when
sin(y /2)=0. From the analysis of the second deriva-

I

tives, one finds that the ferromagnetic ground state is
favored provided that the field overcomes a critical value:

H &H, = [ —22+B 4BS2f, +2KS g, ]-
gPa

From this equation it is clear that, when the field is ap-
plied along a hard axis, the quartic in-plane anisotropy K
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opposes itself to the attainment of the ferromagnetic or-
der.

In Fig. 2 we report the mean of the T =0 magnetiza-
tions of the two coupled films, M/M, =cos(ip /2),
(M, = saturation magnetization) as a function of the in-
tensity of the magnetic field, applied along the hard axis.
One finds that the saturation of the magnetization occurs
just at the critical field H„ for which the canting angle

vanishes.

1.0

05

0.0
1 2

H(kG)

2. H along an easy axis

Starting from a canted ground state of type C in zero
field, let us now suppose to apply a magnetic field parallel
to the film plane along another direction of high symme-
try, i.e., along an easy axis: f=n(m/2)(n =0, 1,2, . . . ).
In this case, the ground-state configuration is determined
by two independent variables: The canting angle y and
the angle I'=y+/2 formed by the vector sum of the
magnetizations in the two films with the field direction.
Thus, for field applied along an easy axis, one has to solve
a truly two-dimensional minimum problem, Eqs. (1 la)
and (1 lb), in order to find the ground-state configuration.
In general, this can be done only numerically.

&n Figs. 3(a)—3(c) we report the mean of the T =0 mag-
netizations of the two coupled films

+c

1.0

0.5

0.0

1.0

0.0

&ca

2
H(kG)

H(kG)

1.0

0.5

0.0

1.0

0 1 2 3 4 5 I
H(kG)

FIG. 3. Mean of the T =0 magnetizations of the two coupled
films as a function of the intensity of a magnetic field, applied
along an in-plane easy axis I001], for selected values of the
fourfold in-plane anisotropy K: (a) K =0.10 K; (b) K =0.15 K;
(c) K=0.20 K. The other Hamiltonian parameters are the
same as in Fig. 2.

M 1=—[cos(y, )+cos(yz)]
S

0.5
1

cos I — +cos I +
2 2 2

0.0

1.0

0.5

0.0

0 1 2 3 4 5 e T
H (kG}

0 1 2 3 4 5 6 7
H(kG)

as a function of the intensity of the magnetic field, ap-
plied along the easy axis, for selected values of the in-
plane anisotropy K.

In cases a and b, which refer to low values of E, two
critical fields are found. In correspondence to the first
one, H, &, the angle I changes abruptly from a finite value
to 0, while the canting y is still finite. Thus, for H & H~,
one has a highly symmetric canted ground-state
configuration, with the magnetizations of the two layers
forming opposite angles with the field direction. The sat-
uration of the magnetization occurs at the second critical
field

FIG. 2. Mean of the T=0 magnetizations of the two coupled
films as a function of the intensity of a magnetic field, applied
along an in-plane hard axis [101], for selected values of the
fourfold in-plane anisotropy K: (a) K =0; (b) K =0.10 K; (c)
K =0.20 K. The other Hamiltonian parameters are fixed to
A = —0.04K;B = —0.02K;S=2.

H = [—2A+B 4BS f 2KS g ]— —5
c2 S S

(H,~)H„), for which also the canting angle y becomes
zero. Clearly, in the case of a field applied along the easy
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axis, the in-plane quartic anisotropy E favors the attain-
ment of the ferromagnetic order.

In case c, corresponding to a higher value of K, only
one critical field is found, 0,1

——H, 2, at which the angle I
and the canting y simultaneously change from a finite
value to 0 in an abrupt manner.

It is worthwhile to observe that, for magnetic field ap-
plied along an easy axis, and for opportune thickness of
the nonmagnetic spacer (corresponding in our model to
opportune values of the interlayer exchange parameters),

a field dependence of the magnetization very similar to
that obtained in our Fig. 3(c) was observed in Fe/Cr/Fe
trilayers [see Fig. 10(e) of Ref. 5], while in some
Fe/Cu/Fe samples evidence was found for two critical
fields [see Fig. 7(a) of Ref. 8], like those observed in our
Figs. 3(a) and 3(b).

