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Temperature dependence of the kinetic energy in condensed argon
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Using eV neutron scattering, direct measurements have been made of the average single-particle kinet-
ic energies, (Ek ), for a series of condensed Ar samples over the range 18-85 K. These temperature-
dependent measurements are on a system with A &22 amu in the regime below equipartition. The
scattering from liquid-Ar samples, for which it is assumed that (Ek ) can be determined with sufficient

accuracy from a quantum expansion, has been used to provide information about the total corrections to
be made to account for neutron time-of-flight spectrometer resolution and multiple scattering. Data
were obtained for eave-vector transfers in the range 192—254 nm, to check for possible systematic con-
tributions to experimental uncertainty. The directly measured (E„(T)) is compared to expectations
from thermodynamic experiments, from previous neutron-scattering measurements of collective vibra-
tional modes of the solid, and from various theoretical models. The directly measured temperature
dependence provides evidence for use in the interpretation of other experiments which use Ar as an "in-
ert" host.

I. INTRODUCTION

Pulsed neutron sources, with appreciable epithermal
fluxes, and associated neutron spectrometers invite the
exploration of neutron scattering as a probe of single-
particle excitations in condensed matter. The single-
particle kinetic energy, (Ek ), has previously been inac-
cessible to direct measurement (indirect inferences have
been available from phonon spectra and Debye-Wailer
factors}. The majority of experimental work on con-
densed noble gases has been focused on He phases due to
their rich behavior. There has been little research on
single-particle excitations in the heavier noble gas solids
Ar, Kr, and Xe other than near their respective triple
points. ' In some sense this is surprising since Ar in par-
ticular has long been a fertile testing ground for theoreti-
cal models due to the supposed simplicity of its intera-
tomic interactions.

The present work explores the possibility of quantita-
tive measurement of the temperature dependence of
(Ek) in condensed Ar. Ar is an ideal substance for
such a test because excellent thermodynamic data plus
partial neutron-scattering information (for small wave-
vector transfers Q) already exist. The thermodynamic
data include measurements of the macroscopic specific
heat, thermal expansion, bulk modulus, and pressure
versus volume, plus information about the elastic con-
stants at extremely high temperatures. Various coherent
inelastic-neutron-scattering studies of solid Ar have been
published. We compare our results for (Ek{T)) to
predictions of quasiharmonic Born-von Karman fits to
measured phonon dispersion in Ar and to various
theories. Finally, in the Appendix we point out the

difference between (Ek(T)) and the mean-squared dis-
placement, ( u ( T) ), which appears in the Debye-Wailer
factor.

II. EXPERIMENTAL METHOD

A. Neutron scattering at large Q

For a system of N identical target atoms the inelastic
double difFerential cross section for the scattering of neu-
trons can be written as

+m
S(Q,co) = I F{Q,t }exp( i cot )dt, —

2' Ce

with

E(Q, t }=—$ ( exp[ —iQ.R;(0)]exp[iQ.RJ(t) ]),1

EJ

(3)

where R; is the atomic position operator of the ith atom
in the Heisenberg picture, and ( . ) indicates a thermal
average. In the limit of large wave-vector transfer Q, in-
cident neutrons scatter from individual nuclei indepen-

d 2tr
=Nb S(Q,to),0 co l

where b is the scattering length, k& and k, are the magni-
tudes of the final and initial neutron wave vectors, respec-
tively, Q is the wave-vector transfer defined by
Q=k; —kf, and E =%co is the energy transferred to the
target particle by the neutron during the scattering pro-
cess. S(Q, to), the dynamic structure factor, has the gen-
eral form
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dently and therefore respond only to the atomic single-
particle momentum distribution, n(p). In this limit,
known as the impulse approximation (IA), the dynamic
structure factor assumes the simple form

S,A(Q, co)= I n(p)5 cg —co~ — d p,

where the n (p) satisfies the normalization condition

n pd p=1,
and the average recoil energy transferred to a target par-
ticle by an incident neutron is

dently, the observed response in the IA is the sum of indi-
vidual responses.

