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Monte Carlo simulations on self-avoiding walks traced on the simple cubic lattice and reported in a re-

cent paper have been extended up to 2999 steps, using the same Alexandrowicz dimerization procedure.

Through this extension, we are able to show that the discrepancy between v«, the scaling exponent for

the correlation length, as determined from renormalization-group calculations, and vMc, the same ex-

ponent determined through Monte Carlo simulations, is an artefact, originating in the fact that Monte

Carlo simulations are restricted to relatively short chains, while to obtain the correct v value using the

latter method exceedingly large chains are required. This finding is in accord with a previous suggestion

by Zifferer. We further show that (r ), the modulus of the mean end-to-end distance, ( r') 'i', the root-

mean-square end-to-end distance, (r, ), the mean radius of gyration, and (r~~) 'i2, the root-mean-square

radius of gyration, cannot be correctly expressed for all N in the range 1(N (2999 using a single

correction to scaling exponent 6&. At least two such corrections to the scaling exponents are required,

and the agreement with the Monte Carlo data is significantly improved if three corrections to the scaling

exponents are introduced, so that one should write (x)=N ' [ao+afN '+a2N +a3N '],
where (x ) stands for one of the above mean values. Consideration of a fourth correction to scaling ex-

ponent 6& does not seem to be warranted for self-avoiding walks, where there is a lower cutoff for N =1.
Further, such a fourth exponent seems devoid of physical significance because of the even-odd oscilla-

tions occurring for the lowest N values in the various mean values (x ), where a fourth exponent has a

non-negligible effect. A five-term expansion is however given here for completeness. The set of the

corrections to the scaling exponents 6;, which, because of universality, is the same for the various mean

values, as well as of the a;"'s, which depend on the mean value considered, follows the somewhat arbi-

trary choice made, within a narrow range of values, for the first correction to the scaling exponent 5&. If
the value 5& =0.50 is adopted, as suggested by graphical analysis of our data, the set which minimizes

the mean-square deviation of the Monte Carlo data is 52=1.0, 63=2.0, and 64=4.0. If the renorma1-

ization group value 6& =0.47 is used instead, the corresponding set is 62=1.05+0.02, 53=2.2+0.2, and

64=4.4+0.4. These two sets are mathematically equivalent for the correct description of our Monte

Carlo data. The precision of our data does not permit one to decide which set, on a physical basis, is the

correct one. In any case, each successive correction to the scaling exponent is found to be, approximate-

ly if not exactly, the double of the preceding one.

I. INTRODUCTION

In a previous paper' it has been found using Monte
Carlo (MC) simulations that for self-avoiding walk's
(SAW's) in three dimensions, the correlation length ex-
ponent v was equal to vMc=0. 5919. This value of v,
while in accord with that found by other investiga-
tors, ' exceeds the value found by renormalization-
group (RG) calculations, which was calculated to be
vR6=0. 588+0.001. One may object that the precision
of the MC data and of the RG calculations, respectively,
are not of such a quality as to be certain that the
discrepancy is real and not simply an artefact. In this
respect, Table I displays the values of vMc on the simple-
cubic lattice found by various authors. The estimated er-
ror and the walk step range, from which these results
have been deduced, is also indicated. Taking account of
the error bars indicated, the least vMc value is

vMc=0. 5892, while the greatest is vMc=0. 5923. This
difference is considerably reduced if the results of Madras
and Sokal are not taken into account. In any case, tak-
ing account of error bars, the least MC value is larger
and lies outside the range of the estimated RG calcula-
tions error. Of course, if the RG error bars are not
correct, it cannot be excluded that the discrepancy be-
tween vMc and v„G is only apparent. However, since it is
well known that vMc values are a function of the number
of steps N in the walk, and presumably tend to a limit as
N becomes infinite, it is quite probable that the discrepan-
cy is due, at least in part, to the fact that vMc has been es-
timated from finite X values. This argument is supported
by the fact that if a series of MC data is divided in a
group of smaller and a group of larger N step values, the
second group always yields smaller. vMc values. Such a
statistical analysis has been performed in two instances in
the past. ' What had not been realized to date is that
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TABLE I. Monte Carlo values vMC for the correlation length
critical exponent, for self-avoiding walks on the simple-cubic
lattice.

At least two such correction to scaling exponents are
needed, unless one is interested only in large values of N
(N & 1000). More generally, one should write

Authors +MC

Estimated
error bars Step range

k

(x) =N' a" + ga;"/N '

Rapaport'
Madras and Sokal
Dayantis and Palierne'
Eizenberg and Klafter

+0.0004
+0.0014
+0.0002
+0.0004

0.5919
0.5907
0.5919
0.5908

120—2400
200—3000

50—800
200-3200

Here the superscript x refers to the mean quantity (x )
considered, and k is an integer presently left unspecified
but at least equal to two.

