
PHYSICAL REVIEW B VOLUME 49, NUMBER 5 1 FEBRUARY 1994-I

Ground-state phase diagram of a one-dimensional discotic liquid crystal
in a local anisotropy field
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The ground-state phases of a chiral model which describes orientational order of a single stack
of planar objects with threefold symmetry subject to a local anisotropy Geld are examined. The
results are used to interpret experimental data on columnar discotic liquid crystals which exhibit
triangular arrays of helically ordered molecular stacks.

I. INTRODUCTION

Discotic mesophases having a regular two-dimensional
arrangement of parallel columns of disklike molecules
are now known to exist. ' Such states are realizations
of two-dimensional long-range positional order (rectan-
gular or triangular) in a three-dimensional solid. s In
this idealized view of columnar liquid crystals, the in-

tracolumn behavior is liquidlike and in the absence
of defects, the columns glide freely over each other.
The mechanical properties of a model which excludes
shear strain acting along the columns leads to both
buckling and undulation instabilites. These features
were observed experimentally in a particular discotic
liquid crystal composed of hexa-n-octyloxytriphenylene
molecules (HET) indicating, however, the presence of
an anomalously large (for a liquid crystal phase) col-
umn curvature elastic constant. More recent depolarized
Rayleigh scattering experiments suggested that the col-
umn undulation is not controlled by curvature elasticity
but by extrinsic solidlike three-dimensional elastic behav-
ior due to column entanglements or defects. This inter-
pretation has been challenged by Brand and Pleiner who

maintain that the liquid crystal phase studied in Ref. 7
has true three-dimensional long-range positional ordering
due to intercolumn correlations.

The structural properties of a related compound com-

posed of hexa-hexylthiotriphenylene molecules with D3
symmetry (HHTT) have been examined in some detail by
x-ray difFraction and are most relevant to the present
study. Discotic columnar mesophases exist in this mate-
rial at temperatures T ( 93 C with the columns forming
a triangular array. At lower temperatures, T ( 70 'C, he-
lical ordering along the stacking axis is observed. This or-
der is accompanied by a period-three basal-plane super-
lattice structure associated with one-third of the columns
having a vertical displacement. The relative chirality of
the columns also has a period-three structure; however,
further characterization of this quantity appears to be
dependent on experimental conditions. Indeed, the ini-

tial x-ray data on oriented strands of HHTT (Ref. 9) were
interpreted as resulting from an incommensurate helical
order along the columns with an intermolecular rotation

angle of 45.5 . This study also concluded that the undis-
placed stacks had the same chirality while the displaced
stacks had a random chirality implying no long-range or-
der. A subsequent study reported that a better 6t to
the x-ray results were obtained by assuming the displaced
stack had helical order with a chirality opposite to that
of the undisplaced columns.

More recent high resolution powder difFraction
results on the same material were used to study
the phase diagram of hexa-n-alkylthiotriphenylenes as
a function of the length n of the six chains surround-
ing the triphenylene core. In these bulk materials, for
an effective n ranging from 5.65 to 6.10 carbons, a
(three-dimensional) helically ordered discotic phase is ob-
served with a commensurate periodicity involving eight
molecules (45'). Their analysis suggests that the side
chains form an isotropic oil surrounding the rigid cores.
At the smaller and larger values of n for which this phase
is stable, additional structure is observed corresponding
to some columns having an incommensurate helical pitch
of 47.2'. The presence of only incommensurate helical
structure in the strand geometry was then interpreted as
a consequence of a large surface tension.

The results discussed above point to a set of unan-
swered questions and issues regarding helically ordered
discotics. An important one being: To what extent
does long-range helical order imply long-range three-
dimensional positional order? Which may be rephrased:
What freedom remains for the stacks to glide freely over
each other in this phase? It also remains to be under-
stood why there is such a strong dependence of the heli-

cal pitch on the geometry and sample constraints, even
leading to the coexistence of commensurate and incom-
mensurate structures under certain conditions. Common
to all these features is the role played by the local environ-
ment of a single column. Although known to be weaker
than the intracolumn couplings, these spatial-average in-

tercolumn interactions can play an important role in the
helical order of a single stack. The work reported here
answers some of these questions and serves to compli-
ment and extend other work in this Beld as well as

providing the basis for a more detailed treatment.
The remainder of this paper is organized as follows.
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In Sec. II, the model of a helical column in a sixfold
or threefold anisotropy 6eld is presented. Analytical and
numerical results pertaining to the stability of the period-
eight phase are given in Sec. III. Finally, a discussion
of the results is made in Sec. IV with reference to the
ground-state behavior of the helically ordered discotic.