The regime of applicability of the IA is a matter of
some debate. Various theoretical approaches have been
developed to account for deviations from the IA, known
as a final-state effects, in deep-inelastic scattering data. '

In Sears' treatment, deviations from IA behavior are ex-
pressed in an asymptotic expansion of symmetric and an-
tisymmetric terms

J, (y) =J,A(y) —A 3

$2Q 2

R

+34
dy

(13)

where M is the mass of the scatterer. The argument of
the 5 function expresses conservation of energy and
momentum for the scattering process. Once n(p) is
known from measurement of the S(Q,co), the single-
particle kinetic energy, (EI, },can be determined by in-

tegration over all atomic momenta weighted by the
momentum distribution

(7)

S,A(g, ~) exp

and (Ek ) is given by

—M (co —
cos )

2Q 2~2

3'p'"'=
2M

(10)

It has become standard in deep-inelastic-neutron
scattering to present the data in terms of the longitudinal
momentum distribution function J(y) rather than
S(g, co). The relationship between the two quantities for
an isotropic system, such as a liquid, gas, or polycrystal-
line specimen, is

J(y) = S(g,co),

with the scaling variable y defined as

M
(co cog ) . (12)

In the IA, J(y) is Gaussian if the momentum distribu-
tion is Gaussian. The single scaling variable y expresses
the fact that at large Q, where Eq. (4) is vahd, the scatter-
ing function is characterized by its width alone, and that
width is determined only by (E„}and Q. For a system
composed of several types of nuclei scattering indepen-

For an isotropic Gaussian momentum distribution

2

n(p) ~ exp
20'p

S,A(g, co} is also Gaussian in form with its center located
at the recoil frequency,

where J,(y) is the observed J(y) (neglecting the effects of
instrument resolution) and JiA(y} is J{y) in the IA. In
this expansion the coefficients are Q dependent. In par-
ticular, the coefficient of the first antisymmetric term A 3

and the coefficient of the first symmetric term A4 in the
expansion are

M(VV) M(F}
36iii Q 72% Q

where Vis the interatomic pair potential and (F } is the
mean-squared force on the target atom arising from its
interaction with neighboring particles.

Our assumption that n (p) has a Gaussian form is sup-
ported by the result that for harmonic systems, systems
for which the central limit theorem is valid, and for clas-
sical systems with velocity independent interatomic
forces, n (p) is Gaussian. ' At higher temperatures,
quantum effects are small and solid Ar is expected to
display essentially classical behavior. At low tempera-
tures non-Gaussian contributions to n (p) are expected to
be negligible; Hartree calculations of the ground-state
wave function in solid Ar yield, for a spherically sym-
metric wave function, a Gaussian. "

B. Spectrometer

Our measurements used the LRMECS spectrometer at
Argonne National Laboratory's Intense Pulsed Neutron
Source {IPNS). At IPNS neutrons were produced
through spallation by bombarding an enriched uranium
target with 30-Hz pulses of 500-MeV protons. Initial en-

ergy selection was carried out by a Fermi chopper phased
to the proton pulses. The incident neutron energy was
determined by time-of-flight with two low-efficiency BF3
monitors, one located 46 cm upstream of the sample
chamber the other located 325 cm downstream of the
sample chamber. Neutrons scattered by the sample were
detected by He detectors located approximately 2.5 m
from the sample position over an angular range of
72—117 degrees. The final neutron energy was deter-
mined via time-of-flight. For data analysis purposes the
detectors were group in four banks having mean scatter-
ing angles of 112.6, 101.2, 88.8', and 77.4. At the
nominal incident neutron energy used in our measure-
ments, 500 meV, these banks correspond to average
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wave-vector transfers of 254, 236, 215, and 192 nm ', re-
spectively. Problems arose with several detectors in the
88.8' bank during several of the runs, hence for the three
lower-temperature samples the 88.8' bank was excluded
from the analysis.

C. Measurement conditions

The samples were prepared in situ with a clean gas-
handling system by condensing research grade natural Ar
(stated purity 99.999%}, obtained from the Linde
Division of Union Carbide. The relative natural abun-
dances and neutron-scattering properties of the stable iso-
topes of Ar are shown in Table I. While Ar constitutes
only a small fraction of natural Ar, due to its large
neutron-scattering cross section, approximately 38% of
the scattering from natural Ar is due to Ar.

The sample cell consisted of four vertical tubes con-
structed of 6061-T6 aluminum, 1.9 cm in outer diameter
with a nominal wall thickness of 0.03 cm. Each tube ex-

posed 10.2 cm to the incident beam. Cell temperatures
were maintained by a Displex closed-cycle refrigeration
system. For the three colder samples the temperature
was measured with two Lake Shore Si diode thermome-
ters, located at the top and the bottom of the sample cell.
A Pt resistance thertnometer was used for the three
higher-temperature samples. Data collection for each
condensed specimen took approximately 30 h. An empty
cell run of the same length was taken in order to perform
the primary background subtraction. The specified sam-
ple temperatures are averages. The temperature
diff'erence across the rather large cell never exceeded 1.4
degrees.