We conclude this paragraph by observing that the
ground-state configuration could have also been obtained,
in an equivalent way, from the one-boson Hamiltonian
~() )

[a)(lII)+a)(lII)]+[a2(l)I)+a2(III)]][AS 'BS—+—2BS f, cos((p2 —y))]sjn((p2 —g)))
)

+ g gj[a)(lII)+a)(1)I)][ KS g, sin(4&, ) gpsH—S sin(@—
qc&()]] .

/=), 2 I
II

(14)

In fact, by requiring the coefficients of the one-boson terms ([a)+a, ] and [a2+a 2 ] ) in Eq. (14) to vanish, one recovers
the two conditions for E((p), (p2) to have an extremum. Reversely, one can easily verify that, in correspondence to the
values of y) and (p2 which minimize the ground-state energy E (7}()„y2), the one-boson Hamiltonian 8'" vanishes.

III. SPIN-WAVE FREQUENCIES

Performing the Fourier transformation in the film plane, where translational invariance is preserved,

"(/NII III

ak, = ge
'

" "a,(l„),
QNII II(I

the two-boson Hamiltonian %( ' takes the form

~(2)—~(2)+~(2)
h nh

The Hermitian part &P' of the bilinear Hamiltonian reads

II™}~ 7

I, m =1,2kll

where the diagonal elements are given by

A&& =4JS [1—
y(k)I ) ]+gy ~H cos(g —

(p& )+DSf, + AS cos(()()2—
(p) )

,'BS[—3(2—S——1) cos ((p2
—

(p, )+2 cos((I()2 —y, )+(2S —1) ]

—
—,'K(2S —1){[

—4S +7S—4+s(3S —2)]+—', (S —1)(2S—3}sin (2y()],

B((= DSf, ——'BS(2S——1) sin (q&2
—

(p) )
—

—,'K(2S —1)[(3S—2)(1 —E)+—,'(S —1)(2S —3) sin (2p()],

(15)

(17)

(18a}

(18b)

and the off-diagonal ones (1Am ) by

= A (
= —

—,
' AS [1+cos(7p2 —

7}())) ]
—

—,'BS[(2S—1) cos ((}(72
—y) )+2S(S—1 }cos(7}(72—&((7) )+ (

—2S +2S—1)],
(18c)

B( =B (= —
—,
' AS[cos(7(()2—(p)) —1]——,'BS[(2S—1) cos (y2 p )+((( ——2S +2S—1)cos((p2 ))(p—2S(—S —1)] .

(18d)

In Eqs. (18) one has y(k(I) =—,'[cos(k„a)+cos(k, a) ], with —m. ~ k„a,k, a ~ +mand the angles .
(}()1, (Ip2, and g depend on

the type of ground-state configuration and on the direction of the magnetic field. Notice that in Eqs. (18) the kinematic
consistency is satisfied both by the easy-plane anisotropy D and the cubic anisotropy K in the case c,= 1 (bulk anisotro-

py limit), since the former does not contribute to the energy of the excitations for S =
—,
' and the latter for S & 2.

The non-Hermitian part S(„))of the two-boson Hamiltonian is
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&'„„'=—g g (a1, &a „,)pD+ ,'B—S(S——,') sin (pz —p, )+—,'K[(3$ —2)(1—E)+—,'(S —1)(2S—3) sinz(2q&, )]] . (19)
], E=]2 II