Now the sheer appearance of curves I and II in Fig. 1

makes one suspect that vao=0. 588 is a more correct
value than vMc=0. 5919. This, because curve I seems to
tend to a finite limit as N increases, as physically re-
quired, while in such a case curve II would decrease to
zero. This is a first indication that Zifferer's contention
might be correct. A more stringent test for this is given

'Reference 4.
Reference 3.

'Reference 1.
Reference 8.

O45 &r &/N

+ curve I

+ curve II
0.44-

0.43-

~+
+

g+
+

0.42-

lnN

0.41

FIG. 1. Mean radius of gyration (r ) over N "' (curve I),
and over N ' (curve II), where ¹isthe number of steps in the
self-avoiding walk. While curve I seems to tend to an upper lim-
it of the order of 0.432 when N increases to in6nity, curve II
would apparently tend to zero. This excludes the Monte Carlo
value vMc=0. 5919 for the correlation length critical exponent
(scaling exponent for mean end-to-end distances in the present
instance) from being correct. The discrepancy with the
renormalization-group value vRG =0.588 probably originates in
the fact that vM& has been deduced from relatively short chains.
(N less than a few thousand steps at most. ) The shape of curve I
indicates that ( rg ) as a function of N, using for v the
renormalization-group value, cannot be adequately described
using a single correction to scaling exponent Al. At least two
such correction to scaling exponents are required (see the text).

within the precision of MC simulation experiments, the
limiting vMc value is not yet attained for several thousand
steps.

Zifferer has been the Grst to argue that the discrepan-
cy between vMC and vR& is due to the fact that vMC has
been deduced from finite values of N. The diagrams pro-
vided by Zifferer in support of his suggestion are not,
however, convincing because of the excessive scattering
of his MC simulation data. For this reason, we decided,
in order to try to settle the question, to push our Alexan-
drowicz dimerization procedure, ' as far as possible, ac-
count being taken of the computational means at our
disposal. The major advantage of our version of the Alex-
androwicz dimerization procedure is that each SAW
configuration obtained is statistically independent of all
others in the MC sample, since the successive dimeriza-
tions proceed from the beginning for each new tried
configuration. The pivot algorithm, ' ' on the other
hand, though certainly significantly more eScient in or-
der to obtain large samples of large N walks, introduces
delicate problems of statistical independence of the
configurations within the sample. We have thus calculat-
ed (r), the modulus of the mean end-to-end distance
( r ), the mean square end-to-end distance ( r ), the
mean radius of gyration, and (rs ), the mean-square ra-
dius of gyration up to N =2999 steps. We have also pro-
ceeded to an exact determination of the above parameters
up to the fourth moment, through exhaustive enumera-
tion of all configurations, up to fifteen steps. Regarding
the MC simulations, which range from 16 to 2999 steps,
they may be divided into two classes: in the first class,
from 16 to 250 steps, precise simulations, with sample
sizes lying between 2.5 and 3.0X 10 independent
con6gurations, and from 399 to 2999 steps, limited pre-
cision simulations, with sample sizes lying between 1.6
and 2.4 X 10 independent configurations.

In Fig. 1 are shown the ratios ( r ) /N and'
(rs)/N 'as a function 'of lnN. It is seen that the
variation of the ratio ( r ) /N is not monotonous, whatev-
er the value adopted for v. Because of this, it is easy to
show that ( rs )N, and generally all incan quantities (x )~
cannot be correctly expressed in all the N range using a
single correction to scaling exponent 6, :

(x )N =N "[ao+a i /N '] . (1)
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in the curve in Fig. 2. In this figure, the quantity co,

where m/N=(rs )Mc/0. 417N ' ' —1, is plotted versus
N. According to Eq. (1) [or Eq. (2), where the higher
correction to the scaling terms is neglected], we have the
approximate equality

(& —&))co=(at/ao)N (3)

Now theory and simulations (see Sec. III) both point to
the fact that I& ——0.50, that is 1 —b,

&
)0. Further, graph-

ical and numerical analysis of the MC data show that we
always have a, &0, whatever the set of 6 s considered
(see below). Therefore, the curve in Fig. 2 should be con-
tinuously decreasing, contrary to what is actually found.
This peculiar behavior can be explained only if it is as-
sumed that the vMC value used to draw the plot is too
large. The argument goes as follows: from Fig. 1 it ap-
pears that the leading prefactor ao is approximately equal
to 0.432 if v is taken to be equal to 0.588, and 0.417 if v is
taken to be equal to 0.5919. For 2999 steps, our largest
MC value, the ratio R =0.417N '/0. 4'32N equals
0.996. If now we consider the largest N value displayed
in Fig. 2, i.e., N =159, the above ratio is equal to 0.984
only, which means that 0.417N ' decreases more rap-
idly than 0.432N as N decreases. It follows that
( rg ) /N ' is larger than it should be in the expression
for co above, and co increases (decreases in absolute value)
as N increases, contrary to expectations. Of course, this
demonstrates that v=0. 5919 is too large but does not in-
dicate the correct value of the exponent, as a plot of the
kind displayed in Fig. 2 is unable to do so.

