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It is known that off-diagonal disorder results in anomalous localization at the band center, whereas
diagonal disorder does not. We show that the important distinction is not between diagonal and off-
diagonal disorder, but between bipartite and nonbipartite lattices. We prove that bipartite lattices
in any dimension (and some generalizations that are not bipartite) have zero energy (i.e., band-
center) eigenfunctions that vanish on one sublattice. We show that In |¢;| has random-walk behavior
for one-dimensional systems with first-, or first- and third-neighbor random hopping, leading to
exp(—A4/7T) localization of the zero-energy eigenfunction. Addition of diagonal disorder leads to a
biased random walk. First- and second-neighbor random hopping with no diagonal disorder leads to
ordinary exponential [exp(—Ar)] localization. Numerical simulations show anomalous localization in
dimensions 1 and 2, with additional periodic structure in some cases.

I. INTRODUCTION

We consider a disorder problem that is motivated by
doped semiconductors, such as P-doped Si. In that sys-
tem, the donor electrons are in Wannier orbitals centered
on the randomly situated P atoms. The orbitals are con-
nected by hopping matrix elements t;; that vary expo-
nentially with distance. The diagonal site energies €; are
nearly constant. There is one electron per Wannier or-
bital, so that the Fermi level for the system is at the
band center. (The electron-electron interaction, which is
important in doped semiconductors, is not considered in
this paper.)

In dimensions 1 and 2 (1D, 2D), almost any nonzero
disorder causes exponential localization of all eigenfunc-
tions, regardless of their energy.! The wave function de-
cays from its maximum as exp(—Ar). An exception is
that the band-center wave functions for some systems
with pure off-diagonal disorder are not exponentially
localized.? This paper extends previous results which will
be cited in the text, (a) by proving a theorem about
the eigenfunctions vanishing on one sublattice, (b) by
extending a random walk argument in 1D (Ref. 2) to
include first- and third-neighbor hopping, and (c) by
demonstrating how bias can enter the random walk and
result in expomnential localization. We also find short-
distance periodic correlations in wave functions that show
random walk or biased random walk behavior at large
distances. A numerical example with both first- and
second-neighbor hopping is shown to have exponentially
localized eigenstates. This demonstrates that there is no
important distinction between diagonal and off-diagonal
disorder, but only between bipartite and nonbipartite lat-
tices. A lattice is bipartite if it consists of two sublattices
A and B, with nonzero hopping only between A sites and
B sites. Ziman has also pointed out that anomalous lo-
calization for off-diagonal disorder depends on the system

0163-1829/94/49(5)/3190(7)/$06.00 49

being bipartite.> Oppermann and Wegner found that in a
1/N expansion, there is singular behavior in the density
of states at E = 0 for a bipartite lattice.

Finally, we give numerical results for 2D systems.

A tight-binding model with disorder is described by
the Hamiltonian

H = Z E]‘C;Cj + Z tjkc;r-ck, (1)
J ik

where ¢; and t;j; are uncorrelated real random variables
and tj; = tx;. We mainly consider off-diagonal disorder
for which the €; are constant, taken to be zero. The
band-center eigenstates then have energy zero. Some
generalizations to include diagonal disorder and nonbi-
partite lattices are also considered. We further consider
generalizations with ¢;; complex and tx; = t;k, which al-
lows uniform and random magnetic fields. Note that the
diagonal disorder term €; could equally well be written
as a hopping term t;; that connects a site to itself. Thus
a system with diagonal disorder cannot be bipartite.

This paper is organized as follows. Section II gives ex-
act and analytic results: Section II A demonstrates that
there are zero-energy eigenfunction(s) with vanishing am-
plitude on one sublattice for regular and irregular bipar-
tite lattices in any dimension. Some generalizations to
nonbipartite systems are included. Section IIB gives an-
alytic results for the random walk behavior of In |¢;| for
1D systems with random first-neighbor hopping and for
systems with random first- and third-neighbor hopping.
Section II C shows how weak diagonal disorder leads to a
biased random walk. In Sec. II D we discuss the density
of states for the anomalously localized case.

