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Melting line of aluminum from simulations of coexisting phases
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We have performed simulations of coexisting liquid and solid phases of aluminum as an efBcient
way of mapping out the coexistence line. This technique is convenient, as it does not require com-
plicated free energy calculations for the different phases, but simply allows the system to equilibrate
to a coexistence point. By altering the simulation volume and jor energy, a new coexistence point is
found. The calculated melting temperature is lower than previous results for the identical model; we
suspect that this difFerence is due to the difficulty of calculating the free energy of the liquid phase,
leading to inaccuracies in the previous work. A thorough examination of several different system
sizes, from 1024 to 65 536 particles, indicates that the results are only weakly dependent upon the
system size.

I. INTRODUCTION

Although molecular dynamic and Monte Carlo tech-
niques have been used for many years, it is still diK-
cult to make accurate theoretical predictions concern-
ing the melting temperature of real materials. Part of
the difhculty is accurately modeling the interactions in
real materials; however, with the recent advances in em-
pirical many-body potentials of metals, tight-binding
molecular dynamics, s and first-principles calculational
techniques, simulations of materials are becoming in-
creasingly realistic. Nevertheless, determining the melt-
ing temperature for a given model may still be quite diffi-
cult due to hysteresis near the 6rst-order transition; sim-
ulated crystals with periodic boundary conditions can be
overheated to temperatures much higher than the equi-
librium melting point —for the system we consider be-
low, we could heat the solid phase to temperatures over
500 K above the melting temperature without the system
melting. Thus, even for simple models, the location of the
melting line may be dificult to calculate accurately.

One approach to avoiding hysteresis is by calculating
the free energies of the solid and liquid phases. At the
transition, the free energies are equal; thus, an accurate
calculation of the free energies can give the transition
temperature. The difhculty is in calculating the free en-
ergies of the diH'erent phases: usually, this is done using
the relation

1

F = Fp+ dA(V —Vp)„,
0

where I" is the true free energy calculated from the po-
tential energy V, and Eo is the &ee energy of some ex-
actly solvable system corresponding to a potential Vo.
This relation may be derived simply from the canonical
ensemble; note that the average in Eq. (1) is calculated
with respect to the potential Vj, ——A(V —Vp). The aver-
age in the integrand may be calculated for a given value

of A by performing a simulation of the system with the
dynamics governed by the potential Vp. Using a series
of these values, an approximate value of the free energy
may be calculated. Once the free energy of the system
is known at a given temperature, a similar process may
be followed to 6nd the free energy at other temperatures
using the relation

F Fp E(7)

While the use of Eq. (1) is straightforward in princi-
ple, there are a number of difficulties and drawbacks in
this technique. For the solid phase, the reference sys-
tem is usually chosen to be some harmonic or Einstein
solid. ' For the liquid phase, however, the situation is
more difBcult, due to the lack of a convenient reference
system. The usual choice of a reference point is an ideal
gas, which may be reached by isothermally expanding
the system volume. However, the integration path in
Eq. (1) must be reversible, i.e. , no phase transition may
take place. Performing such an expansion is then un-
suitable, as it will generally take the system through a
liquid-vapor transition. One approach ' is to turn off
the attractive part of the interactions and then perform
a slow expansion to a weakly interacting gas. This avoids
the liquid-vapor transition and is therefore (in principle)
a reversible path.

Another approach is to determine the free energy of
the liquid phase directly by performing a grand-canonical
Monte Carlo simulation of the liquid at a given tem-
perature, which may be used to calculate the chem-
ical potential and therefore the free energy at that
temperature. i Then Eq. (2) may be used to calcu-
late the free energy at new temperatures. This technique
also may be computationally expensive, as the reference
free energy must be known quite accurately.

Whatever the technique, calculating the free energy
using Eqs. (1) and (2) requires a series of calculations,
which takes up much computer time. Further, it has been
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pointed out that an error in the Gibbs free energy of
0.01 eV/atom may produce a corresponding error in the
melting temperature of 100 K. Thus, much care must be
taken to ensure that the free energies are accurate when
using this approach.

