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Using spin-dynamics techniques we have performed large-scale computer simulations of the dynamic

behavior of the L XL XL body-centered-cubic classical Heisenberg ferromagnet with L ~40 in the vi-

cinity of the critical point T, . The temporal evolutions of spin configurations were determined numeri-

cally from coupled equations of motion for individual spins by a fourth-order predictor-corrector
method with initial spin configurations generated by Monte Carlo methods. The space- and time-

displaced spin-spin correlation functions and their space-time Fourier transforms were calculated to
determine the neutron-scattering functions. We developed a dynamic finite-size scaling theory for the

neutron-scattering function at T, and used it to extract the dynamic critical exponent z. Within our

resolution limit, the value of z was estimated to be 2.4'?8(28), in excellent agreement with the dynamic

scaling prediction, and dynamic scaling was found to be valid for momentum transfer q up to 0.4m in the

(1,0,0) direction.

I. INTRODUCTION

The static critical behavior of the three-dimensional
classical Heisenberg ferromagnet has been well under-
stood due to extensive studies carried out using a variety
of approaches. ' In a recent high-resolution Monte
Carlo study, the critical temperature and various static
critical exponents for the simple cubic and body-
centered-cubic systems were estimated with precision
equivalent to, or better than, that found with any other
method, and the hypothesis of universality for static
properties was substantiated once again. In contrast, the
dynamic critical behavior is much less well understood.
In analogy to static critical properties, dynamic critical
behavior is expected, ' '" by generalizing the static scal-

ing laws' ' to dynamic critical phenomena, to be
describable in terms of a dynamic critical exponent z,
which depends on the conservation laws and which, in

some cases, is related to static critical exponents. ' In
their classic work' on the theory of dynamic critica1 phe-
nomena, Hohenberg and Halperin proposed a number of
different dynamic universality classes based upon the con-
servation laws. By far the greatest amount of work has
been carried out for class 2 models which have no con-
served quantities. The best example in this class is the
stochastic Ising model, for which the time dependent
behavior has no true dynamics but is only relaxational.
Extensive Monte Carlo simulations' have already been
performed an this xnodel but the results shed no light on
the dynamic critical behavior found in most physical sys-
tems, although the model is itself of interest. A similar
example in this class is the classical Heisenberg model
treated stochastically via Monte Carlo simulations. '

The classical Heisenberg ferromagnet of class J, ' on the
other hand, has true dynamics with a conserved order pa-
rameter. Spin variables in this model are of continuous
degrees of freedom and their real-time dynamic behaviors
are governed by coupled equations of motion. Using dy-

namic scaling Halperin and Hohenberg established a rela-
tion between the dynamic critical exponent and static
critical exponents of this model, "' ' which is supported
mode-coupling theory' ' and renormalization-group
heory 22 —26

The europium compounds EuO and EuS are believed
to be the two best model substances for the classical
Heisenberg ferromagnet. ' Exchange interactions be-
tween spins in these two ferromagnets are appreciable up
to next-nearest neighbors; the nearest-neighbor interac-
tion is ferromagnetic in both materials and the next-
nearest-neighbor interaction is ferromagnetic in EuO but
antiferromagnetic in EuS. Extensive experiments,
most of them using inelastic neutron-scattering tech-
niques, have been performed on the two materials to in-

vestigate critical dynamics and results were generally
consistent with the dynamic scaling prediction.
More detailed comparisons between experimental results
and those from high-temperature computer simulations '

and from mode-coupling calculations, both consid-
ering nearest-neighbor and next-nearest-neighbor interac-
tions, have also been made and a satisfactory agreement
was found. A stringent test of the dynamic scaling pre-
diction by experiments, however, is hindered by the
long-range dipolar interactions in the two materials. The
long-range dipolar interactions cause a crossover from
Heisenberg ferromagnet behavior to dipolar ferromagnet
behavior and therefore a substantial change in results for
the dynamic critical exponent.

In this paper we present results of large-scale computer
simulations of the dynamic critical behavior in the body-
centered-cubic classical Heisenberg ferromagnet of up to
128 000 spins. Previous simulations treated system sizes
and temporal evolution periods which were both more
than an order of magnitude smaller than ours. '
Since next-nearest-neighbor interactions and dipolar in-

teractions are exc1uded in our model, we are able to test
dynamic scaling more stringently. In Sec. II we define
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our model and briefly review the dynamic scaling theory.
We then describe our method and develop a dynamic
finite-size scaling theory for the neutron-scattering func-
tion at the critical temperature. Results will be reported
in Sec. III and conclusions drawn in Sec. IV.