Section III contains numerical results: Section IITA
gives results for 1D systems with first- and third-neighbor
coupling, and also for systems with first- and second-
neighbor coupling. The latter is not bipartite, and has
ordinary exponential localization. The numerical stud-
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ies find short-distance periodic behavior in addition to
the long-distance random walk or exponential behavior.
Section IIIB gives results for a 2D system and compar-
ison with earlier work is made. Section IV contains a
summary and a conclusion.

II. EXACT AND ANALYTIC RESULTS

A. Zeros of eigenfunctions

A bipartite lattice contains two sublattices A and B,
with t;;’s connecting sites on one sublattice only to sites
on the other. Consider a finite system with n 4 sites on
the A sublattice and npg sites on the B sublattice, with
labels chosen so that ng4 < ng. The following theorem
applies to the zero-energy eigenfunctions:

On any bipartite lattice with only off-diagonal disorder,
there are at least ng —n 4 linearly independent eigenfunc-
tions with eigenvalue E = 0 and all amplitudes v; equal
to zero on the sites of the A sublattice.

Proof: The Schrodinger equation on site j for a zero
energy eigenfunction is

Ey; =0=¢;9; + Z tinYk- (2)
k

Consider a bipartite lattice with all ¢; = 0 and seek so-
lutions with all ¥; equal to zero on the A sublattice.
The Schréodinger equation is trivially satisfied when j is
on the B sublattice, because all 1/; in the sum are zero.
The Schrodinger equation is nontrivial when j is on the A
sublattice, which gives n 4 linear homogeneous equations.
There are np unknowns, which are the nonzero 1; on the
B sublattice. For ng > ny4, there exist ng—n 4 linearly
independent solutions to the system of equations. (If the
system of equations is singular, there will be more than
np—n4 solutions.)

Generalizations: Since all 1; are zero on the A sub-
lattice anyway, nothing is changed at £ = 0 by adding
arbitrary off-diagonal or diagonal (¢; # 0) connections
between A sublattice sites. If there are m B sublattice
sites with connections to other B sites or nonzero diag-
onal terms, there are least ng—n4—m linearly indepen-
dent solutions with ; = 0 on the A sublattice and on
the m B sublattice sites. This last assertion has content
only if ng—n —m > 0.

The theorem applies in any dimension to lattices which
may be any size and need not be regular (see Fig. 1).
The fact that the theorem applies to irregular lattices is
not surprising; since the ¢;; can be arbitrary, parts of
the lattice can be disconnected by setting some of the
tjr = 0, and any irregular lattice can be formed from
a regular one in higher dimensions by selectively setting
some hopping matrix elements to zero. The ¢;; may have
random sign or even be complex with ¢;; = t5- Complex
hopping allows an arbitrary magnetic field to be added to
the system. Note that if n4 = npg, there are typically no
zero-energy eigenfunctions. Thus the 5 x 5 square lattice
of Fig. 1(a) always has a zero-energy eigenfunction, but a
6 x 6 lattice typically does not. In addition to the above
proof, these assertions have been verified numerically.

The zero-energy eigenfunctions described by the theo-

rem are in the center of the band, where the center is de-
termined either by counting eigenstates from the bottom,
or from the average of the eigenvalues £ = Y S E;/N,
which is zero since the initial Hamiltonian is traceless.
Under the generalizations that allow diagonal and off-
diagonal disorder on the A sublattice, the zero-energy

e |
(a)

FIG.1. Bipartite lattices with the A sublattice marked by
circles, and the B sublattice marked by squares. Nonzero ran-
dom hopping matrix elements are shown by solid lines. Both
(a) and (b) have np = n4 + 1, and each have one eigenfunc-
tion with =0, which has amplitude zero on the A sublattice
(circles). (c) An irregular bipartite lattice, with ng = n4 +2,
and hence with two independent E = 0 eigenfunctions, each
of which has amplitude zero on the A sublattice. If a nonzero
hopping matrix element is added on the striped bond, the
lattice is no longer bipartite, but it still has two zero energy
eigenfunctions with amplitude zero on the A sublattice.
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eigenstates need not be at E, but they are apparently
always at the band center by counting eigenstates. The
only justification we offer for the last assertion is that
one can continuously turn on the A-A hopping and A
diagonal disorder without in general causing any level
crossings. These counting assertions have also been ver-
ified numerically.