To obtain with precision the correct v value directly
through a plot as in Fig. 1, one should be able to obtain
large samples (E ) 10 ) of exceedingly large chains
(N ) 10 steps). Such data are quite beyond the possibili-

ties of our Alexandrowicz dimerization procedure, and
possibly also beyond the possibilities of the pivot algo-
rithm. (Because in the pivot algorithm, among other cir-
cumstances, the relaxation time to obtain independent
configurations increases with N). A more convenient pro-
cedure would be to plot, e.g., (rg ), versus lnN, using pre-
cise MC data for chain lengths lying between 10 and 10
steps, as for such N values the correction to scaling be-
comes gradually negligible. In such a procedure, sample
sizes of, say 5 X 10 independent walks would be required,
and unfortunately, this also lies beyond the practical pos-
sibilities of our Alexandrowicz dimerization procedure.

In what follows, we first give extensively our exact
enumeration and Monte Carlo data, for the various mean
values indicated above. Subsequently, assuming that the
correct v value is the RG value v&&=0.588, we shall try
to specify the set of successive correction to scaling ex-

ponents b, ,

II. EXACT ENUMERATION AND MONTE CARLO
RESULTS FOR ( r ), (r2 ), ( r~ ), AND ( r~~ )

In Table II we give the exact enumeration results for
(r ), (r )', (rs ), and (rs ) ' . Table III displays the
precise Monte Carlo data for the same parameters, from
16 to 250 steps, and Table IV shows the limited precision
data covering the range from 399 to 2999 steps. We
present these data extensively, in order to avoid loss of in-

formation, as this would necessarily be the case if only
small figures elaborated from these data were displayed.
Further, in this way our calculations and conclusions can
be checked, and diferent plots or calculations not con-
sidered here be performed, if so desired.

III. ANALYSIS OF THE MONTE CARLO DATA

0-
Because the leading prefactor ac in Eq. (2) can only ap-

proximately be estimated from Fig. 1 and, because of the

-10-

TABLE II. Mean end-to-end distance (r ), root-mean-square
end-to-end distance (rz )'/, mean radius of gyration (rz ), and
root-mean-square radius of gyration (rg2)'/~, for self-avoiding
walks on the simple-cubic lattice, as a function of the number N
of steps. Exact enumeration results from 1 to 15 steps.

-20-

40 80 120 160

FIG. 2. co versus N, where co/N = [ ( rg )—0.417N '9' ]/0. 417NO' '9. If the value of the scaling ex-
ponent v=0. 5919 deduced from Mc simulations were correct,
the plot in the figure should have been an ever decreasing curve
with increasing 1V (see the text).

1

2
3
4
5
6
7
8
9

10
11
12
13
14
15

1.00000
1.531 37
1.907 57
2.275 77
2.577 42
2.88447
3.149 17
3.417 77
3.657 14
3.899 91
4.120 87
4.34473
4.551 47
4.760 67
4.955 93

( r2) 1/2

1.00000
1.549 19
1.969 77
2.356 63
2.689 67
3.01173
3.301 10
3.58400
3.844 55
4.100 88
4.340 67
4.577 43
4.801 26
5.022 80
5.233 84

0.50000
0.696 63
0.848 74
0.986 87
1.10970
1.227 22
1.335 64
1.44047
1.538 98
1.634 93
1.726 15
1.815 41
1.900 93
1.984 89
2.065 79

( t2) 1/2

0.50000
0.69921
0.85440
0.994 86
1.120 31
1.239 98
1.35068
1.457 55
1.558 21
1.656 11
1.749 34
1.84046
1.927 88
2.01361
2.096 31
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TABLE III. The same mean values as in Table II, as deter-
mined through Monte Carlo sampling, from 16 to 250 steps.
All Monte Carlo sample sizes ranging between 2.5 and 3.0X 10
independent (noncorrelated) self-avoiding walks.

(r& ( 2 &1/2 (r2&1/2

16
17
18
19
20
21
22
23
24
25

29
30

5.1542
5.3396
5.5254
5.7025
5.8841
6.0550
6.2280
6.3885
6.5584
6.7176

7.3326
7.4853

5.4439
5.6443
5.8415
6.0324
6.2245
6.4088
6.5928
6.7662
6.9447
7.1168

7.7767
7.9376

2.1455
2.2226
2.2983
2.3717
2.4451
2.5161
2.5862
2.6540
2.7220
2.7884

3.0439
3.1054

2.1778
2.2560
2.3338

2.4838

2.6974

2.8343

3.0958

39
40

8.7475
8.8840

9.2867
9.4321

3.6280
3.6839

3.6924

49
50

10.019
10.140

10.646
10.776

4.155
4.205 4.283

69
99

129
159
199
200
249
250

12.276
15.204
17.778
20.140
22.987
23.062
26.237
26.303

13.057
16.191
18.941
21.458
24.SOO

24.581
27.972
28.045

5.094
6.314
7.390
8.370
9.562
9.591

10.919
10.947

5 ~ 190
6.437
7.537
8.537
9.756
9.786

11.142
11~ 171

statistical scattering of the MC data, the most satisfacto-
ry analysis of the data is obtained through a combination
of graphical analysis and least-squares numerical
analysis. The graphical method of analysis of the data is
quite simple. Once a value for v has been chosen (here
v=0. 588), a plot is made of lna„versus lnN, where

ax (x ) /N0. 588 ax /N ' )0 . (4)