II. MODEL AND METHODS

A. Model

The classical Heisenberg ferromagnet is defined by the
Hamiltonian

&=—JQS, S, ,

where S,=(S,",S» S;) is a three-dimensional classical
spin of unit length at site r and J is the ferromagnetic
coupling constant between nearest-neighbor spins S, and
S, We consider L XL XL body-centered-cubic systems
with periodic boundary conditions; the sum in Eq. (1)
runs over all nearest-neighbor pairs of lattice sites. The
dynamics of the spins is described by coupled equations
of motion and the time dependence of each spin S,(t)
can be determined from integration of these equations.

B. Dynamic scaling

The space-displaced, time-displaced spin-correlation
function and its space-time Fourier transform are funda-
mental in the study of critical spin dynamics. ' ' The
former is defined, with k =x,y„or z, as

C"(r—r', t ) = (S,"(t)$,"(0) &
—(S,"(t)& (S,"(0) &, (2)

+ . k, dtX exp(i cot )C (r —r', t )
00

(3)

The neutron-scattering function S"(q,co) is an experimen-
tal observable, for momentum transfer q and frequency
transfer co. Generally it depends on the correlation
length g and may be written as"

where the angle brackets ( & denote the ensemble
average and the latter is given by

S"(q,co)=g exp[iq (r —r')]

where z is the dynamic critical exponent, and that the
function f depends only on the product of qg but not on
q and g separately. Therefore S& (q, co) is simplified as

$&(q, co) = S&(q)f,qg
co q, corn q»

In the three-dimensional classical Heisenberg fer-
romagnet there exist propagating spin-wave excitations at
a temperature T below the critical point T, . The spin-
wave frequency co, (q) is approximately proportional to q
at small wave vectors"*' ' '

co, (q) =Dq (10)

where 8 is the spin-wave stiffness constant. It is predict-
ed independently by the mode-coupling theory and hy-
drodynamic theory that

D-(1—T/T, )' P,

where v and P are static critical exponents. Because the
correlation length g diverges at T„g-(I —T/T, ) ", dy-
namic scaling assumes that co, (q} and co (q, g) behave in
the same fashion and thus

(12)

A comparison between Eq. (11) and Eq. (12} leads to the
dynamic scaling law

z =2+(v —P)/v=3 —P/v . (13)

This dynamic scaling law was predicted independently by
both the mode-coupling theory' ' and the renor-
malization-group theory. In the paramagnetic re-
gion where T & T„ there exist no propagating spin-wave
excitations at long wavelengths but the relevant charac-
teristic frequency co (q) is still approximately propor-
tional to q, "'

co (q)=D'q (14)

In the dynamic scaling theory it is assumed that the
median frequency co (q, () is a homogeneous function of
q and (, i.e.,

co (q, g) =q'A(qg),

k 21T k NS
g ( q» co ) S

g ( q )f
( g

)qg»» (4)
where D' is the spin-diffusion constant whose critical
behavior is given by

where co (q, g) is a characteristic frequency, $&(q) is
given by the sum rule

S~(q) =I $~(q, co}

D'-(T/T, —1)" (15)

If the temperature is high enough so that q g « 1, the
shape function f is a simple Lorentzian centered at co=0
with a width given by characteristic frequency co

and f is a shape function satisfying the normalization

I f(x, q, g)dx =1 . (6)

The characteristic frequency co (q, g) is a median fre-
quency determined by the constraint

da)
(7)

m

C. Simulations

Using Monte Carlo methods and spin-dynamics tech-
niques, we simulated the dynamic behavior of the body-
centered-cubic classical Heisenberg ferromagnet with
16~L ~40 over a temperature range around the critical
point, T, =2.054 241J. Individual simulations consisted
of two major stages as described below.
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First, Monte Carlo methods were employed to sample
an equilibrium spin configuration from a canonical en-
semble. We used a fully vectorized checkerboard algo-
rithrn which hybridized the Metropolis method and the
overrelaxation method. ' Every hybrid step consisted
of two Metropolis steps and eight overrelaxation steps
sequentially. (Such an algorithm reduces critical slowing
down quite significantly. ) At the critical point, for all

system sizes we investigated, the measured integrated au-
tocorrelation time for the total energy and that for the
magnetization are both smaller than 100 hybrid steps.
We discarded the first 1000 hybrid steps for equilibration.