The zero-energy eigenfunctions with zero amplitude on
the A sublattice have unusual correlation functions in all
the cases we have investigated. We speculate that the
correlation functions are anomalous in general.

Since these results apply for arbitrary complex tx; =
t7k, they are relevant to the problem of quantum local-
ization in a random magnetic field, which has received
much attention recently.® Note that if one is interested
in the continuum problem, discretization on a square lat-
tice results in completely different localization properties
at the band center than discretization on a triangular lat-
tice. (The triangular lattice is nonbipartite.) The above
results also apply to the quantum percolation problem,

in which some of the t;; are set to zero with probability

p.°

B. Off-diagonal disorder, d = 1

We first consider a 1D chain with nearest-neighbor
hopping of random strength. To avoid spurious prob-
lems of disconnecting the lattice, we do not consider dis-
tributions in which ¢;; assumes values close to 0 or oo.
Equation (2) becomes

tjj—1%i-1 +ti 5419541 = 0. (3)

On alternate sites (the B sublattice), the logarithm of
the absolute value of 1 obeys the recursion relation

Injjpa| =Inf;a| + [Inlt;;-1| —Inft;;41]].  (4)

The term in brackets is a random variable with zero
mean and finite variance since random variables with
different alternate site index j are uncorrelated. Thus,
the quantity In|¢;;1| on alternate sites undergoes a
random walk, and a typical wave function decays like
exp(—Ay/r) from its maximum, which is much slower
than the usual exp(—Ar) decay found for diagonal dis-
order or off-diagonal disorder far from the band center.
This random walk argument was first made by Fleish-
man and Licciardello.? Away from the band center the
correlations should cross over to simple exponential at a
length scale larger than £, where £ diverges as E — 0.
Thus, although a finite 1D lattice with an even num-
ber of sites does not have an F = 0 eigenfunction, the
eigenfunction with the smallest |E| is expected to decay
like exp(—A+/r) for distances r essentially as large as the
system size L.

To investigate whether the eigenstates described by
the theorem generically have anomalous correlations, we
also considered a 1D lattice with first- and third-neighbor
random hopping, which leaves the lattice bipartite. At
E = 0, the Schrodinger equation can be written

tij+s¥is i 1%+t 11+, ;-3 -3 = 0.

(5)
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The eigenfunction is zero on the A sublattice which has
j = odd. Numerical simulations of Eq. (5) indicate that
at long distances, In |¢;| undergoes a random walk (see
Sec. IITA). (It is interesting, however, that in short
distances, a random walk was not observed.) This is
not so simple to demonstrate analytically as it was for
Eq. (3). One reason is that there is only one solution of
Eq. (3), whereas there are three independent solutions of
Eq. (5). A typical solution of Eq. (5) results in ordinary
exponential growth or decay of the wave function, and
also fails to satisfy the boundary conditions. It is only the
particular solution that satisfies the boundary conditions
that results in long-distance random walk behavior for
In [9;].

We have made analytic progress with Eq. (5) only for
the case where very dilute random impurities leading to
off-diagonal disorder are present in an otherwise ordered
lattice. (The general case is considered numerically in
Sec. IITA.) In the ordered part of the lattice, t; j4+1 =t
and t; j+3 = t/, with 7 = t'/t. We calculate the transfer
matrix for an isolated impurity at site M so that the
connected bonds tarar+1 and tarap+3 are random. In
the ordered part of the lattice, there are three solutions
for a given sublattice. One solution is always of the form
¥; = cos(3j). For =1 < 7 < 1/3, there is in addition
a pair of exponentially growing and decreasing solutions,
¥, and 9¥_. For 7 outside that range, there is instead
a pair of propagating solutions. Our analytic treatment
applies only to the former case. For the exponential case
with very dilute impurities, the appropriate solution is
of the form v; = A cos[5(j—M—1)] + Bry to the left
of site M, and ¢; = Arcos|[5(j—M—1)] + Bry_ to the
right. By eliminating By, and Bg we find