XI. THE MODEL

Figure 1 shows the two-dimensional pattern of the
columns as proposed in Ref. 9 for HHTT in its heli-

cally ordered phase. Undisplaced stacks are shown by
full circles and displaced stacks by open circles. At the
lowest temperature at which this phase is stable, the rel-
ative interstack displacement approaches one-half of the
intrastack intermolecular separation. Two types of two-
dimensional local environments are then present which
are due to the geometry of the surrounding stacks: the
displaced and undisplaced stacks are in local anisotropy
6elds which are predominantly sixfold and threefold, re-
spectively. We do not attempt to formulate a complete
picture of these complex systems which involves coop-
erative states of all the stacks interacting together, but
rather a simple model is considered which pertains to a
single stack. We study the effect of the local anisotropy
field on the helical pitch of a column in the belief that
useful knowledge can be gained in the context of eluci-
dating the role of competing periodicities.

The potential energy for the angular dependence of a
single stack of molecules with Ds symmetry (see Fig. 2)
is then written as

E[8„] = —Jo ) cos 3(8„+i —8„—n)

—-', II) cos(p8„),

where 8„ is the angular coordinate of the nth molecule
with respect to a Gxed direction perpendicular to the
stacking axis, ~3 Jo is the nearest-neighbor intracol-
umn chiral interaction strength, H is the local angular
anisotropy Geld of p-fold symmery, and a is a measure of

FIG. 2. Schematic sideview of a half period-in the 3/8
phase. The intermolecular turn angle is n = z/4, so that
a full period consists of eight molecules. However, because of
the Ds symmetry of the molecuies (symbolized by triangles),
one counts three full rotations of 2x over eight consecutive
molecules.

the natural angle of rotation between a nearest-neighbor
pair of molecules in their lowest energy state. For the
nonhelical case (a = 0), we have the trivial ferromagnetic
chain. For o. and H different from 0, it is the competition
between the two interaction terms of (1) (the first term
sets the natural pitch of the helix, while the anisotropy
term defines prefered directions), that gives rise to com-
mensurate and incommensurate phases in this model.
For a study of states at T = 0 with classical rotation de-
grees of freedom, kinetic energy terms may be neglected.
It has also been assumed that the intermolecular dis-
tances remain Gxed so that only rotational degrees of
freedom contribute to the potential energy (1).

With the change of variables P„= 38„, the potential
energy (1) reduces to that for a system of classical planar
vectors with a chiral interaction in an anisotropy 6eld of
p/3 symmetry

E[P„] = —Jo ) cos(P„+i —P„—b, )

(2)

where 6 = 3o.. The main features of the H —6 phase
diagram for this model with p = 3 have been obtained
by Yokoi et al. , and for the case of a twofold anisotropy
field (p = 6) by Banerjea and Taylori and more recently
by Hebert et al. We examine here in detail the stability
of the period-eight phase.

To specify the commensurate phases, we adopt the no-
tation introduced by Yokoi et al. The average nearest-
neighbor intermolecular angle is written as

FIG. 1. The two-dimensional pattern of columns transverse
to the stacking axis.

A commensurate phase having P 2' rotations for the Q
successive molecules of an entire period is speci6ed using
the rational number
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(4)

In the next section, we study analytically and numeri-
cally the region. of stability in the H —4 phase diagram
of the 3/8 phase of the chiral vector model, i.e. , three 27r

rotations of the vectors for the eight successive sites of a
given period. This state corresponds to a 45' intermolec-
ular turn angle in the Ds-symmetry discotic model (see
Fig. 2).