399
599
799
999

1199
1399
1999
2000
2599
2999

34.74
43.97
52.31
59.65
66.52
72.85
89.87
89.57

105.23
113.26

( 2 &1/2

37.06
46.88
55.82
63.68
70.97
77.65
95.95
95.60

112.54
121.26

14.44
18.36
21.80
24.89
27.74
30.34
37.46
37.43
43.74
47.66

( 2 &1/2
R

14.74
18.74

38.26

TABLE IV. The same mean values as in Tables I and II, as
determined through Monte Carlo sampling, from 399 to 2999
steps. Monte Carlo sample sizes lying between 1.5 and 2.4X 10
independent self-avoiding walks.

The subscript or superscript x refers to the mean quantity
considered. In the graphical analysis to follow x =r ex-

clusively. For large enough N values, such a plot should
yield a straight line, whose slope gives A„and intercept
the lnN axis, lna, . A series of such plots should be drawn,
taking in each instance a different value for ao, which,
fortunately enough, lie in a narrow range of values (see
below). As soon as for a given ao value, 6, and a, have

been graphically determined, the quantity lnP is plotted
versus lnN, where

P = ( rg ) /N ' —ao —a i /N ' )0 .

Notice the change of sign of ao and (rg ) /N in the
definitions of a and P, in order to keep these quantities
positive. For N values not too small (though smaller than
in the previous plot of lna versus lnN), the plot of lnP
versus lnN should again yield a straight line, from which

62 and az are determined. The procedure may be repeat-
ed, by introducing a third parameter

y = ( rg ) /N ao —' a i
—/N ' —a 2 /N '

and plotting lny versus 1nN. However, in such a plot, the
significant N values are quite small (1~N(20), and
even-odd oscillations appear, which make the determina-
tion of a straight line uncertain. Remedy may be found
to some extent to this situation, if one takes the mean of
( rg ) for two successive N values, and makes the plot us-

ing half-integer N values. A fairly correct straight line
can thus be obtained, and b, 3 and a i are then unambigu-
ously determined. However, as far as SAW's embedded
on a lattice are concerned, the physical significance of 63
becomes somewhat unclear, because in the series develop-
ment of Eq. (2), b, 3 is only a parameter that contributes to
minimizing the least-squares error in the whole N range,
and not actually yield the correct (x )~ value for small N
values, where even-odd oscillations are predominant.
This remark would, of course, become irrelevant if, e.g. ,
in off-lattice SAW's, even-odd oscillations of the mean
parameters disappear, and more generally in problems
where the relevant parameter corresponding to N varies
continuously and not discreetly. In such problems, the
highest meaningful 6, would be determined by a lower
cutoff, if any, introduced by the physics of the problem.
To come back to the specific problem of SAW's on the
simple-cubic lattice, a fourth correction to scaling ex-
ponent h4 cannot really be determined by graphical
means, and in any case is irrelevant as soon as N exceeds
3 or 4. Anticipating the results of the numerical analysis
to follow, where introduction of a fourth correction to
scaling exponent does not significantly improve the agree-
ment between the result of the series expansion 2, and the
actual values of the various mean values (except perhaps
for the lowest N values), one may conclude that for
SAW's on the cubic lattice the highest relevant correc-
tion to scaling exponent is the third one. In the nurneri-
cal analysis to follow, we shall, however, consider a
fourth correction to scaling exponent h4 in the series ex-

pansion 2, to make a comparison possible with the fourth
term up to h3 expansion. In any case, as soon as Ã
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exceeds 3 or 4, the two expansions are very nearly
equivalent, in order to calculate the various mean values.

Graphical analysis of the results is time consuming and
tedious, as the same procedure should be repeated for
various ao values. Therefore, computer numerical
analysis of the results may be used in support. To this
end, a FIT algorithm has been devised. In this algorithm,
arbitrary values of b, ; are introduced (2 ~i ~7) and the
algorithm searches for the corresponding a; prefactors,
which minimize the squared error of the MC points. The
FIT algorithm offers a possibility either to prescribe the
value of ao, the leading prefactor, or to let it vary freely.
The first two corrections to scaling exponents are so
chosen as to correspond approximately to the value
found by graphical analysis, i.e., b, , =0.50 and h2 -—1.00.
A significant number of least-squares fits were thus per-
formed, taking, in Eq. (2), k =3 or 4. It appears that the
prefactor of the term in h4 is always small and even in
some instances zero, so that a four-term expansion