Experimentally, hysteresis is not a problem —in fact,
even slightly superheating solids is usually quite difIi-
cult. This is due to heterogeneous nucleation: defects
act as nucleation sites for the liquid phase as the crystal
is heated. These defects may be vacancies, dislocations,
or surfaces; in fact, some surfaces become disordered well
below the bulk melting temperature. Surface premelting
has been examined using simulations for a number of
materials, including aluminum and gold. ' Thus, in-

troducing a surface, ' a vacancy, or some other crys-
talline defect into the simulation may help nucleate the
liquid phase. However, it may still be difIicult to obtain
reliable estimates of the transition temperature. One
must difI'erentiate between local disorder or premelting
near the defect, and bulk melting.

A more direct approach to finding the transition tem-
perature is to avoid the nucleation problem altogether,
i.e. , by simulating coexisting phases and allowing the sys-
tem to evolve to equilibrium. If the equilibrium system
contains both solid and liquid phases, then the system
will be at a melting point. This approach is suitable
for both experimental and theoretical studies. Molecular
dynamic (MD) techniques are particularly useful for this
approach, due to the fact that total energy is conserved
in conventional MD schemes. To understand how this
helps the system evolve toward equilibrium, consider a
system with a phase boundary. If the system as a whole
is at a temperature slightly below the melting point, then
some portion of the liquid phase will solidify, generating
the appropriate latent heat. Because the system is closed,
this heats up the system towards the melting point. Sim-

ilarly, if the system is above the melting temperature, the
latent heat required to melt the solid will cool the system.
The pressure of the system will also tend to equilibrate;
thus, the system will evolve toward an equilibrium phase.
There is no difriculty in nucleating either the liquid or
solid phases, as the interface assists in the nucleation for
the melting or solidification process.

Once one point on the phase diagram is known, the
system can be perturbed slightly, by altering the density
and/or the total energy, and a new equilibrium point will

be established. The presence of a boundary between the
different phases helps avoid difIiculties with hysteresis-
the system can equilibrate quickly to the new conditions.
This allows for a rapid, systematic exploration of the
phase diagram, which is a very strong advantage of this
technique.

In this paper, we examine this technique, using an
embedded-atom model (RAM) of aluminum. We have
chosen this model because the melting temperature of
this model at zero pressure has been previously studied
by calculating the free energies of the solid and liquid
phases using Eq. (1) and because of the simplicity of the
EAM model compared to more realistic simulation tech-
niques. We have calculated the melting temperatures for
P & 40 kbar, and find that the melting temperature at

P = 0 is significantly lower than the value obtained in
the work by Mei and Davenport. We believe that our
technique is more reliable in practice, as it is easier to
estimate the errors in the calculations. From the calcu-
lated coexistence line, we have found that the change in
entropy at the transition is in good agreement with the
experimental value.

II. MODEL AND TECHNIQUE

As mentioned in the Introduction, we use the HAM
model of aluminum proposed by Mei and Davenport.
This potential takes the form

where I" (p) is an analytic many-body force term de-

pendent upon the local electron density p, , which is
calculated from the polynomial f(r). A cutoff function
is used so that the potential goes smoothly to zero at
r, = 5.58441 A. We shall not discuss the motivation of
the potential here, except to note that it is an analytic
many-body potential fitted to the structural properties
of fcc Al, including the cohesive energy, lattice constant,
elastic constants, and unrelaxed vacancy formation en-

ergy. We refer to the original paper by Mei and Daven-

port for further discussion of the potential.
Most of the simulations were performed for 1024 par-

ticles; however, we have also performed simulations with
4096, 8192, and 65 536 particles, to test that the results
are not sensitive to system size. These finite-size tests
will be discussed later. Initially, each simulation had half
of the particles in the solid phase and half in the liquid
phase. The two phases had previously been equilibrated
separately at a temperature of approximately 800 K, the
melting temperature predicted by Mei and Davenport.
The total energy was adjusted by calculating the initial
potential and kinetic energies, then scaling the velocities
to adjust the system to the desired total energy. The sim-

ulations consisted of numerically integrating Newton's
equations of motions, with periodic boundary conditions.
As a result, the total energy and the volume were fixed
during each simulation. The simulations ran for a total
of at least 20000 time steps of 2.654 x 10 sec.