—
I

II

From Eqs. (16) and (19) it appears that the bilinear bo-
sonic Hamiltonian &' ' is a non-Hermitian operator:
This is a well-known drawback of the Dyson-Maleev
transformation. Moreover, in the non-Hermitian part
&'„z', the kinematic consistency is not satisfied. Similar
problems, related to the use of the Dyson-Maleev trans-
formation, were found in the study of the magnon spec-
trum of a Heisenberg ferromagnet with easy-plane anisot-
ropy. In that case, Rastelli and Tassi performed a gen-
eralized Bogoliubov transformation in order to diago-
nalize the Hermitian, kinematically consistent part of the
bosonic bilinear Hamiltonian; treating all the remaining
as a perturbation, they were able to prove that the T =0
magnon spectrum satisfies the Goldstone theorem " [i.e.,
co(k)~0 for k —+0] and is kinematically consistent (i.e.,
the easy-plane anisotropy does not contribute to the ener-

gy of the excitations for S =
—,') within terms of the order

[D/2JSz) f, . We assume that also in the more compli-
cated case under study, the Hermitian and kinematically
consistent part of the bilinear Hamiltonian %11, ' should
be a good starting point for a perturbative expansion, but
we do not perform it explicitly.

In order to find the normal modes of the Hamiltonian
(17), we will use a Green's-function formalism, previously
developed for the study of magnetic films. We define

I

the Fourier transformed retarded Green's functions

61 (kl, E)=((a1, 1, 1, ))x,

G1 (k„) (20)

Writing their equations of motion, the spin-wave frequen-
cies are obtained from the poles of the Green's functions
as the eigenvalues of the nonsymmetric 4 X4 real matrix

'
A]1 A 12 B]1 B]2

A 21 22 21 22

—B —B —A11 12 » —A 12
(21)

—B —B —A —A21 22 21 22

where the elements of the dynamical matrix T(k~~} are
defined by Eqs. (18). It is worthwhile to notice that, since

T(k1) and V'( —kl) have the same eigenvalues, half of
them are positive and half negative, with the same abso-
lute value. This is a well-known feature of the energy
spectrum of a nondiagonal bilinear Hamiltonian, such as
(17).

The dispersion relations of the magnetic excitations are
found solving a biquadratic equation and turn out to be

a12~(k, ~)

A ]]+A22 B»+B222 2 2 2

2
+(A, z

—B12)

A]1 —A 22 B» —B22
2

2 2
+[~12( 11+~22} B12(B11+B22}]

' ]/2

12(B11 22 } 12( ~11 ~ 22 }] (22}

It is interesting to find the explicit expressions for the
spin-wave frequencies in some limiting cases with high
symmetry, such that A» = A22 and B» =B22.

A. H=Ocase

In the absence of an external field, we suppose the
ground-state configuration to be a canted one of type C.
Thus, by symmetry reasons one has sin (2p, ) =sin (2yz),
so that A» = A» and 8» =B».

B.H along a hard axis

When a magnetic field is applied along a hard axis, by
symmetry one has sin (2y, )=sin (2yz) and
cos(p qr, )=cos(g pz—) (g=m/4), —so that also. in this
case A» = A 22 and 8» =822.

C. H along an easy axis and H & H, &

When the magnetic field is applied along an easy axis,
and it is greater than the first critical field H, ], the mag-
netizations of the two coupled layers turn out to be
symmetrically disposed with respect to the field direction.
Thus, also in this case one has sin (2p, )=sin (2qrz) and
cos(p qr, )=cos—(p —yz) (/=0), so that A» =Azz and

&]]=&22 ~

It is worthwhile to mention that, in both cases B and
C, a further simplification in the dispersion curve,
8]2=0, occurs when the magnetic field overcomes the
critical value for which the two magnetizations of the
coupled layers align themselves along the field direction:
H & H, for H along a hard axis; H )H, 2 for H along an
easy axis.