In|Ag| =In|AL| + [In|R;| — In|Rs]|], (6)
where

Ry = o*tyrmis + oty mar + tvm-1
+(a® + o — )ty m—3,

Ry = &Pty -3 + atpmm—1 + tv M4t
+(a® +a—)tmmys, (7)

and

a= o [r=1+/I+n)(I-3n] (8)

where a = 1;,2/1; for the exponentially decreasing so-
lution. We assume that both nearest-neighbor bonds
tam,m+1 have the same probability distribution p;, and
both third-neighbor bonds ¢ps ar+3 have the same distri-
bution p3. Then R; and R are random numbers with
the same probability distribution, and the logarithmic
amplitude again undergoes an unbiased random walk af-
ter multiple impurity sites, resulting in an eigenfunction
with exp(—Ay/T) decay from its maximum.

Equation (7) is for the case where the site M is on the
sublattice on which the wave function vanishes. If the site
M is on the other sublattice, the equations for R; and
R, are interchanged, and the conclusion about the unbi-



49 UNUSUAL PROPERTIES OF MIDBAND STATES IN SYSTEMS . ..

ased random walk is unaffected. As shown below, there
is numerical evidence that the logarithmic amplitude un-
dergoes a random walk at long distances even when the
assumptions about dilute impurities and the magnitude
range of 7 are relaxed. We have not, however, demon-
strated this analytically.

C. Diagonal disorder, d =1

We propose that at least in 1D, the localization prob-
lem is always a random walk. The usual exponentially
localized cases are random walks with bias. In the spe-
cial cases that have anomalous localization, the bias dis-
appears. We consider a problem in which the bias can
be increased continuously from zero by adding a small
amount of diagonal disorder. Let ¢; be the diagonal en-
ergy of site j. We consider here only nearest-neighbor
hopping with t; the hopping amplitude from site j to
j + 1. Using the Schrodinger equation, the transfer ma-
trix M to propagate the E = 0 wave function by two
sites is given by

€€i+1 _ ti  €iqitjg
Yivz | _ | Llivr e Gt il (9
Yj+1 _gi _ti-1 V-1
i i

Consider first the case where there is off-diagonal but
no diagonal disorder, so that all ¢; = 0. Then the only
terms remaining in Eq. (9) are on the diagonal. The
matrix M,, to transfer the wave function n sites (n even)
is

titn—2  tjta tij+2 &
(Mn)1,1=—3i"——---]— _J__‘J , (10)
ti+n—1  ti+s tj+3 tit1
titn— t; t; ti—
(M‘n)Z,Z — j+n—-3 %343 j+1 Y .1 , (11)
titn—2  ti+a tivz 1

with zero off-diagonal elements. The logarithm of the
wave function on the even sublattice is executing a ran-
dom walk. It can be seen that aside from “end effects,”
(Mp)2,2 is the inverse of (M,),1, so that the odd sub-
lattice is not executing an independent random walk, but
rather the mirror image of the even sublattice walk.
Now add very dilute diagonal impurities €;, with ¢;
comparable in magnitude to the t;. The impurities occur
with a density 1/L, where L is a distance long enough
that In || has diffused more than one unit (increasing
on one sublattice, decreasing on the other). Because
€; # 0, the transfer matrix, Eq. (9), now has one non-
zero off-diagonal matrix element. The diagonal disorder
mixes the even and odd sublattice amplitudes. When
two numbers 1; and 1;_; that differ by orders of mag-
nitude are added together, the magnitude of the sum
is approximately equal to the magnitude of the larger
number. Thus, depending on the sublattice the impurity
lands on, it has a 50% chance of doing essentially nothing
(in the case that the impurity is on the sublattice with
smaller |4]), and a 50% chance of resetting the smaller
sublattice amplitude to a value comparable to the larger
amplitude (in the opposite case). This process of taking
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the walks that have wandered in one direction (toward a
smaller absolute value, call it “left”) and replacing them
by a displacement of equal magnitude to the opposite di-
rection (“right”) results in a biased random walk. The
motion of In |4;| is hence drift plus diffusion. The diffu-
sion constant is D = 0%/2, where o2 is the variance of
the random variable In |¢t|. The drift corresponds to expo-
nential localization with a localization length (to within
a factor of order unity) £ = \/E/a. The drift can be
made arbitrarily small compared to the diffusion.