Then we solved the coupled equations of motion nu-

merically. We used initial spin configurations generated
by the Monte Carlo algorithm and a vectorized fourth-
order predictor-corrector method to perform the in-

tegration. We chose a Cartesian coordinate system in the
spin space such that its z axis was parallel to the magneti-
zation of the spin configuration and carried the integra-
tion out to a maximum time t,„=120J with a time

step b, =0.01J '. The total energy, the magnetization,
and the length of individual spins should be constant in

time, and indeed at T, with L =40, a rnaximurn variation
in the fifth digit of the total energy and in the sixth digit
of the length of individual spins was observed. For the
magnetization the variation in the z component, whose
value was typically about 0.15, occurred in the fourteenth
digit, while the magnitudes of both x and y components
remained smaller than 1 X 10 ' throughout the integra-
tion. We also performed additional integrations for some
initial spin configurations to the same t „with
6=0.005J ' and found that the difference in data ob-
tained was smaller than the statistical fluctuations result-

ing from different initial spin configurations.
Because S(q, co) provides access to the dynamic

behavior, it would be ideal if all values of C (r —r', t)
could be stored so that the neutron-scattering function
could be calculated later for any q and co of interest.
However, in a single simulation for a system size L, the
number of calculations involved in computing all possible
spin correlations of a time-displacement range of 100J
at time intervals of 0. 1J ' is roughly about 1X10L
and the number of data thus generated is about
3X10 L . Therefore it is impractical to compute and
store all spin correlation functions for systems as large as
L =40 because of currently limited computer resources.
We developed a vectorized algorithm to calculate partial
spin sums "on the fly" to substantially reduce the storage
needs as well as CPU time. The price we paid was to lim-

it ourself to a single q direction. The basic idea of the al-

gorithm is rather straightforward. If the direction is
chosen to be, say, q=(q, 0,0) with q determined by the
periodic boundary conditions,

g exp[iq(I, —r,')]S,"(t)S,",(0)

= g exp[iq(r„r'—)]

X g S,'(t) g S„".(0)

where the subscripts in r or r' denote the Cartesian com-
ponents. Therefore we can compute [Q„„S,"

] as a func-

tion of r, for each measurement during the simulation
and calculate [[g„„S,"(t)][+, ,S,"(0)]}as a function

of t for each r at the end. Because of translational in-

variance of the spin-spin correlation function in time, we
averaged the result over 201 different time-starting points
evenly spaced by 0. 1J

Sk(t) y Sk (())
I I

y' z z

200

g S,"(t+0.lj)
201 g S,"(0.lj)

I I
1 )Py' z

(18)

Sf~(q co) =S&(q,co)

and a transverse component

(19)

S&(q, co) = —,
' [S&(q,co)+Sf(q, co)] . (20)

Note that, when the magnetization vanishes in the high-
temperature region, such a regrouping is unnecessary be-
cause the system is now rotationally invariant so that the
x, y, and z directions are equivalent by symmetry. In-
stead, we only need to consider

S~(q, cu) =
—,
' [S~(q,co)+S~~(q, co)+S~(q, co)] . (21)

for 0 t t, t ff with t,„„ff= 100J '. Since all three
Cartesian spatial directions are equivalent by symmetry,
we only store the results from Eq. (18), as a function of
the space displacement along an axis direction and the
time displacernent, averaged over the three Cartesian spa-
tial directions.