The temperature was calculated using

(4)

in the simulations, a time average of the kinetic energy
over either the last 5000 time steps was used. The results
for the average temperature and pressure were nearly

converged after the initial 5000 time steps: the results
for the following 5000 time steps were very similar, indi-

cating that this is a sufBcient initialization time. Simi-

larly, the pressure was calculated using the instantaneous
forces F,. and positions r,- in the virial equation
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N

PV = NkgT+ — ) F; r;
i=1

For HAM potentials, this may be written as

PV = NkgT —— ) F (p;)p,
' (r;, ). + . P'(—r;~) r;~

(6)

For a constant volume simulation with diH'erent phases
present, the pressure may be anisotropic, i.e., the sys-
tem may be under some eH'ective tension or compression.
We chose the simulation box size and shape so that the
average pressure was nearly isotropic.

III. RESULTS

Several possible final configurations are shown in Fig. 1
for the 1024 particle system. Figure 2 shows the final
configuration of 12000 particles from the N = 65536
system, representing a cross section of 13 A. The par-
ticle positions have been projected onto the (010) or the
(001) plane of the original crystal; the initial interfaces
were (100) faces of the fcc crystal. The periodic boundary
conditions and the chosen geometry cause there to be two

interfaces between the diferent phases. The geometry of
the system was chosen such that the system was approxi-
mately four times longer along the x direction than along
the y or z directions for N = 1024, 8192, and 65 536, and
approximately twice as long for N = 4096; see Tables I
and II for the actual dimensions used. This geometry
increased the number of crystalline layers that were ini-
tially between the interfaces, relative to a cubic geom-
etry. This helped prevent the system &om completely
transforming to a single phase. In Fig. 1, the open cir-
cles represent particles, which were initially in the solid
phase, and the solid circles indicate particles initially in
the liquid phase. As seen in Fig. 1(b) and Fig. 2, there
may be regions of both solid and liquid phases remaining
after the simulation was completed. This stable coexis-
tence demonstrates that the system is at an equilibrium
melting temperature and pressure.

After each simulation, it was verified that there were
still two phases coexisting in the system, i.e., the final
stable equilibrium point roughly corresponded to the sit-
uation shown in Figs. 1(b) and 2 with both solid and
liquid regions present. We have calculated the instanta-
neous pair correlation function g(r) for a solid portion
of the system following the simulations. This function is
shown in Fig. 3, along with the distances of the neigh-
boring atoms for a fcc lattice with the appropriate lat-
tice constant. The function was calculated for r ( 8
A. , enabling us to examine the peaks corresponding to
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FIG. 1. Possible final configurations after
equilibrating the system. The particle posi-
tions have been projected onto the z-z plane.
Open circles indicate atoms that were ini-
tially in the solid phase; closed circles indi-
cate atoms initially in the liquid phase. Dis-
tances in angstroms are indicated on the axes.
(a) Example of a system that has almost com-
pletely melted. (b) System in which some of
the solid phase has melted and some of the
liquid phase has solidified. (c) System that
has almost completely crystallized.
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seven shells of neighboring atoms. The peaks are fairly
broad, consistent with the system being near the melting
temperature. All peaks appear in their appropriate po-
sitions, with the intensity consistent with the number of
neighboring atoms at each distance, except for the sixth-
neighbor shell. This peak should have a low intensity,
due to the fact that there are only eight neighbors in this
shell. We believe that the peak cannot be seen due to the
low intensity and due to the width and intensity of the
peak for the seventh-neighbor shell. Thus, we conclude
that the structure is completely consistent with that of
a fcc solid, demonstrating that the solid portion has re-
tained its bulk properties.

In several occasions the 1024-particle system com-
pletely transformed within the first 10 000 time steps;
however, all systems that remained in a two-phase state
for the first 10000 time steps also maintained the coex-
istence for the next 10000 steps. This indicates that the
initial 10000 steps of equilibration were su%cient. The
results obtained for the 1024 system were used to predict

~ so otlsoro~oot 0 t&&%)soles ~ ~

geometries and energies for the larger systems; thus, we
never observed a larger system completely transforming.