D. Density of states

Thouless has shown that in 1D, the localization length
is directly related to the density of states.” Thus since off-
diagonal nearest-neighbor disorder in 1D has anomalous
localization at E = 0, it also has a singular density of
states at E = 0. This has been observed numerically.®-°

III. NUMERICAL RESULTS

In this section, we present the results of our numerical
investigation of finite systems, which confirm and extend
the above ideas. We first discuss the one-dimensional sys-
tem with only first- and third-neighbor hopping, and con-
trast this with the case of first- and second-neighbor hop-
ping. Then we study two-dimensional systems and show
that while the localization properties are still anomalous,
there are important differences from the one-dimensional
cases.

A. One-dimensional systems

First, we summarize the general technique we used to
study 1D systems. We consider only finite-range hop-
ping, so that ¢;; = 0 if |2 — j| > . The bipartite property
requires that t;; = 0 for | — j| even. The Schrodinger
equation on site j, Eq. (2), is a relation between 2! + 1
amplitudes,

2l
_ (7)
Yi = E T Yi—i—14k,
k=1

where

7',5’) = —[tjj—1-14k + Oka+1(e5 — E) ] [tj 41 -

Thus one can construct recursion relations among the
vectors defined as ¥, = (Yntats**» Yni1,¥n)T (T de-
notes transpose):

‘I’n+1 = Mn‘I’n ) (12)

where M, is a 2] x 2] matrix whose elements are given by

n+l . .
(Mp)1,; = 1’2([_:_11]') (My)i,j = 6i+1,5 (i # 1). From this,
we have

‘I’n+1 = Mn . -Mle‘I’l = Mn\I’l.

One can solve this linear equation for the vector ¥; so
that the system satisfies the boundary conditions at both
ends. Once ¥, is obtained this way, Eq. (12) is used to
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generate the entire wave function. A special case of M,
is given in Eq. (9). Note that a system that is not strictly
one dimensional (i.e., strips) can also be studied similarly
with a straightforward generalization. A more standard
method to extract the localization length is to find the
eigenvalue of M,, for large n that is closest to unity.'®

The alternate method we used generates the explicit
wave function that satisfies the boundary conditions, in-
cluding the zeros on one sublattice and the short-distance
periodic correlations.

By computing the appropriate correlation functions for
different realizations of disorder and then taking their
average, one can study the behavior of this system. We
define two types of correlation functions:

91(7) = (I 51 ~ 1n srl])
92(r) = (10 | = 0 [¥jeerl) (13)

where (- --) indicates averaging over different realizations
and (---)' is the average over different “starting” sites
j as well as over different realizations. We have de-
noted by jmax that site with the largest amplitude [1;|.
For bipartite lattices, the functions g; and g, are plot-
ted only for the sublattice with nonzero v;. In the case
of one-dimensional problems that exhibit random-walk-
like behavior, both of these functions numerically show
g(r) ~ /7 at large distances.

100 —8M ™+

The 1D system with first- and third-neighbor random
hopping is studied in this manner. We are interested in
the E' = 0 state when the on-site energies ¢; = 0. Since
in this state all the amplitudes on the sites of the even
sublattice are zero, Eq. (12) reduces to a recursion with
3 x 3 matrices rather than 6 x 6.