(x ) =N [a"+a "N '+a "N '+a "N '] (7)

is convenient, in accord with the findings of graphical
analysis. A fortunate occurrence, disclosed by the FIT al-
gorithm, is that when the leading prefactor ao is allowed
to vary freely, the effect of varying h3 and h4 is negligible
on the value taken by ao, and that of varying b2 is small.
Thus, it appears that the leading prefactor varies within a
quite narrow range of values when different sets of 5;
values are introduced in the FIT algorithm. This fact
could not have been guessed from a purely graphical
analysis of the data, except perhaps after overwhelmingly
time consuming and tedious work. Here the complemen-
tarity of graphical and numerical analysis appears clear-
ly: the graphical analysis, taking a plausible but arbitrary
value for ao, suggests the approximate values of 5, and
52 to be introduced in the FIT algorithm; the FIT algo-
rithm in turn, through successive trials, specifies which
sets of 6 s lead to the smallest squared errors and
displays the corresponding prefactors. The time required
by the FIT algorithm to make a single calculation, de-
pends, of course, on the number of terms considered in
the series expansion, Eq. (2). For a five-term expansion,
this time is of the order of 10 min, for 10000 iterations,
using a 50-MHz clock frequency PC. A summary of the
results of the graphical and least squares analysis will
now be given.

A. Graphical analysis

Graphical analysis of the MC data was performed us-
ing only the (r ) data. Consideration of (r ) instead of
( r ) (or of ( rg ) '~ instead of ( r ) '~

) reduces the relative
importance of even-odd oscillations for small N values
(N (20). Also, as the distribution of r, the radius of
gyration, is more narrow than that of ( r ), the end-to-end
distance, the statistical scattering of the MC data is re-
duced when using the former parameter, for the same
sample size, increasing correspondingly the precision of
the determinations. Taking v=0. 588, the RG value, and
ao ——0.432, as suggested from Fig. 1, Fig. 3 displays a plot
of lna, defined through Eq. (4), versus lnN. For the

-4.0- In a

-4.5-

-5.0-

-5.5-

-6.0-

-6.5-

-7.0

InN

FIG. 3. Plot of lna versus lnN. N is the number of steps in
the selfavoiding walk and lna=ln[0. 432—(r~)Mc/N '

]
=ina& —6& lnN. (rg )Mc is the mean radius of gyration as de-
duced from Monte Carlo simulations, 5I the Srst correction to
scaling exponent and a, the corresponding prefactor [see Eqs.
(1) and (2)]. The high-N Monte Carlo points are scattered, so
that the corresponding straight line cannot be precisely deter-
mined. However, a value 5& =0.49+0.02 appears correct, with
error bounds within the renormalization-group value 6& =0.47.
The corresponding a I value is 0.106.

higher values of N, this plot should yield a straight line,
from which the values of 6, and ai are determined. Un-
fortunately, the high N points (N )250), are also the less
precise, and therefore unambiguous determination of the
above parameters is not possible. However, a value for

of 0.50 appears reasonable, and this leads to
a& =0.106. With these values for b,

&
and al, P given by

Eq. (5) has in turn been calculated, and a plot of lnP
versus lnN made (Fig. 4). It is found that b, z is slightly
larger than one, the corresponding a2 value being 0.247.
Advantage may now be taken of the fact that 6,=0.50,
hz-—1.0, to write aN =a IN +a&. A plot of aN versus
N yields a good straight line (Fig. 5) from which it is
found that a, =0.108 and a2=0.238, in good agreement
with the previous determination. Finally a plot of lny
versus lnN (not here reproduced), where half-integer
values of N have been used to circumvent the effect of
even-odd oscillations, leads to a value for A3 somewhat
larger than two.

B. Least-squares treatment

From the outset the assumption is made that (rs),
( rg ) ', ( r ), and ( r ) ' belong to the same universality
class. Thus, the physically correct 5 s should be the
same for all the above mean values. This assumption,
which appears quite natural, is also born by the results of
the FIT determinations, which show that whatever the
mean value considered, it is always approximately the
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( r ) =N ' [0 432 —0. 1107N

+0 2584N
— . 0 0797No

—z.mj (8)

-6-

-8

FIG. 4. Plot of lnP versus lnN, with P= ( rr )Mc/
N "'—0.432+0. 106/No'o. One has lnP=1nai —hilnN, so
that the slope of the straight line yields the second correction to
scaling exponent 6& and the intercept with the lnN axis the pre-
factor a&. The result is 5&-—1.02 and a& ——0.247.

same sets of 5,. values that minimize the least-squares er-
rors. The second assumption is that numerical analysis
should lead to nearly the same prefactors a, as the graph-
ical analysis. With the numerical values v =0.588,
ap =0.432 6

~
=0.50 5p = 1 ~ 00 and 63=2 ~ 00 the least

squares treatment yields the expansion

2,0- 0t N

1.5-

1,0-

0.5—

0.50

0.0
20

FIG. 5. Plot of aN, where a=0.432—(rg )Mc/N "' versus
N ' . Because 6&-—0.50 and 5& —-1, one has aN =a&N ' +a&,
where a

&
and a, are, respectively, the prefactors to the first 6&

and second 5&, correction to scaling exponents. The straight line
obtained yields a& =0.108 and a& =0.238, in good accord with
the graphical analyses of Figs. 3 and 4.