In Tables I and II, the geometries, energies, and av-
erage temperatures and pressures are listed for our sim-
ulations. Simulations in which the system completely
transformed to a single phase are not included. Fig-
ure 4 shows the resultant pressure-temperature phase di-

agram, along with a fit of the N = 1024 data to the
form T = To + nP + PP . The fit is quite good and is
in complete agreement with the data from the (unfitted)
results for the larger systems. The fitted transition tem-
perature at P = 0 is To ——724 K, with an estimated error
of 10 K. We also find o. = 23.3 K/kbar and P = —0.15
K/(kbar2). Although there is some scatter in our data,
the results clearly indicate a melting temperature that is
considerably lower than the value T = 800 + 10 K pre-
dicted by Mei and Davenport for the same model. We
suspect that this discrepancy is due to some inaccuracy
in the &ee energy of the liquid phase in the paper by Mei
and Davenport, as we have separately calculated the
&ee energy of the solid phase, and obtain results close
to those of Mei and Davenport. Note that both calcula-
tions produce a significantly lower temperature than the
experimental value of T = 933 K; an inaccurate melt-
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FIG. 2. Final con6guration of 12 000 atoms from the
N = 65536 system after equilibrating the system. ( 13 A.

cross section of the total system is shown. ) Again, the particle
positions have been projected onto the x-z plane. Distances
in angstroms are indicated on the axes.
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FIG. 3. Instantaneous pair correlation function g(r) for the
solid portion of the N = 65 536 sample after the simulation.
The peak positions are consistent with the positions of the
neighboring shells of a fcc solid with a lattice constant a = 4.2
A, as indicated by the arrows. The appropriate number of
atoms in each shell is also shown, to show that the intensities
are also consistent with a fcc lattice.
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TABLE I. Coexistence melting temperature and pressures, found from individual simulations of
1024 particles. The total energy/atom and the box size for each simulation is also given. Note that
the cohesive energy of the fcc crystal at T = 0 is E, = 3.4 eV.

Pressure

(kbar)
0.1
1.1
2.2
4.7
6.2
8.5
9.1
9.8

11.3
12.2
14.0
16.0
19.2
22.1
25.5
28.7
32.2
32.5
37.7

Melting temperature

(K)
721
750
786
827
858
891
943
945
969
978

1017
1069
1122
1159
1219
1281
1305
1338
1392

Total energy/atom

(e~)
-3.125
-3.120
-3.115
-3.110
-3.099
-3.095
-3.094
-3.093
-3.090
-3.080
-3.073
-3.065
-3.055
-3.045
-3.035
-3.025
-3.015
-3.010
-2.980

Box size

68.30 x 16.80 x 16.80
68.00 x 16.80 x 16.80
68.10 x 16.75 x 16.75
67.60 x 16.70 x 16.70
67.60 x 16.67 x 16.67
67.30 x 16.60 x 16.60
67.20 x 16.57 x 16.57
67.15 x 16.55 x 16.55
67.00 x 16.50 x 16.50
67.00 x 16.50 x 16.50
66.90 x 16.45 x 16.45
66.70 x 16.40 x 16.40
66.55 x 16.30 x 16.30
66.50 x 16.20 x 16.20
66.30 x 16.10 x 16.10
66.15 x 16.00 x 16.00
66.00 x 15.90 x 15.90
66.00 x 15.90 x 15.90
65.80 x 15.80 x 15.80
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FIG. 4. P-T phase diagram, as deduced from the simula-
tions. Data points are from the simulations, listed in Tables I
and II. The symbols indicate results for difFerent system sizes:
open circles, N = 1024; solid squares, N = 4096; solid trian-
gles, N = 8192; solid hexagon, N = 65536. The solid line is
a fit of the N = 1024 results to the form T = To+aP+PP;
the P = 0 melting point is found to be To ——724 K.