In all the high symmetry cases, for which A» = A22
and B11=Bzz, Eq. (22) takes the form [we set e=0 in

Eqs. (18)]
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co„(ki)=(A |i+A i2) —(B„+Bi2)2
= {4JS[1—y(k&}]+gpsH cos(Q —yi)+2KS g, [l —2sin (2yi)]j

X {4JS[1—y(k1) ]+g@AH cos(g y—, ) —AS [1—cos(p2 —p, )]+2DSf,

+ ,'BS—[(2S—1)2 cos2(qz —
q&)

—2(2S —2S+ 1)cos(y2 —y&)+ 1]

+ —,'K(2S —1)(2S —2S+1) KS—g, sin (2y, ) j,
kll) (A» A, z) —(B„—B,z)

= {4JS[1—y(kii)]+gpsH cos(g —y, )+2AS cos(y2 —y, )

+BS[2(2S —1) cos (y2 —y, )—cos(y2 —
tp, )

—(2S —1) ]+2KS g, [1—2sin (2y, )]j
X {4JS[1—y(ki)]+gpsH cos(g —y, )+ AS[1+cos(y~ —p, )]+2DSf,

+ ,'BS [(—2S—1} cos (y2 —
tp, )+4S(S—1)cos(tp2 —

y&)
—1]

+-,'K(2S —1)(2S —2S+1)—KS g, sin (2q, )j .

(23a)

(23b)

From the analysis of the eigenvectors of the dynamical
matrix V(kii), one can see that the frequency co„corre-
sponds to an acoustic mode, i.e., to an in-phase motion of
the spins, whilst co, to an optical one, i.e., to an out-of-
phase motion. In fact one has TQ =co„'M and
TV=co,~V, where the eigenvectors 'M and V take the
form

Vi

Vi

(24)

V2

IV. RESULTS AND DISCUSSION

In this section we present and discuss the results for
the field dependence of the spin-wave frequencies. We
suppose the magnetic field to be applied within the film
plane along a direction of high symmetry. We limit our-
selves to the study of the energy gaps, which in a real sys-
tem could be measured, e.g., by means of the inelastic
Brillouin light-scattering technique.

A. K =Ocase

I.et us first consider the field dependence of the fre-
quencies of the acoustic and optical modes in the limiting
case of zero in-plane anisotropy, E =0. For zero field,
substituting into Eqs. (23) the explicit expression for the
canting angle, cos(q&2 —y, ) =(2A B)/ 4BS f, , —one-
obtains

co„(kii)= {4JS[1—y(ki))] j

X {4JS[1 y(kii}]+2DSf j (K:0 H:0),
(25a}

coop(kii): {4JS[ 1 y(klan)] 4BS f [ 1 cos (+2 Ip&)] j

X {4JS[1—y(kll)]+2DSf, j (K =O, H =0
(25b)

It is apparent from Eqs. (23a) and (25a) that the fre-

quency ro„(ki) of the acoustic mode vanishes for ki~0:
Such a Goldstone mode is related to an in-phase rotation
of the magnetizations of the two coupled layers within
the film plane (thus with zero cost in the easy-plane an-

isotropy D), keeping the canting angle constant (thus
with zero cost in the interlayer exchange couplings, A

and B).
In contrast, Eq. (25b) shows that the frequency co,~(kii)

of the optical mode does not vanish for kli~0, in the
presence of a finite easy-plane anisotropy D. In fact, this
mode is related to an out-of-phase motion of the magneti-
zations of the two coupled layers, which makes them get
out of the film plane in opposite directions; moreover, the
in-plane component of the out-of-phase motion causes
the canting angle to change linearly in the Auctuations.
In the absence of the easy-plane anisotropy D =0, also
the optical mode would become a Goldstone one, since
the two magnetizations would be allowed to fluctuate
perpendicularly to the film plane with no cost in D and
without change in the canting angle at linear order in the
fluctuations, thus with no cost in the interlayer couplings
A, B. Clearly, the occurrence of two Goldstone modes for
zero field and anisotropies, could have been predicted at
the outset, as a consequence of the two continuous sym-
metries displayed by the Hamiltonian (1) for D =0,
K =0, H=O.