The agreement for a, and az with the results of the
graphical analysis is satisfactory. From here on, we shall
therefore assume that there is not an important di8'erence
between the prefactors as determined by graphical or nu-

merical analysis and shall determine the expansions for
the mean values other than (r ) only by the latter
method. We remind the reader that our fit analysis was
performed taking for v the RG value v„6=0.588. The
Monte Carlo value vMc=0. 592 found by the present as
well as numerous other investigators' is quite certainly
not correct, for the reasons indicated in Sec. I. In any
case, the correct v value almost certainly lies within the
error bounds set by the RG calculations, ' that is
v=0. 588+0.001. As for the value of b,„this may be ap-
proximately determined from Fig. 3 to be
b, i=0.49+0.02. Unfortunately, it is the high values of
X, which are relevant for a precise determination of 6,,
and in this range (399(N (2999), our MC samples of
1.6 to 2.4X10 SAW's are too small for an unambiguous
two-digit determination of this parameter. Sample sizes
of at least 10 SAW's are required for such a two-digit
determination, and this lies outside the possibilities of our
Alexandrowicz dimerization procedure. For this reason,
two values have been chosen for the FIT algorithm calcu-
lations, b, =0.50 and 6&=0.47. The former value is the
one suggested by our graphical analysis and the later
value is the one given by Le Guillou and Zinn-Justin. '
Other values for 6,, complying with the error bounds set

by Fig. 3, could have been used. However, in the present
state of the matter, this would complicate things without
adding anything fundamentally new. Further, from the
raw data in Tables II—IV, one should be able, if so
desired, to undertake such additional calculations.

Once the 6& value is chosen, the corresponding com-

plete sets of 5 s, which minimize the square error have

been determined through a considerable amount of FIT
trials. To dissipate any doubt, we have repeatedly
checked by numerical analysis that a Taylor series expan-
sion in powers of N ' (b, t=l, b,&=2, b, i=3, etc.) does

not provide satisfactory results. This would have been
contrary to what our graphical analysis did suggest and
to the results of RG calculations. Now, for 5& =0.50, the

best set was found to be 6 =1.00+0.01, 53=2.0+0.1,
and 64 essentially equal to 4.0. For the RG value

5,=0.47, the best set was found to be hz=1.05+0.01,
A3 2.2+0.2, and h4 =4.4+0.4. These sets concern all

mean values, that is (r), (r~)'~, (r ), and finally

( rg ) ' . Thus, the numerical analysis confirms the

universality of the above parameters, as assumed from
the outset.

Table V displays for (rs ), with the leading prefactor

ao given prescribed values, the resulting prefactors a; for
the above two 5; sets. Four- and five-term series are suc-

cessively shown. It is seen that adding a fifth term in the
series changes very little the values of the preceding pre-
factors. In addition, a4 is always small. Therefore, as al-
ready suggested, a four-term expansion appears satisfac-
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TABLE V. Four- and five-term expansions of (rg ), the mean radius of gyration, with prescribed
values for the correction to scaling exponents 6; (i =1-3 and i =1—4, respectively), and for the leading
prefactor ao, as indicated. The values of the prefactors are given in the first through fifth columns. The
star in the superscript of ao emphasizes that this parameter is prescribed to the value indicated and not
allowed to vary freely. The mean-square error is given in the sixth column. All data of Tables II to IV
have been used to establish this table.

ao Q)

Set 0.50, 1.00, 2.00
Set 0.50, 1.00, 2.00, 4.00

Q2 Q3 Q4 EX 10'

0.4320
0.4320

—0.1107
—0.1105

0.2584
0.2574

—0.0797
—0.0777 —0.0012

1.677
1.674

0.4319
0.4319

—0.1101
—0.1097

0.2581
0.2563

—0.0798
—0.0763 —0.0021

1.585
1.575

0.4318
0.4318

—0.1090
—0,1082

0.2555
0.2510

—0.0782
—0.0710 —0.0044

1.587
1.542

0.4317
0.4317

—0.1082
—0.1071

0.2540
0.2490

—0.0775
—0.0676 —0.0060

1.613
1.531

Set 0.47, 1.05, 2.20
Set 0.47, 1.05, 2.20, 4.40

0.4320
0.4320

—0.0897
—0.0902

0.2338
0.2370

—0.0762
—0.0849 0.0062

1.659
1.614

0.4319
0.4319

—0.0890
—0.0897

0.2326
0.2362

—0.0756
—0.0839 0.0054

1.558
1.449

0.4318
0.4318

—0.0881
—0.0885

0.2305
0.2324

—0.0741
—0.0789 0.0029

1.598
1.582

0.4317
0.4317

—0.0874
—0.0876

0.2292
0.2301

—0.0735
—0.0754 0.0013

1.624
1.621

tory, and three correction to scaling exponents will have,
in general, to be considered. Also (not displayed in Table
V), it was found that if the first few N values (say up to
N=3) are truncated, addition of a fifth term in the ex-
pansion of Eq. (2) is completely irrelevant, as the term