ing temperature is a common shortcoming of the EAM
models 11

The dynamics of the solid-liquid interface was also ex-
amined in the paper by Mei and Davenport; it was found
that at T = 700 K (below their calculated transition
temperature of 800 K) the crystal phase tended to grow,
while at T = 900 K (above their transition temperature)
the crystal began to melt. This approach is similar to
ours, in that they examine a coexisting system in order
to check their calculated transition temperature. Again,
the argument is that the system will tend to solidify if the
temperature is too low, and will liquify if the tempera-
ture is too high. However, instead of allowing the system
to equilibrate, they simply observe the initial movement
of the interface. Their results on the dynamics of the
interface are consistent with our melting temperature of
724 K, as well as the higher melting temperature they
obtained. However, we consider this approach somewhat
unreliable, as we commonly saw systems in which the
crystal at one interface melted, while the liquid at the
other interface crystallized. When this occurs, there is
no way to state whether the system is too cool or too
warm. This suggests that fluctuations in the boundary
position make predictions based upon the boundary mo-
tion difBcult. The possibility of melting at one end and
solidification at the other is evident in Fig. 1(b), where
some of the system that began in the crystal phase (open
circles) is now melted, and some that began in the liq-
uid phase (solid circles) is now solid. Such results are
not surprising, as the fluctuations in the potential energy
are largest near a phase transition. Also, the dynamics
are also determined by local pressure equilibration; both
the temperature and pressure must equilibrate. These
processes are coupled, making the interpretation of the
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TABLE II. Same as Table I, but for simulations involving 4096, 8192, and 65 536 particles.

Pressure

0.0
6.1

11.3
19.1
28.7
37.7

Melting temperature

(K)

733
860
969

1117
1271
1392

Total energy/atom

(eV)
4096 particles

-3.125
-3.099
-3.090
-3.055
-3.025
-2.980

Box size

68.30 x 33.60 x 33.60
67.60 x 33.35 x 33.35
67.00 x 33.00 x 33.00
66.55 x 32.60 x 32.60
66.15 x 32.00 x 32.00
65.80 x 31.60 x 31.60

0.8
9.3

17.1
23.9
38.7

733
926

1063
1179
1390

8192 particles
-3.130
-3.095
-3.070
-3.060
-3.000

135.5 x 33.6 x 33.6
133.8 x 33.2 x 33.2
132.2 x 32.8 x 32.8
130.6 x 32.4 x 32.4
128.2 x 31.8 x 31.8

0.0 718
65 536 particles

-3.130 272.0 x 67.2 x 67.2

interface dynamics unclear. Therefore, we do not believe
that monitoring the initial movement of a phase bound-
ary is necessarily a good technique for determining the
transition temperature.

The fit of the data shown in Fig. 4 indicates that the
slope at P = 0 is dP/dT = 43 bar/K. The Clausius-
Clapeyron equation relates the slope to the latent heat
L and the difference between the specific volumes of the
solid and the liquid phases:

dp
dT

Using this along with the density of the different phases,
we could estimate the latent heat of the transition at zero
pressure. Alternatively, noting that vt —v, is very weakly
dependent upon temperature and pressure, we may cal-
culate the change of entropy AS = L/T that occurs at
the transition. This will be nearly constant throughout
the linear regime (i.e., over the temperature range where
dP/dT is nearly constant). We found that at P —0, the
specific volumes in the liquid and solid phases were ap-

3 p 3
proximately v~

——20.5 A and v, = 16.6 A. , resulting in
a value of AS = 1.2k~. This is identical to the value of
AS = 1.2k~ calculated using the solid- and liquid-phase
energies given by Mei and Davenport at their calculated
melting temperature T = 800, and close to the experi-
mental value of AS = 1.4k~.

IV. DISCUSSION

In this paper, we have calculated a portion of the (P, T)
phase diagram of an EAM model of aluminum. This work
demonstrates that the melting line of a model system
may he accurately and systematically determined by us-

ing constant energy, constant volume molecular dynamics
to simulate coexisting liquid and solid phases, and allow-

ing the system to equilibrate. The melting point for this
model was previously determined to be near T = 800
K at P = 0; we find a somewhat lower transition tem-
perature of T = 724 + 10 K. We calculated the change
in entropy at the transition to be AS = 1.2k~, using the
Clausius-Clapeyron equation, and found the same value
using the results of Mei and Davenport. This value is
in reasonable comparison with the experimental value of
AS = 1.4k'.