The field dependence of the acoustic and optical modes
for kjj =0 and zero in-plane anisotropy K =0, is displayed
in Fig. 4(a). As the field increases, an acoustic spin-wave
excitation away from the canted ground state has to over-
come two energy barriers: One to deviate from the in-

plane field direction and one to move out of the film

plane. The first barrier is proportional to H. The second
one depends on all the Hamiltonian parameters, but for
the set of parameters chosen for Figs. 4 and 5, which are
of the correct order of magnitude for describing a real
system, such as Fe/Cr/Fe, it is mainly determined by the
easy-plane anisotropy D. Thus it results that the frequen-

cy of the acoustic mode increases monotonica11y with in-

creasing H. For H )H„ taking into account that



SPIN-WAVE STUDY OF THE MAGNETIC EXCITATIONS IN. . . 3291

Hcx

0 1 2 3 4 5 I 7
H(RG)

Hc
J,

2
H(jtG)

Hca Hcs
J, J,

0 1 2 3 4 5 I 7
H(LING)

Hc
J,

H(RG)

Hcc Hcs
J,

0
0 0 2 3 4 5 I 7

H(ltG)

FIG. 4. Field dependence of the acoustic (dashed line) and
optical (full line) spin-wave frequencies at zero wave vector,
k1=0, for H applied along a hard in-plane axis [101],for select-
ed values of the fourfold in-plane anisotropy K: (a) K =0; (b)
K =0.10 K; (c) K =0.2 K. The other Hamiltonian parameters
are fixed to A = —0.04 K; 8 = —0.02 K; D = 1 K; S =2.

yi =y2, g= m'/4, one has simply

0)=V gp&H (gp& H+2DSf, )

(EC =0, H &H, ) . (26a)

co, (kl =0)=QgP~(H H, )[gP~(H H, )+2DSf, ]— —

(K=0, H &H, ) . (26b)

The Geld dependence of the optical mode is quite
different. In this case one can easily show, by substitut-
ing Eq. (13) into the second brace on the right-hand side
of Eq. (23b), that the energy barrier to move out of the
film plane is constant and equal exactly to 2DSf, . In
contrast, the energy barrier for in-plane deviations from
the canted ground state depends on the field. More pre-
cisely, upon H approaching H„ the latter energy barrier
decreases (i.e., the system becomes more and more isotro-
pic), until when the field increases further, it constitutes
itself an energy barrier. At H =H„ the first brace on the
right-hand side of Eq. (23b) vanishes, and so does the gap
of the optical mode. For H &H, one has the simple
dependence

H(kG)

FIG. 5. Field dependence of the acoustic (dashed line) and

optical (full line) spin-wave frequencies at zero wave vector,
k1=0, for H applied along an easy in-plane axis {001],for
selected values of the fourfold in-plane anisotropy K: (a)
K=0.10 K; (b) K=0.15 K; (c) K=0.20 K. The other Hamil-

tonian parameters are the same as in Fig. 4.

B.General case EAO

In Figs. 4(b), 4(c), and 5 we report the dependence of
the acoustic and optical frequency gaps on the intensity
of a field applied within the film plane, along a hard axis
and an easy axis, respectively. First of all, we observe
that, in the easy case, the frequency gaps present discon-
tinuous jumps in correspondence to H„, the critical value

of H for which the ground-state configuration undergoes
an abrupt change, from a finite value to zero, in the angu-
lar variable I [see Figs. 3(a), 3(b), 5(a), and 5(b)], or in
both I and y [see Figs. 3(c) and 5(c)]. We remind the
reader that I"=y+/2 denotes the angle formed by the
vector sum of the magnetizations of the two coupled lay-
ers with the field direction, while y denotes the canting
angle.

Common to the hard and easy case is the feature of the
vanishing of the optical gap at the saturation field (H, in

the hard case and H, z in the easy case, respectively). This
is due to a field-induced mechanism of isotropization of
the in-plane motion, similar to the one discussed in the
case K =0. In contrast, the field dependence of the
acoustic mode is quite different in the hard and easy
cases.



3292 MACCIO, PINI, POLITI, AND RETTORI 49

In the hard case, the acoustic mode presents a mono-
tonic increase with increasing H, as in the K =0 case.
The only obvious difference is that for KXO also the
acoustic mode presents a gap in zero field, since the rota-
tional symmetry within the film plane is broken by the
fourfold anisotropy.