The resulting correlation function g; is shown in Fig.
2. In the figure, (g1)? is plotted against 7 so that g; ~ /7
will appear linear. This system shows a linear behavior
which is similar to that of the case with only nearest-
neighbor couplings. (The correlation function gz, which
is not shown, is similar.) The interesting period-8 oscil-
lations can be explained as follows: Recall that in the
previous section, we considered the case where t; ;11 and
t; j+3 are fixed numbers rather than random variables.
For T = t; j4+3/t; j+1 outside the interval [-1,1/3], there
is a solution of the form ; = cos(gj + ¢) with

1 -1
qg= icos—1 (T ) , (14)

2T

in addition to a solution of the form ; = cos(5j+¢). In
the disordered case, 7 is taken equal to (t; ji3)/(t;j j+1)-
We have checked numerically for several cases that the
wavelength A (= 8 in Fig. 2) of the short-distance oscil-
lations in g; is given by the interference of the k = m/2
and the k = ¢ wave functions, with A = 27/(5 —¢). In
other words, with the level of disorder we have used, the

(8)°

FIG. 2. The square of the correlation function g; for 1D systems with random first- and third-nearest-neighbor hopping,
obtained by averaging over 10000 realizations. Both the first- and third-neighbor couplings are random variables that are
uniform in the interval [0.15, 1]. In order to eliminate the influence of the boundary effects, we have used the middle 1001 sites
of 2001-site systems. The straight line fit is (g1)?> = 1.1605 + 0.008 148 8r. The inset shows the behavior near r = 0.
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FIG. 3. The correlation function g2 for 1D systems with
random first- and second-neighbor hopping, obtained by av-
eraging over 4000 realizations. Both the first- and second-
neighbor couplings are random variables that are uniform in
the interval [0.15, 1]. In contrast to Fig. 2, g to the first
power is plotted so that a straight line implies ordinary ex-
ponential localization. Correlation functions are labeled from
the lowest-energy (1) to the highest-energy (50) eigenfunction
for the 50-site system.

eigenstate looks locally like a plane wave. The period of
the oscillations can be varied by changing the random
distributions. For the example of Fig. 2, 7 = 1, which
results in the observed wavelength A = 8.

Next we consider the case of first- and second-neighbor
hopping, which does not leave the lattice bipartite. For
this case the theorems do not apply, and there is in gen-
eral no zero-energy eigenfunction. We exactly diagonal-
ized 50-site chains and compiled statistics for all eigen-
functions (see Fig. 3). The figure shows that for all ener-
gies, g increases linearly with r, indicating exponential
localization 9 ~ exp(—Ar). There is no symmetry be-
tween the upper and lower band edges. For example,
state 46, with the fifth highest energy, has a different
A than state 5, with the fifth lowest energy. In the re-
gion where A is smallest (eigenstates 36-44), g, shows
periodic oscillations superimposed on the linear growth.
The period of the oscillations changes with the energy of
the eigenstate. These periodic oscillations can again be
explained by considering the problem with no disorder,
with ¢t} = (t1) and ty = (t2), resulting in a dispersion
relation €(k) = 2t} cos(k) + 2t} cos(2k). In the ordered
case, the periodicity of cos(kr) with k chosen to corre-
spond to the appropriate eigenstate is equal the observed
periodicity in g(r). For some values of ¢, there are four
allowed k’s. The oscillations in Fig. 3, however, are in a
region where there are only the usual two allowed k’s.

B. Two-dimensional systems

In view of the unusual property of the F = 0 state of
systems in 1D, we investigated 2D systems numerically in
order to determine how dimensionality affects the result.
We studied square lattices with nearest neighbor hopping
and only off-diagonal disorder.

In 2D, the simple Lanczos method was used to find the
lowest eigenstate of the matrix H? where H is the Hamil-
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tonian matrix for a system with odd number of sites.
Since it is already known that there is an E = 0 state for
H, the lowest-energy eigenstate of H? has eigenvalue 0
and an eigenvector that coincides with that of H. Statis-
tical error's were estimated by averaging over a number of
realizations (typically 50-200). To assess the localization
properties of the wave function, the correlation function
g2 of Eq. (13) was computed. Exponentially localized
states show a linear relationship between g, and r. The
function g; that involves all site pairs is not convenient
in 2D in that it does not have this property.