Due to the ramified cell geometry we presume the solid
specimens were polycrystalline, with a range of crystal-
line orientations, and therefore our results apply to an an-
gular average over all crystal directions in the fcc lattice.
Neutron-diffraction measurements of solid He samples
in aluminum cells of a similar size and type reveal poly-
crystalline specimens. ' He generally grows larger crys-
tallites than do the heavy noble gases. '

III. DATA ANALYSIS

Time-of-fhght neutron data collected at the various
detectors need to be corrected, in a primary manner, by
subtraction of background measurements made with an
empty cell (see Fig. I). In addition to finite instrument
resolution there are secondary backgrounds which need
to be taken into account. These secondary backgrounds
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FIG. 1. Raw time-of-Bight data for scattering into the 112.6
detector bank for liquid Ar at 110.6 K. The solid line is the sig-
nal due to the liquid Ar and the Al alloy sample cell. The
dashed line is the signal from the empty cell, scaled using the
data obtained from the upstream beam monitor. The difFerence
between the two curves represents the response of the liquid Ar
and any sample-dependent multiple scattering. This figure illus-
trates a difBculty to be overcome in these measurements:
significant overlap of the Ar and cell scattering, because Ar and
Al have somewhat similar masses. The arrows indicate the fit
interval in time-of-fiight and correspond to y values of +1000
nm '.

consist of multiple scattering including not only multiple
scattering within the specimen itself but also such scatter-
ing in which one event occurs in the sample and another
from some component of the spectrometer such as a vac-
uum hat, thermal radiation shield, etc. Because of the
diversity of scattering agents, and the myriad of possible
trajectories for multiply scattered neutrons, simulation of
such scattering is nontrivial. Sophisticated computer
simulations' are becoming available which allow the
multiple-scattering backgrounds and instrument resolu-
tion to be calculated when the instrument and experimen-
tal geometry are well characterized. We developed an al-
ternative precise method to account for secondary back-
grounds and finite instrument resolution in our data.

TABLE I. Some properties of Ar isotopes. o., is the incoherent neutron-scattering cross section.

Isotope

"Ar
Ar

~Ar

Abundance (%)'

0.337
0.063

99.600

Mass'

35.968 amu
37.963
39.962

b

77.9 barns
1.5
0.4

Scatterin intensity (%)

38.4
0.1

61.5

'Data taken from F. W. Walker, D. G. Miller, and F. Feiner, Chart of the ¹clides, 13th ed. (General
Electric Company, San Jose, 1983).
V. F. Sears, in Methods ofExperimental Physics, edited by K. Skold and D. L. Price (Academic, Orlan-

do, 1986), Vol. 23A, p. 534.
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This new method involves the use of a semiempirical
fitting function, and works with less we11-characterized
situations.

This semiempirical method relies on quantitative com-
parison to results in the liquid state measured in identical
geometry. For our reference Ar liquid, final-state effects
are small and the single-particle kinetic energy can be
determined by means of the %'igner expansion'

&E„)=-,'k, T„, (15)

where the effective temperature T,ff is related to the
physical sample temperature T by

2
8

~ ~ ~

T (16)

with

e'& v'v)
3Mk~

(17)

The fitting functions are composed of three Gaussians
whose widths, amplitudes, and center positions were
varied to obtain the best fit with J,(y) when convoluted
with J&z(y). Fitting functions composed of more than
three Gaussians tended not to be smooth while those
composed of fewer than three did not fit the data as well
as three Gaussians. Because instrument resolution varies
with scattering angle as do the secondary backgrounds,
fitting functions were generated for each detector bank.
The fitting functions thus determined account for finite
instrument resolution and most of the sample-dependent
multiple scattering for the solid samples, since the experi-
mental circumstances of the solid samples were identical
to those of the liquid samples in all respects save sample
temperature and density.

As noted earlier most of the neutron scattering from a
natural Ar sample is due to the isotopes Ar and Ar.
In converting our raw time-of-fiight data to J(y) a cross-

In order to estimate the average value of the Laplacian
of the interatomic potential that appears in Eq. (17) we
used molecular-dynamics calculations of Verlet' for a
Lennard-Jones fluid. These in conjunction with usual
Lennard-Jones parameters's (elk~ =119.8 K, cr =34,05
nm) yield effective temperatures of 112.7 and 90.6 K for
our 110.6- and 87.4-K liquid-Ar samples, respectively.