In the easy case, a minimum is found also in the field
dependence of the acoustic mode, in correspondence to
the first critical field H, I, for which the field direction be-
comes a symmetry axis for the canted ground-state
configuration. It should be noted that for H &H, &, Eq.
(23a) does not hold: One must resort to Eq. (22), thus in
this field range it is dificult to understand the dependence
of the gap on the Hamiltonian parameters. From Figs.
5(a)—5(c), one can observe that for H =H„ the gap of the
acoustic mode increases with increasing K, suggesting
that the minimum is probably due to an incomplete com-
pensation between the field and the in-plane anisotropy
E.

V. CONCLUSIONS

We have investigated, within a microscopic and quan-
tum approach, the ground-state configuration and the
spin-wave excitations of a model of two ferromagnetic
monolayers coupled by bilinear and biquadratic ex-
change, in the presence of a Geld applied in plane along a
high-symmetry direction.

For the H =0 phase diagram, with respect to the clas-
sical case, we have found some modifications in the
phase boundaries owing to the inclusion of quantum
corrections. For the applied field, we have calculated the
mean of the T =0 magnetizations of the two coupled lay-
ers versus H, for selected values of the in-plane anisotro-
py. Such M(H) curves present changes in slope at the
saturation field, where the canting angle y goes to zero;
also, in the easy-axis case, M (H) exhibits a discontinuity
at the same field as I .

Using a Green's-function method, we have calculated

the spin-wave frequencies of the system in analytic form.
Minima are found in the field dependence of the acoustic
and optical frequency gaps, in correspondence to the
aforementioned critical fields. The calculated minima
have been attributed to a field-induced mechanism of iso-
tropization of the system within the easy plane. We sug-
gest that they could be experimentally observed by Bril-
louin light scattering in sandwich structures made of ul-

trathin ferromagnetic films separated by a nonmagnetic
spacer, provided that (a) the intraplane interaction is
much greater than the interlayer ones and (b) domain
effects are fairly unimportant (i.e., provided that the mul-

tidomain state observed in Ref. 5 is a very unstable inter-
mediate state between monodomain stable
configurations, with respect to which the spin-wave exci-
tations are calculated). Both conditions seem to be
satisfied in the case of Fe/Cr/Fe, Fe/Al/Fe, and
Fe/Au/Fe. In the end, the fact that the discontinuities
in the gap of the optical mode are very large and strongly
dependent on A and B, makes possible the experimental
determination of the above parameters.

Note added in proof. After submission of this
manuscript, the experimental paper by B.Rodmacq et al.
[Phys. Rev. B 48, 3556 (1993)] had been published. The
authors revealed a crossover from a canted state at low
temperature to an antiferromagnetic one beyond 100 K
in Nis, Fels/Ag multilayers, owing to the temperature
dependence of the biquadratic exchange. This fact led us
to investigate the spectrum of the magnetic excitations
with respect to the antiferromagnetic ground state in the
presence of bilinear and biquadratic exchange. See: M.
Maccio, M. G. Pini, P. Politi, and A. Rettori, in Proceed-
ings of the 38th MMM Conference, Minneapolis, Minneso

ta, 1993 [J.Appl. Phys. (to be published}].
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APPENDIX

Here we report the analytic expressions for the boundary lines in the zero-field phase diagram (see Fig. 1)

fo(a) =2a, Va,
—1+2af, (a)= for a &0,

(2S —1) +1
—1 —2'f, (a)— for u) 0,

(2S —1) —1

2a (2S —1) +2
(2S —1) +1 2[(2S —1) +1]

(A 1)

(A2b)

f,(a)=—

[(2S—1) +2] 2a(2S —1)
4[(2S—1} +1] [(2S—1) +1]

+ (2S —1) —2

2[(2S —1) —1]

[(2S—1) —2] 2a(2S —1)
4[(2S —1) —1] [(2S —1) —1]3

1/2

i /2

for ca &0,

for o. &0,

(A3a)

(A3b)
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4a++Sa (2S —1) +(2S —1)s—2f,(a)=— 4, Va.
(2S —1) —2
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