The result for 75 x 75-site systems is shown in Figs. 4
and 5. It is clear that g; does not vary linearly with r so
that the E = 0 state of this system is not exponentially
localized. This state is less localized than the £ = 0
state in 1D in the sense that (|4,/4;_..|) decays slower
than ~ exp(—Ay/r). We also note that the states away
from E = 0 show standard ~ exp(—Ar) behavior. These
states are not shown in the figures.

To better quantify the behavior of g>(r), we attempted
to fit the following form to the numerical data, corre-

sponding to (|¢r/Yj...|) ~ exp(—Ar?):
gex("') = Arg; (15)

as well as the form corresponding to power-law decay

(|%r/Vjmax ) ~ 77
gpw(r) = alnr + B. (16)
We also tried ([ /..|) ~ expl—r(lar)"/?]:

gz(r) =yVinr + C (17)

following Ziman (see below). The best fits to the
data shown in the figures are obtained at (6, A) =
(0.235, 2.36), (a, B) = (1.17,1.34), and (v,C) =
(3.79, —1.65). All of these functional forms are good fits

8,

I
o.:) 250 500 75.0 100.0
i

FIG. 4. The correlation function gz vs r for 2D systems.
The solid curve shows the best fit with the form g.(r) =
Ar®, the dashed line is with gz(r) = alnr + B, and the dot-
dashed line is with g2(r) = vvInr + C. The curve with short
dashes is the best fit with g2(r) = C+/r, corresponding to the
dependence in the one-dimensional case.
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FIG. 5. The same as Fig. 4, but with r plotted on a log-

arithmic scale.

to the data, with the power law working better at short
distances.

We point out that our numerical result is not sensitive
to the size of the system investigated. The lattices with
21 x 21, 31 x 31, 41 x 41, and 51 x 51 showed essentially
the same behavior. We cannot of course rule out different
behavior at distances larger than those studied.

Soukoulis et al. have previously simulated the £ = 0
localization problem in 2D with off-diagonal disorder.!?
They find that power-law localization »~ fits their data,
and that o changes continuously as the probability dis-
tribution for ¢ is changed. They also find exponential
localization for off-diagonal disorder on a triangular lat-
tice, which is not bipartite. Ziman has proposed an ap-
proximate theory for localization by off-diagonal disorder
that applies to any dimension.® In two dimensions, his
approximation yields a functional form (|¢,/v; .. 1) ~
exp[—y(Inr)*/2], which fits our data reasonably well. Tt
would be interesting to check Ziman’s prediction that
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states are extended in d > 2 with further numerical stud-
ies. Other work on off-diagonal disorder is contained in
Refs. 12-17.

IV. SUMMARY AND CONCLUSION

We have shown that midband states of bipartite sys-
tems (and some generalizations) vanish on one sublat-
tice. We believe that midband states on bipartite lat-
tices are never exponentially localized. This hypothesis is
supported by analytic and numerical results for 1D sys-
tems with nearest-neighbor, first- and second-neighbor,
and first- and third-neighbor hopping, for 1D systems
with diagonal disorder, and for 2D systems with nearest-
neighbor hopping. The crucial property for anomalous
localization is a bipartite lattice, not the presence of off-
diagonal and absence of diagonal disorder. Diagonal dis-
order ¢; is identical to a connection of a site to itself
(t;;) and always destroys the bipartite nature of a lattice,
whereas off-diagonal disorder may or may not destroy the
bipartite nature of a lattice.

In one dimension, anomalous localization corresponds
to an unbiased random walk, and ordinary localization
to a biased random walk.

Finally, in connection with doped semiconductors,
which are dominated by off-diagonal disorder, we con-
clude that localization should be of the ordinary expo-
nential variety, because there is no reason that the ¢;;
should leave the lattice even approximately bipartite.
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