With the assumption of a Gaussian n (p) and the & Ek )
values of four liquid samples determined from Eqs.
(15)—(17) we used the following prescription to generate
fitting functions

J,(y)= f F(y —y')J«(y)&y' . (18)

J,(y) is the measured liquid-Ar J(y), J,~(y) is a Gaussian
whose width is determined using Eqs. (15}—(17) and
whose center is at y =0 nm . The resulting fitting func-
tions, F(y —y'), were essentially independent of the range
of integration in Eq. (18}for choices from +750 to +1000
nm ', both well outside the range of detectable J(y).
The fitting function satisfies the normalization condition

FX —X' X'=1.
U
Q&

N
~ ~
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FIG. 2. Semiempirical fitting function derived from the
110.6-K liquid-Ar data for the 112.6, 101.24, and 77.4 detec-
tor banks with mean wave-vector transfers of 254, 236, and 192
nm ', respectively {see text Sec. III).

section weighted mass (38.42 amu) was used. Due to the
large width of the observed liquid-scattering data, the
longitudinal momentum distribution function for the
liquid samples, used in the determination of the fitting
functions, was treated as the response of a collection of
identical scatterers having the cross-section weighted
mass.

It is evident from Figs. 2 and 3 that our fitting func-
tions are asymmetric. This is consistent with calcula-
tions, for a point scatterer, of pulsed-source neutron
chopper spectrometer instrument resolution. Loong, Ike-
da, and Carpenter' determined that the resolution func-
tions characteristic of such instruments are asymmetric
at aH energies. Furthermore, the results of these calcula-
tions display a sharper falloff on the high-energy-transfer
side, positive y, of the resolution function. This is similar
to the behavior we observe in our semiempirical fitting
functions at higher scattering angles and similar to the
results of Monte Carlo simulations of chopper-
spectrometer instrument resolution. ' The fitting func-
tions used in the analysis of the three higher-temperature
samples differ somewhat for those applied to the three
colder samples. This difference may arise due to
differences in the cell orientation relative to the incident
neutrons for the high- and low-temperature condensed
samples.

Instrument resolution is the dominant component of
our fitting functions due to the weak scattering nature of
our sample and the physical characteristics of the spec-
trometer. The beam monitor data indicates the con-
densed specimens scattered approximately 4% of the in-
cident neutrons. On LRMECS, the fitting function width
is comparable to the width of our scattering data. This
presents some diSculty in extracting J(y}, since the in-
trinsic line shape is significantly broadened and therefore
rather good knowledge of instrument response is neces-
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FIG. 3. Semiempirical fitting function derived from the
87.4-K liquid-Ar data for the 112.6', 101.24', 88.8', and 77.4'
detector banks with mean wave-vector transfers of 254, 236,
215, and 192 nm ', respectively (see text Sec. III).

sary to obtain accurate (Ek ) values. We believe our
semiempirical method, which is essentially based on a
measurement of the instrument resolution function for
the liquid samples plus the effects of sample-dependent
multiple scattering, provides a suSciently accurate
description of instrument response.

One of the assumptions of our fitting function method
is that final-state effects in the liquid samples are negligi-
ble. Justification for this is provided by the Sears expan-
sian Eqs. (13), and (14), which is convergent for liquid Ar
far our Q's. At our minimum Q, 192 nm ', we calculate,
for the 110.6-K liquid-Ar sample, the absolute value of
the first antisymmetric term at its maximum to be ap-
proximately 1.8% of J,A(y) at that value of y. At y =0
nm ', the first symmetric term is only 0.7% of J,A(y).
Corrections of this size leave the width, and hence (Ek ),
essentially unchanged from that of J,A(y). This can be
seen in Fig. 4, in which we have plotted three curves; (i}
J,A(y), a Gaussian function with a width corresponding
to an eQectiue temperature of 112.7 K, (ii) the first an-
tisymmetric term in the Sears expansion, and (iii) the first
symmetric term in the Sears expansion. It should be not-
ed that in Fig. 4 both these terms have been enlarged by a
factor of 5 to aid visibility. Due to the small size of these
terms the expected measured J(y), consisting primarily
of J,A(y) and these correction terms, would not be visibly
different from JtA(y) shown in Fig. 4. Far the lower-
temperature reference liquid sample (87.4 K) for the
minimum Q of 192 nm ', the absolute value of the first
antisymmetric term is 2.9%%uo of JtA(y) at that value of y,
while the first symmetric term is 1% of J,A(y) at y =0
nrn '. We have also neglected the contribution of final-
state effects in the scattering from this sample.