Multiple simulations were performed for all systems in

order to take the ensemble average introduced in Eq. (2).
We used 100 equilibrium spin configurations for all sys-
tern sizes at T, and 20 to 40 at each temperatures other
than T, for the averages. W'e also averaged results for
k =x and y, since the magnetization is a conserved vector
along the z direction in the spin space so that the
neutron-scattering function S&(q, co) can be regrouped in

terms of symmetry as a longitudinal component

q=, n =+1,+2, . . . , +(L —1),L,
L

(16) D. Dynamic finite-size scaling

excluding q =0, the spatial Fourier transform in Eq. (3)
can be simplified as

Due to limited computer resources, there are two ma-

jor practical limitations on the computer simulation of
dynamic behavior, i.e., finite evolution time and finite sys-
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tern size. The finite time cutoff can introduce many oscil-
lations into the result of the Fourier transform, Eq. (3}.
These oscillations, however, can be smoothed out by con-
voluting the spin-spin correlation function with a resolu-

tion function in frequency, ~' which is one dimension-
al and equivalent to the energy resolution in neutron-
scattering experiments. If we use a Gaussian resolution
function, the smoothed neutron-scattering function is

cutoff

S&(q,co):g—exp[iq (r —r')] f exp(icot)C"(r —r', t)exp
I cutoff

(i5.)'
2 2m

+ oo

S&(q, co')exp
&Z 5.

(~ ) dc'
25„

(22)

where 5 is a parameter determining the resolution in fre-
quency and needs to be chosen properly such that effects
of the cutoff in the evolution time can be neglected. Note
that

S~(q)= f +"S~(q,~)" = f +"
S~(q, ~)":—S~(q) .

(23)

The finite-size effect, on the other hand, can be used to
extract the dynamic critical exponent as has been done in
the static situation. ' In a finite system the divergence of
the correlation length g in the critical region is limited by
the linear dimension of the system, L, Replacing g by L
in the previous equations, we get, for the finite system,

SI (q, co) =co 'Sz"(q)I', qL, , (24)
~m %L ~m SL

coSL (q, co) =G(coL', qL, 5+'),
Sk( )

(25)

where F is an unknown function which depends on the
shape function f. Using Eq. (8) we can further express
SL (q, co } in a scaling form,

Nm I (28)

For the first argument of 0, we fixed the product of q and
L, or more precisely, the value of n as defined in Eq. (16),
since we were interested in only those q values deter-
mined by the periodic boundary conditions. For the
second argument, we chose

simulations, since the characteristic frequency can be es-
timated directly from Eq. (26). We used Simpson's rule
for the numerical integrations involved in Eqs. (22), (23),
and (26). For the time integration in Eq. (22) we used a
time interval of 0. 1J ' but no difference was found using
an interval of 0.2J

We used Eq. (27), rather than Eq. (25), to determine the
dynamic critical exponent z. A major reason was that in-
dividual points in SL (q, co) suffered from statistical fluc-
tuations due to limited number of samples, but these fluc-
tuations can be more or less averaged out in determining
co by the integration and the normalization in Eq. (26}.
Because the function 0 in Eq. (27) was unknown, we ex-
tracted z by self-consistent iterations. A key point of our
scheme was to keep the two arguments of 0, and there-
fore the value of 0 itself, constant in each iteration for all
system sizes, so that

where G in another unknown function. We can also
define a median frequency B for the smoothed neutron-
scattering function SL (q, co),

+ CO

f SL(q, co} =-,'SL", (q) . (26)

It can be shown that

co =L 'Q(qL, 5+'), (27)

where the explicit form for function 0 is also unknown.
Since SL (q, co), SL (q) and 8 can be estimated in simula-
tions, Eqs. (25) and (27) provide an approach to test dy-
namic scaling and to estimate the dynamic critical ex-
ponent z.

In the experiments on critical spin dynamics, the
characteristic frequency co was extracted from a limited
number of experimental data points with the shape func-
tion given in an explicit analytical form. Several
different shape functions have been proposed and the in-
terpretation of the experimental results might be affected
by the choice. This difficulty, however, is avoided in

5 =0.025

Z

(29)

where the resolution coefficient 0.025, in units of J, was
obtained empirically. This value provides a good
compromise between effectively reducing the oscillations
due to t, t ff 100J ' and not excessively broadening the
structure of the neutron-scattering function. In a single
iteration we first picked an initial value z' for z and used
this to determine 5 by Eq. (29) for different L. We then
calculated SL(q, co) and co from Eqs. (22) and (26) for
different combinations of I. and q constrained by the fixed
n value. A new estimate, z'", was finally extracted from
the simple relation Eq. (28), which is a special case of Eq.
(27) with the function 0 being kept constant. We also
tried another value, 0.035J, for the resolution coefficient
in Eq. (29) and found that it did not lead to a statistically
different estimate for z although it did significantly
broaden and smooth the structure of the neutron-
scattering function.
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III. RESULTS
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16

u, (J)
12

8

4

0
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FIG. 2. Dispersion relations for spin-wave excitations in the

x-y plane for 1.=40 and 5 =0.025J at two different tempera-

tures. Because of statistical fluctuations, only a portion of the

dispersion relation at (1—T/T, )=0.05 can be estimated from

the peak position. The solid curve, given by 16 sin (q/4), is the

prediction from the linear spin-wave approximation. The es-

timated error bars are within the symbols.