a4/N ', where b,4 equals at least 4, is completely negligi-
ble beyond N =3 or 4. As for the square error, it is found
that the set 0.47, 1.05, 2.2, 4.4 is best for the highest al-
lowed values of the leading prefactor ao, while for the
lowest allowed values of ao it is a regular set 0.50, 1.00,
2.0, 4.0, which is most satisfactory.

Table VI displays the set of a, 's for the two above five
term expansions in 6 s for the various mean values.
Here the leading prefactor az is not prescribed but al-
lowed to vary freely. The versatility of the FIT algorithm
allows one to truncate the set of data at the two ends, so
that one may choose, in order to specify the set of prefac-
tors, either the full set of exact enumeration (EE) plus
MC data, or only the MC data, or the EE plus the precise
MC data, or only the precise MC data. To avoid, howev-
er, fastidious exposition of data of no particular interest,
only two sets of data have been tabulated, the total data
displayed in Tables II to IV and the MC data only

displayed in Table III and IV. Elimination of the EE data
may reduce the m.s. error, because of elimination of
points that display important even-odd oscillations. On
the other hand, the smallest m.s. errors are obtained if
only the precise MC points are considered, eliminating
thus errors originating in even-odd oscillations for small
N values, and statistical errors due to limited precision of
the data for large N values. However, from a physical
standpoint, truncation of vast ranges of N values very
probably has an effect on the correctness of the results
obtained, and for this reason such results have not been
tabulated.

Numerous trials with 6,. values other than those here
reported, always displayed ao values very close to those
given in Table VI. In fact, it appears that only the value
chosen for 52 (since 6& is specified either as 0.47 or 0.50)
is of any significance for the corresponding value of ao.
This is a fortunate occurrence, as it considerably limits
the range of values of ao to be considered when the value
of this parameter is prescribed, as this is the case in Table
V. Here lies the justification of the fact that in this table
the leading prefactor ao is allowed to vary within the nar-
row range ao=0.4317 to 0.4320 only. For (rg), the
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correct value of the leading prefactor quite certainly lies
somewhere within the above narrow range. A similar re-
mark can be made regarding the leading prefactors of all
the other mean values here considered, and displayed in
Table VI. We again emphasize the fact that if one fixes

6,=0.50 or 5,=0.47, the two corresponding sets of 6, 's

are, respectively, 0.50, 1.00, 2.0, 4.0 and 0.47, 1.05, 2.2,
4.4, and this usually happens for all mean values and all
truncation of raw data considered. Therefore, these two
sets are somewhat arbitrary only in the value chosen for
the first correction to scaling exponent 6&. It thus be-
comes apparent that each successive correction to the
scaling exponent is nearly the double of the preceding
one. An exact relationship, 6;=2k; „cannot be exclud-
ed.

IV. DISCUSSION AND CONCLUSION

The discussion will be based on Table VII, where set I
and set II represent, respectively, the expansions

(F ) =N ' t0 4317—0. 1072%

+0 24. 79K ' 0—05. 62N ]

and

( F ) =N [0 4319—0.895Kg

+Q 2349+ —1.05
Q 0720+ —2.20]

(9)

(10)

which have been deduced from Table VI. It is seen that
the respective adequacies of these two expansions are
mathematically indistinguishable, though from the physi-
cal viewpoint only one of these expansions should be
correct, or, at least, more correct than the other, depend-
ing, in fact, on the physically correct value of 6&. Thus,
no preference can be given here for either of these expan-
sions. On the other hand, one should notice the excellent
behavior of the simple law

(F ) =0.417m'59"
g

TABLE VI. Prefactors a; in five-term expansions for (Fs ), the mean radius of gyration, (Fg ) '/2, the
root-mean-square radius of gyration (F ), the mean (in modulus) end-to-end distance, and (F2) '/2, the
root-mean-square end-to-end distance. Two sets of corrections to scaling exponents 6; (i =1-4) have
been considered: set I, 0.50, 1.00, 2.0, 4.0 and set II, 0.47, 1.05, 2.2, 4.4, respectively. The set of values
used for each of the above mean values is, first, all the data in Tables II-IV (exact enumeration plus
Monte Carlo data), and below, the Monte Carlo data only, from 16 to 2999 steps. Contrary to Table V,
the leading prefactor ao is here left to vary freely, and the adequacy of the expansion estimated through
the corresponding square error E (last column). Elimination of the exact enumeration data reduces E
because the error originating in even-odd oscillations of the mean parameters for small N is suppressed.
Both even-odd oscillations and Monte Carlo statistical errors are particularly important for (F ) and