In order to determine the momentum distributions of

FIG. 4. Calculated J(y) for liquid Ar at 110.6 K at a wave-
vector transfer of 192 nm '. The dashed line represents the
part of the response arising from the A3 term in the Sears ex-
pansion, the dotted line represents the part due to the A4 term
[see Eqs. {13)and (14)]. The effect of instrument resolution has
not been included. Note: The contributions due to the A3 and
A4 terms have been enlarged by a factor of 5 to aid their visibili-

ty.

the condensed specimens the fitting functions were con-
voluted with a model J(y),J (y), which was varied to ob-
tain the best fit to the measured J(y),

J,(y)= I F(y —y')J (y')dy'. (20)
&min

Here J, (y) is the measured Ar J(y), y;„=—750 nrn
and y,„=+750 nm '. Fitting over a larger y range
( —1000-+1000 nm '} did not affect the results for
(Ek ). In our analysis of all condensed Ar samples we
used a J&A(y) composed of two Gaussians in order to
represent the individual scattering response of Ar and

Ar. Fits to the 101.2' data are shown in Figs. 5-10.
The mean wave-vector transfer at 101.2' is 236 nm
however it should be noted that the wave-vector transfer
changes by approximately +10% across the peak. The fit
residuals displayed in Figs. 5-10 are the difference be-
tween the data points and the fit, divided by the uncer-
tainty associated with data points. As can be seen the fits
are very good. Additional fits including an antisym-
metric term having the same form as the first term in the
Sears expansion did not unambiguously indicate the pres-
ence of final-state effects, which is consistent with our ex-
pectations from Fig. 4.

Additional justification for assuming final-state effects
are negligible in the solid phase is that a multiphonon ex-
pansion of the scattering from a harmonic crystal indi-
cates the scattering approaches the IA when the Debye-
Waller factor is much less than one'

exp
—Q'&u')

3
(21)

In the IA the target atoms scatter independently of one
another, hence the Debye-Wailer factor must be very
small so there is no coherent scattering. Since Q is a
measured quantity in our scattering experiment,
knowledge of the atomic mean-squared displacement,
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FIG. 5. Data from one detector bank (101.2') for the momen-
tum distribution of solid Ar at 18.3 K. The fitting procedure is
described in Sec. III. v is the number of degrees of freedom of a
nonlinear least-squares fit. Note that the differences between
data and fit are distributed uniformly throughout the range of y.
For each sample temperature, data from three other detector
banks were fitted similarly.

FIG. 7. 101.2' data and fit for solid Ar at 42.3 K.
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(u ), is needed to evaluate Eq. (21) and determine
whether the wave-vector transfers reached in our experi-
ments satisfy this inequality.

Because there are no measured mean-squared displace-
ments for solid Ar, one must turn to theoretical calcula-
tions of this quantity. ' Several methods have been em-

ployed to compute ( u ) in solid Ar as a function of tem-
perature. These include quasiharmonic calculations in
which the second-order force constants are dependent
upon strains and volume changes, self-consistent pho-
non calculations (SCP), ' and classical Monte Carlo and
molecular-dynamics calculations. Only the SCP calcu-
lations, however, yield reasonable values of (u ) for
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FIG. 8. 101.2' data and fit for solid Ar at 46.6 K.
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FIG. 6. 101.2 data and fit for solid Ar at 28.2 K. Again,
note that no systematic deviations between data and fit are visi-
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FIG. 9. 101.2 data and fit for solid Ar at 73.0 K. Compare
the overall broadening due to temperature with the data shown
in Fig. 5.
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FIG. 10. 101.2' data and fit for liquid Ar at 84.9 K.

solid Ar at all temperatures. The mean-squared displace-
ments determined from the classical Monte Carlo and
molecular-dynamics calculations do not take into account
quantum zero-point motion so they do have not have the
correct low-temperature behavior. The quasiharmonic
calculations of (u ) are limited by the fact that the per-
turbation theory used breaks down at temperatures
greater than one-half the melting temperature. The SCP
mean-squared displacements are listed in Table II. Also
listed in Table II are the Debye-Wailer factors calculated,
using Eq. (21), for Q=192 nm ', the smallest wave-
vector transfer data analyzed.