cal fluctuations, finite-size effects are not so obvious;
there are, however, systematic shifts in the peak position
and in the magnitude of both wings of the transverse
component. For the longitudinal part we can also ob-
serve a systematic change in the intensity at co=0. As we

will see later, a better way to look into the finite-size
behavior is to draw a scaling plot according to Eq. (25) by
fixing the values of qL and 5+'. Finally, in Fig. 4 we

display S(q, co) [see Eq. (21)] for L =40 at T=2.0T, . In
the figure the estimated error bars are shown unless they
are smaller than the size of the points. The dashed line
shown in the figure is obtained by adjusting the total in-

tensity and the width of the Lorentzian function to best
fit the data. At this high teinperature, S(q, co) can be
well described by a simple Lorentzian function convolut-
ed with a Gaussian resolution function.

Because the behavior of Sr (q, co) in the critical region
is not complicated by the residual magnetization as is the
longitudinal one, we will concentrate only on the trans-
verse component in our following studies of the critical
spin dynamics. In Fig. 5 we show the temperature depen-
dence of the spin-wave frequency, read directly from the
peak position at two q values for L =20 and 40, in the vi-

cinity of the critical point. In this figure the estimated er-
ror bars are plotted unless they are smaller than the size
of the points. As one can see from the figure, there is a
systematic rounding for both systems when (1—T/T, ) is

smaller than 0.03. This is clearly due to finite-size effects,
because this temperature range is so close to the critical
point that the correlation length becomes limited by the
linear dimension of the system. On the other hand,
finite-size effects seem to be negligible for the system with

L =40 in the temperature region (1—T/T, ) &0.03. Ac-
cording to Eqs. (10) and (11),if finite-size effects are negli-

gible and the q value is small and fixed, the spin-wave fre-

quency should vary as (1—T/T, )" ~. Curve fits to data
with L =40 and (1—T/T, ) &0.03 yield two consistent

8

S, (g, ~)
12 q=o. 15 m

0
0.0 0. 1 0.2 0.3 0.4 0.5

0. 1 0.2 0.3 0.4 0.5

FIG. 3. Transverse and longitudinal neutron-scattering func-
tions at the critical point. The horizontal bar represents the
"instrumental peak width" due to the Gaussian resolution func-
tion with 5„=0.025J.

FIG. 4. The neutron-scattering function for I. =40 at
T=2.0T, . Simulational results (solid dots) are well described

by a Lorentzian function convoluted with a Gaussian resolution
function (dashed line). The horizontal bar represents the "in-

strumental peak width" due to the Gaussian resolution function
with 5„=0.025J.
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0.30
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~ 40

(5 „=0.025 J

0.10

0.05
O.O 1 0.03 0. 1

1 —T/T

FIG. 5. Log-log plot of temperature dependence of spin-wave

frequency. The data points for L =20 are used only to check
finite-size effects.

1.00

estimates for the exponent (v —P), 0.301(24) from the top
straight line, and 0.331(33}from the bottom one. From
their mean we obtain (v —P}=0.316(21). In the recent
high-resolution Monte Carlo study of the static critical
behavior, the static critical exponents v and P are es-

timated to be 0.7048(30) and 0.3639(35), respectively,
which gives (v —P}=0.3409(65 }. Within their respective
error bars, the estimates from static and dynamic proper-
ties agree.