( F2) 1/2

All data
&Fg)
MC data only
(F2)1/2

All data
MC data only
&F)
All data
MC data only
(F2)1/2

All data
MC data only

ao

0.4317

0.4316

0.4411
0.4404

1.0359
1.0311

1.1020
0.1021

Set 0.50, 1.00, 2.0, 4.0
a& Q2

—0.1071

—0.1036

0.2495

0.2293

—0.1191
—0.1043

0.2483
0.1747

—0.1098
—0.1261

0.0850
0.1505

—0.1656 0.08368
—0.1743 0.1414

Set 0.47, 1.05, 2.2, 4.4

—0.0682

0.0539

—0.0613
0.3068

0.1136
0.0461

0.0211
—0.1984

a4

—0.0060

0.0004

—0.0090
0.0026

—0.1194
0.0003

0.0410
0.0007

EX 10'

1.456

1.143

1.075
0.448

13.323
9.577

10.448
9.696

&Fg)
All data
MC data only
( F2) 1/2

All data
MC data only
&F)
All data
MC data only
(F2)1/2

All data
MC data only

0.4318
0.4318

0.4413
0.4408

1.0310
1.0313

1.1024
1.1024

—0.0888
—0.0873

—0.0998
—0.0914

—0.0973
-0.1073

—0.1461
—0.1498

0.2340
0.2218

0.2314
0.1842

0.0772
0.1217

0.0565
0.0801

—0.0808
0.0307

—0.0728
0.1964

0.1134
0.1474

0.0350
—0.0105

0.0038
0.0001

0.0000
0.0009

—0.1242
0.0916

—0.0478
0.0000

1.479
1.144

1.080
0.514

13.114
10.636

10.311
9.690
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5 1.10970*
15 2.0658*
49 4.155
249 10.919
2999 47.66

1.1130
2.1234
4.259

11.078
47.86

1.0811
2.0714
4.174

10.925
47.66

1.1109
2.0656
4.156

10.921
47.60

1.1106
2.0659
4.155

10.921
47.60

TABLE VII. Comparison of the values obtained for ( rs ), the
mean radius of gyration, by exact enumeration ( + ) or Monte
Carlo samples (set II column), by the two single-term laws

(rg ) =0.432ND'ss and (rs )=0.417NO s9'9 (third and fourth
columns), and by two four-term expansions [see Eq. (2)], indicat-
ed by set I and set II, respectively: set I, 6&=0.50, 6,2=1.00,
k3 2.00, and ao =0.43 17, a

&

= —0.1072, a2 =0.2479, and
a3= —0.0562. Set II, 6&=0.47, A&=1.05, and 53=2.2, and
a0=0.4319, ai = 0.089» as=0.2349 and a3= —0.0720. The
excellent behavior of the simple law (rt ) =0.417NO'~', which,
however, is not theoretically founded, is evident, as soon as N is

not too small (see the text). Within the range of interest of N to
polymer science, simple laws of the form (x ) =o„NO'9~ are cer-
tainly more convenient than simple laws of the form

(x ) =o 'No 5ss

N EE or MC 0.432N '" 0417N ' ' Set I Set II

advantage, even if not theoretically correct.
The present investigation also shows that the succes-

sive correction to scaling exponents 6;, are approximate-
ly given by a simple law of the form

2l 2
l (12)

As previously noticed, an exact law of this form cannot
be excluded, though our MC data are not precise enough
to establish or discard that conjecture.

Finally, for the discreet problem involved in SAW's, 5;
exponents beyond i =3 [corresponding to a four term ex-
pansion in Eq. (2)] are of limited practical interest and
possibly devoid of physical significance. However, there
may exist problems in renormalization-group theory,
where some continuously varying parameter is involved,
instead of the discreet N of SAW's. In such instances, if
any, higher i values might have to be considered, up to
some highest value, corresponding to a cutoff originating
in the physics of the problem.

from 50 to at least 3000 steps. This law had been adopted
as correct in our previous paper. ' Here, of course, lies
the root of the confusion, namely, that RG calculations
and MC simulations lead to different values for the corre-
lation length critical exponent v. In fact, the discrepancy
is only apparent, and should be ascribed to the peculiar
form of curve II in Fig. 1. If it were possible to obtain
adequate samples of very large SAW's (N ) 10 ), then the
MC v would undoubtedly be found to be equal to the RG
v, within the error bounds of the later calculations.
Thus, Zifferer's conjecture quoted in the Introduction ap-
pears to be correct. Let us further notice that in Polymer
Science, chains with repeat units lying between 50 and
10000 cover most of the range of interest, so that for
practical purposes, a simple law of the form
(x) =a„N '9, as assumed in Ref. 1, could be used to
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