In the fitting process the scattering intensity of the
function representing the Ar response was constrained
to be 62.5% of the intensity of the function representing
the Ar response (Table I). Several other constraints
were employed during the fitting process: (i) For the
84.9-K liquid sample the single-particle kinetic energies
of the Ar isotopes were constrained to be the same; (ii)
For the solid-Ar samples a self-consistent-average-
phonon model, discussed in the Appendix, was used to
relate the kinetic energies of Ar and Ar; and (iii) the
separation of the peak centers was fixed at a value deter-
mined from the scattering kinematics.

A low-order background polynomial was also used in
the fits to the data of the three lower-temperature solid
samples. Its inclusion was found to significantly improve
the quality of the fits as measured by the reduced y
squared. A possible interpretation of this small back-

A. Inelastic (low-Q) data

Using a triple-axis spectrometer for coherent inelastic
neutron scattering two groups have measured phonon
frequencies and line shapes in solid Ar. Eckert and
Youngblood performed such measurements at 81 K,
close to melting (T =83.7 K) along the [100) and [110]
directions. Fujii et al. did so at 10 K along the [100],
[110], and [111] directions. Both groups determined
force constants for the solid from the observed phonon
energies with Born-von Karman models. Eckert and
Youngblood fitted their data with a third-neighbor axial-

ly symmetric force model, while Fujii et al. used a third-
neighbor general force model. With the force constants
determined the phonon density of states g(co} can be cal-
culated by means of the Gilat and Raubenheimer
method. Knowledge of the phonon density of states al-
lows (Ek ) to be determined in the harmonic approxima-
tion, in which (Ek ) is half the total vibrational energy,

(E ) =
—,
' I g(co)[n(co, T)+ ,']Aco dco, —(22)

0

where

1

exp(fico/kn T ) 1— (23}

IV. RESULTS AND DISCUSSION

For a given temperature, (Ek) was determined for
each detector bank; the average over all detector banks is
listed in Table III. The uncertainty in (Ek ) is estimated

by combining the uncertainty in the fitted width for each
detector bank with the standard deviation of ( Ek ) deter-

mined from the fitted widths. We now compare our re-
sults with the predictions of several models and (Ek)
values inferred from data obtained with other experimen-
tal techniques (Fig. 11, Tables IV and V}.

TABLE II. Mean-squared displacements and Debye-Wailer
factors as a function of temperature for solid Ar at Q=192
nm '. The values of {u ) are from Ref. 21.

TABLE III. Experimental values of (Ek(T) ) for condensed
~Ar.

Reference Temperature (K) (Ek ) (K) Uncertainty (%)
Temperature (K)

0
15
30
45
60
75

&u'& (nm ')

3.6x 10-'
4.2x10-'
6.0x10-'
8.5 x10-'
1.20 X 10
1.63 x 10-'

Debye-Wailer factor

1.20x 10-'
5.74 X 10
6.28 x 10-'
2.91x10-'
3.95 x 10-'
2.00x 10-'

Present work
Present work
Present work
Present work
Present work
Ref. 1

Present work

18.3
28.2
42.3
46.6
73.0
82.0
84.9

54.3
62
78
81

113
121
129
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140 TABLE V. Ratio of (E„(' Ar)) to (Eq( Ar)) from the
SCAP model.

120—

100—

Temperature (K)

18.3
28.2
42.3
46.6
73.0

(Ei ( Ar) ) /(Ek( Ar) )

1.047
1.031
1.018
1.016
1.007

&)0
40— vibrational energy predicted from the Debye model, '

(E„;b(0))=(—', )8D, [8D(Ne)=74. 6 K] . (24)

0
0

I I I I

20 40 60 80 100
Temperat. ure (K)

FIG. 11. Single-particle kinetic energy in condensed Ar. The
solid circles are our measured values. The solid square is the
experimental value from Ref. 1. Various theoretical results are
open circles (PIMC, Ref. 27), open diamonds (EPMC, Ref. 28),
and open square (variation, Ref. 31)~ The solid line is the
equipartition prediction (3/2)ks T.