The dynamic critical exponent z can be extracted from
co by the iteration scheme described in the previous sec-
tion. The self-consistency of the iteration result for n =2
and that for n =3 is demonstrated in Fig. 6 where the
size dependence of B is plotted on a logarithmic scale.
When not shown, the estimated error bars for individual

points are smaller than the size of the points. In the inset

to this figure results of individual iterations with n =2
are shown. The largest and smallest values of z' ' in the
inset are two diferent initial values for two independent
iterations which converge to the same value of z =2.498.
Also shown in the inset is a typical error bar obtained in

the fitting to Eq. (28). From the figure we have the value

of z to be 2.498(15) for n =2 and 2.458(27) for n =3.
Within their respective error bars, the two estimates for z
agree; combining them, we obtain z =2.478(28). Experi-
mentally, z was estimated to be 2.50+0.07, ' which is

consistent with our estimate but with a larger uncertain-

ty.
In accordance with Eq. (25), the dynamic finite-size

scaling behavior of the transverse neutron-scattering
function is plotted in Fig. 7 for n =2, where 5 is given

by Eq. (29) with z =2.478. The estimated error bars for
individual data points are shown unless they are smaller
than the size of the symbols. Within their respective er-
ror bars, data points collapse onto the same curve. Simi-

lar scaling behavior exists for the case of n =3. These re-

sults, therefore, support our estimate for z.
Based on these results, we can now examine the dy-

namic scaling law, Eq. (13). With v=0. 7048(30) and
P=0.3639(35), which were obtained from the high-

resolution Monte Carlo study of the static critical
behavior, the dynamic scaling law predicts
z=2.4837(72). Using the dynamic result (v —P)
=0.316(21) from Fig. 5, together with the static result
for v, we predict z =2.448(32). Within their respective
error bars, these two predictions are consistent and in ex-

cellent agreement with the dynamic scaling value

z =2.478(28). We, therefore, believe the dynamic scaling
law is valid.

It is important to know the region where dynamic scal-

ing is valid. In Fig. 8 we plot B,obtained with 5 given

by Eq. (29}and z =2.478, for several values of n The es-.
timated error bars are all smaller than the size of the
points. The straight lines, all going through the origin,
are linear fits to three data points for the systems with
L =24, 32, and 40. If dynamic scaling is valid, according
to Eq. (28), data points for L =16 and 20 should fall on

~S"(q, ~)

O. 10
v P4

0.02
10 20 30 PQ 50 0.0

500 1 000 1 500

FIG. 6. Finite-size scaling plot for co (with qL =const,
5+*=const) using the converged value for z. Two independent

iteration sequences for n =2 are shown in the inset by different

types of solid triangles and the converged value by the solid dot.

FIG. 7. Scaling behavior of the transverse neutron-scattering

function for n =2 and z =2.478. The maximum value of q in-

volved is 0.25~ for L = 16.
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FIG. 8. Size dependence of the median frequency co at the
critical point with 5 given by Eq. (29) and z =2.478.

IV. CONCLUSIONS

The dynamic critical properties of the classical Heisen-
berg ferromagnet have been studied in our large-scale
computer simulations. Using a combination of Monte
Carlo methods and spin-dynamics techniques, we have

one of these straight lines, within their respective error
bars. From the figure we can see this is the case for
n = 1, 2, and 3. The maximum q value involved here is
q=0. 4m for n =4 and L =20. For n =4, 5, and 6, it
seems that points corresponding to q ~0.5m, e.g., n =4
for L =16 and n =5 for L =20, deviate from the lines,
indicating the failure of dynamic scaling.

solved coupled equations of motion, for systems with as
many as 128000 classical spins, to yield true dynamics.
We developed a scheme of partial spin sums "on the fly,

"
which makes it possible to keep intermediate data of the
space- and time-displaced spin-spin correlation functions
permanently for later analyses. We also developed a dy-
namic finite-size scaling theory for the neutron-scattering
function and found dynamic scaling to be valid for
(q, 0,0) with q up to 0.4m and the dynamic critical ex-
ponent z =2.478(28). This estimate for z is in excellent
agreement with the prediction from the dynamic scaling
law using static critical exponents.

We were able to examine the dynamic scaling theory
and extract the dynamic critical exponent without any
consideration of the explicit expression for the shape
function at the critical point, although the expression it-
self is crucial for successful interpretation of experiments.
In order to use computer simulations to perform a
stringent test of existing analytical expressions for the
shape function, it is necessary to incorporate finite-size
scaling explicitly into the analytical expressions for the
shape function and to improve statistics substantially on
the individual data points of the neutron-scattering func-
tion. These, in fact, are not trivial: The former calls for
more theoretical effort and the latter demands better al-
gorithms and much more CPU time.
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