This technique has several advantages over other meth-
ods. The most important advantage is that the simulated
system does not have to undergo the nucleation process in
order to transform; normally, the slow nucleation time is
the source of the hysteresis in "computer experiments" in
which a crystal is heated until it transforms into a liquid.
Secondly, unlike techniques based upon Eq. (I) which use
a series of simulations to determine the free-energy dif-
ference between the system and a solvable system, the
coexistence technique can, in principle, reveal a melting
point in a single simulation. In fact, once several points
on the phase diagram were known, we found it easy to
predict the simulation conditions that would reveal a new
point on the phase diagram. Thus, the total number of
simulations performed was not much greater than those
listed in Tables I and II. In contrast to this, Mei and
Davenport required 10 simulations simply to determine
the free energy of the liquid phase of aluminum at a single
temperature and pressure.

While we believe that this approach is very useful, it
is important to be aware of possible difhculties that can
arise. First, as this is based upon a finite-size system,
there is no true transition point. In principle, because
of this, there will be a small range of temperatures over
which coexistence may occur. In practice, for the number
of particles used in our simulations, the actual behavior
will be very similar to that of a true transition, to the
point of being indistinguishable in the simulations.

More importantly, changing the size of the system
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can have the effect of shifting the apparent transition
temperature, and thus the phase diagram may have a
systematic error due to these finite-size effects. However,
these effects are usually quite small for first-order transi-
tions, due to the finite correlation length as the transition
is approached; the effects vanish rapidly with increasing
system size. In our case these effects are certainly smaller
than the scatter in the results shown in Fig. 4: increas-
ing the size of the system from 1024 particles to 4096
reduced the scatter, but did not noticeably change the
results. This is demonstrated by the fact that the data
from the N = 4096 simulations agreed with the fit to the
N = 1024 data. Increasing the size further, by doubling
the dimension of the N = 4096 system perpendicular to
the interface, appears to slightly decrease the observed
transition temperatures, as can be seen in Fig. 4. How-
ever, at high pressures (where this shift is largest), this
change is no more than 1'%%uo. This is less than our esti-
mated error, and (given the accuracy of the model) is
insignificant. A further doubling of all dimensions did
not produce a significant change in the P = 0 results, as
indicated in Table II for the N = 65536 system. Thus,
for all sizes, we find that the P = 0 results are within the
range T = 724 6 10 K.

Thus, although changes in the geometry and in the
number of particles could, in principle, affect the ob-
served transition temperature, our results show no such
finite-size effect. We expect that the shift in the tran-
sition temperature due to the system size will be small
in most solids near their melting temperature, and that
it is not necessary to go to extremely large numbers of
particles to extract accurate information. (Note that this
will not be true for two-dimensional melting, where Buc-
tuations over long distances can occur. This can cause
important finite-size effects, making the bulk limit diffi-
cult to extract. )

The most important size effect is that the system must
be large enough to allow for equilibration, which may in-
volve a significant fraction of the system transforming.
Clearly, the system should not entirely transform —this

would indicate that the system is not at an equilibrium
transition point. To check the possibility that this could
affect our results, we performed a series of simulations
with a total of 512 particles, half as many as used to ob-
tain the results for the 1024-particle system. The geome-
try in the y and z directions were the same, but the length
along the x direction was halved. In that case, the system
tended to transform completely; further, over a range of
energies, the system would either become completely liq-
uid or completely solid in an unpredictable fashion. Thus
it is very important that this technique be used with a
sufficient system size and simulation time to ensure that
the system is in a true equilibrium coexistence regime.

The requirement of such a large system may currently
make it difficult to apply this technique to ab initio and
tight-binding techniques; however, increasingly power-
ful computers and recent developments in calculational
techniques ' ' may soon make this a practical tech-
nique even for these more realistic techniques. Our work
clearly demonstrates the advantages of this approach: its
simplicity, speed, and immediate applicability make this
technique a powerful tool for the theoretical exploration
of phase diagrams.
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