With the g (co) from Refs. 6 and 7, (Ek ) values at 10 and
at 81 K, respectively, were computed for Ar (see Table
IV). Comparison of these (Ek ) with our measured Ar
( Ek ) values shows at 81 K (if one interpolates between
our data points) the agreement is good. At low tempera-
ture the agreement is not as good. In addition, as shown
in Table V, the (Ek ) of Ar is approximately 5% less
than the (Ek ) of Ar at 10 K. One therefore finds the
value of (Ek ) at 10 K determined from Eq. (22) is some-
what lower than an extrapolation of our data would yield.

B. Calorimetric data estimate

In solid Ne deep-inelastic-neutron-scattering measure-
ments have shown the single-particle ground-state kinetic
energy (Ei, (0) ) constitutes 60% of the total ground-state

This result is interpreted as indicating anharmonic con-
tributions to (Ek(0)) are appreciable in solid Ne, be-
cause the measured calorimetric value of 8& already con-
tains the anharmonic frequency shifts of the long-
wavelength phonons.

From a precise published value of 0& for Ar, one ob-
tains the value for ( Ek (0) ) given in Table IV.

One may estimate (Ek(0)) in Ar from our data by an
extrapolation using either the values given by effective
potential Monte Carlo (EPMC) calculation (Sec. IV C) or
by the SCAP model (Appendix). For example, subtract-
ing the SCAP difference between (Ek ) at 0 and 18.3 K
from our measured (Ek(18.3)) value yields
(Ek(0) ) =51.9+2. 1 K. This (Ek(0) ) is 50+2% of the
total ground-state vibrational energy predicted from the
Debye model [8D(Ar)=92.0 K]. The difference in the
relative amounts of ground-state kinetic energies between
solid Ar and Ne can be ascribed to the difference in the
dynamics of the atoms. For example, in the SCAP mod-
el, zero-point excursions from the equilibrium positions
in a Ne lattice at zero temperature are 6% of the
nearest-neighbor distance, while in Ar such excursions
are approximately 3%. From our results it appears the
effect of anharmonicity on (E„(0)) in solid Ar is smaller
than in solid Ne.

C. Path integral and effective potential
Monte Carlo results

TABLE IV. Calculated values of (Ek ). See text Sec. IV.

Reference

Debye Model'
Bernardes"
Silvi et al. '
Eckert and Youngblood
Fujii et aI. '

Temperature (K)

0
0
0

10.0
81.0

(z„) (K)

51.8
54. 1

52.5
49.6

126.7

'For Ar. From Eq. (24), with Dehye temperature from Ref.
26.
Reference 29. Uses Lennard-Jones parameters from Ref. 16.

'Reference 31.
For Ar. Computed using the density of states from Ref. 7.

'For Ar. Computed using the density of states from Ref. 6.

Path-integral Monte Carlo (PIMC) calculations of
(Ek) in solid Ar have been computed at four tempera-
tures under the assumption that the Lennard-Jones po-
tential' adequately represents the effective pair potential
of solid Ar. The results are shown in Fig. 11. At all but
the lowest temperature the PIMC values agree rather
well with our measured (E„) results. At low tempera-
tures the PIMC results for (Ek) are smaller than the
zero-temperature Debye Model results [Eq. (24)] and the
SCAP model using the same potential (Table VI).

Effective potential Monte Carlo (EPMC) calculations
of (Ek ) in solid Ar have also been published. These
are also shown in Fig. 11. These lie even lower than the
PIMC values using the same Lennard-Jones potential. '

The difference is greater at lower temperatures.
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TABLE VI. Values of (Ek & for Ar from the SCAP model,
using the same Lennard-Jones parameters as in Refs. 27, 28, and
29.

Temperature (K)

0
18.3
28.2
42.3
46.6
73.0

(Ek & (K)

51.1
53.4
60.8
76.1
81.3

116.3

D. Variational calculations

An early calculation of (Ek & in solid Ar at zero tem-
perature is that of Bernardes. In this work the Einstein
model is applied to the noble-gas solids Ne, Ar, Kr, and
Xe by assuming uncorrelated single-particle trial varia-
tional wave functions. The Lennard-Jones potential is
used to represent the interatomic potential and the results
are presented in terms of the parameters a and s. A
value (Ek(0) & of 54. 1 K is obtained using values for the
potential parameters from Ref. 16 (Table IV).

A Hartree calculation employing the more realistic
two-body potential of LeSar has been performed by Sil-
vi et al. ' Assuming the single-particle Ar wave function
is Gaussian and evaluating lattice sums out to fifth-
nearest neighbors, Silvi et al. determined the center-of-
mass oscillation frequency of the Ar atoms. The zero-
point (Ek & corresponding to this frequency is 52.5 K
(Table IV). This is in good agreement with the extrapola-
tion of our experimental results to zero temperature.

V. CONCLUSION

The atomic kinetic energy of condensed Ar has been
determined over a wide range of temperature via deep-
inelastic-neutron scattering. For the first time, it has
been demonstrated that accurate (Ek ( T) & values can be
obtained for a heavy-mass system whose scattering
significantly overlaps that of the sample container. There
is qualitative agreement with some published theoretical
calculations, but there are differences in detail. Increased
precision in similar inelastic measurements should be ob-
tainable with instruments with better resolution.

Ar is a popular host matrix for studies of guest mole-
cules and free radicals. Directly measured temperature
dependence for the kinetic energy of Ar provides evi-
dence for the use in the interpretation of such experi-
ments, for example, studies of guest H2 molecules.
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E. A note on potentials

A Lennard-Jones potential is not the correct pair po-
tential for Ar. Regardless, it is often argued that such a
simple form is possibly an approximate suitable represen-
tation of the total potential jn condensed Ar. ' ' Al-
ternatively, in some theory papers, the form is admitted
to be unrepresentative of Ar, but nevertheless is used so
that the results can be directly compared to previously
published model calculations.

In order to achieve very close agreement with the mea-
sured phonon frequencies and equation-of-state of solid
Ar, theorists have turned to more sophisticated pair po-
tentials, for example, the Aziz-Chen potential, plus
the inclusion of multibody forces. These multibody
forces may be taken to have the form of the Axilrod-
Teller-Muto (ATM) triple-dipole interaction. It is known
that inclusion of the ATM interaction in quasiharmonic
theory leads to an increase of 0.7% in the calculated
zero-point energy. At higher temperatures one expects
the efFects of multibody forces to diminish due to decreas-
ing sample density. The precision of the present mea-
surements does not permit efFects of this magnitude to be
observed, but we note that the difference between our
measured values of (Ek & and those of PIMC and EPMC
calculations using a Lennard-Jones potential has this
qualitative behavior.

g( 2 &1/2

2~ ( ~ &
' i 2k/ T

(A1)

and

(co'& = S,+ (u'&+ (u'&'S4 4S,
3M 3 (3)4!

with

(A2)

(A3)

APPENDIX:
SELF-CONSISTENT-AVERAGE-PHONON

(SCAP) MODEL

One model which predicts (Ek & over a broad range of
temperatures is the self-consistent-average-phonon model
(SCAP). The SCP approach ' is followed to determine
temperature-dependent phonon frequencies, but in the
SCAP model, averages over functions of the phonon fre-
quencies are replaced by functions of a temperature-
dependent average phonon frequency. This greatly
reduces the numerical complexity of the SCP formalism,
while still producing a renormalization of phonon fre-
quencies due to lattice anharmonicity. The self-
consistent equations of SCAP are
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where R 0, is the mean position of the ith atom relative to
a given origin atom, (u ) is the mean-squared atomic
displacement, to is the phonon frequency, and ( )
denotes a thermal average. The temperature-dependent
single-particle kinetic energy is

(Ek )sc~p= &M(tt ) (to ) (A4)

The SCAP model illustrates why (u ) is not directly
proportional to (Ek ). As can be seen in Eqs. (Al) —(A4)
higher powers of ( u ) contribute to (E„). In a harmon-
ic system (Ek) would be proportional to (u ) and
would be one-half the total vibrational energy of the
atom.

In our SCAP calculation, for computational simplicity
we used the Lennard-Jones parameters of Ref. 16 (not

those of Ref. 23) and precise lattice parameter results.
The ratio of (Ek( 6Ar)) to (Ek( Ar)) for this model is
shown in Table V. From Tables III and VI, agreement
between (Ek )sc~p and our measured values of (Ek ) is

good at all temperatures, which provides a self-consistent
check on this correction.

We also calculated the SCAP S2 term [see Eqs. (A2)
and (A3)] using the Aziz-Chen HFD-C2 potential. The
resulting zero-point (E&(0)) is 0.9 K less than that ob-
tained when the Lennard-Jones potential' was used to
calculate all terms. At 83 K the difFerence in (E& ) is 0.2
K. At a minimum, this illustrates that possible systemat-
ic uncertainty, beyond any statistical uncertainties given,
is present in published values of ( Ek ), which use a
Lennard- Jones form.
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