III. REGIONS OF STABILITY OF THE 3/8
PHASE

H = 12.6~6'~ ~ (5)

for the soliton and

We first consider the case of the displaced stacks of the
helical discotic, which are seen from Fig. 1 to be acted
upon by a local anisotropy 6eld of sixfold symmetry. This
corresponds to an easy-axis anisotropy in the equivalent
planar vector model with p=6. In the isotropic limit H=O
and with 6 = 6, = 3(vr/4), a commensurate 3/8 phase
is stabilized.

For finite H, the otherwise freely rotating 3/8 phase
is pinned to a particular orientation in the plane with
concomitant angular distortions, as shown in Fig. 3 and
discussed in the Appendix. This pinning allows the phase
to occupy a Gnite region of the H —6 phase diagram. An
analytic formulation of the phase boundaries for the 3/8
phase based on the criteria of zero-energy creation for a
single soliton (antisoliton) is presented in the Appendix.
The presence of the anisotropy field 6xes the global phase
angle 4 to m/8 (see the Appendix). The phase boundaries
at small H, as discussed in the Appendix, are given by

0.1-

0374 B. 0.3749 0.3750 0.3751
h/2II

FIG. 4. Phase diagram for the 3/8 phase. Thick broken
lines to the left for 0.3750 are analytic results obtained from

(5) and (6) for the sixfold anisotropy field. Small vertical bars
at low H indicate the phase-boundary region for this case as
determined numerically. Good agreement is seen to the left of
0.3750. The region of stability of the 3/8 phase found to the
right of 0.3750 only in the numerical results decreases with
increasing v, as indicated by the thin broken curves (guides
to the eye) labeled 500 and 2000. The full curves (guides
to the eye) with vertical bars correspond to the numerical
results for the case of a threefold anisotropy field. The vertical
bars represent portions of the H-scans where both 3/8 and
higher-order commensurate phases were observed.

H = 368~6'~& (6)

FIG 3. Angular .distortions of the 3/8 phase induced by
the anisotropy field of sixfold symmetry. The meaning of the
arrows is described in the text.

for the antisoliton. The reduced chiral angle is given by6' = (4 —4, )/2vr and H is measured in units of Jo.
In both relations (5) and (6), b, ' is negative so that the
domain of stability of the distorted 3/8 phase is located
entirely in the region 6 ( A„as shown in Fig. 4. The

anisotropy field strongly pulls the 3/8 phase towards the
symmetry point 6 = vr/2 of the easy-axis vector model.
Thus in the case of a sixfold anisotropy Field, the 3/8
phase is totally absent for 6 ) 3'/4.

A numerical determination of the phase boundaries
was also made using the e8'ective potential method.
This technique has been used extensively in the recent lit-
erature; further details of our own implementation may
be found in Ref. 14. Two quantities characterize the
method; first, the number v of equidistant points used
to discretize the angular variables, and e, an arbitrarily
small parameter chosen to indicate that self-consistency
has been achieved. Results for the region of stability of
the 3/8 phase from the first calculation using v=500 and

10 are shown in Fig. 4. Contrary to the ana-
lytic results, this first numerical approach leads to the
appearance of a region of stability for A' ) 0. However,
using v=2000 and c = 10 yields a phase diagram with
this discrepancy greatly reduced. The numerical results
for b, ' ( 0 are in good agreement with expressions (5)
and (6), as shown in Fig. 4. It appears likely that full
agreement with the analytic results would occur if a very
large value of v and a very small e were used.

Consider now the case of the undisplaced stacks which
are subject to a threefold anisotropy field. For the vector
model, this is equivalent to the presence of a magnetic
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field. The gross features of the phase diagram have been
reported by Yokoi et a/. which show a symmetry point
at 6 = vr and a spin-wave-type instability &om the 0/1
phase to the 1/2 phase for H ) 4. Although there is
evidence in this work that the domain of stability for the
3/8 phase rises nearly vertically (curving slightly to b, ' )
0) a more accurate determination of the phase diagram
at low H was made here. Efforts to employ the analytic
approach discussed in the Appendix for this case proved
&uitful only in the limit of very small H. To lowest order
in 4', the two boundary lines increase symmetrically as

1
H

~

6' ~4. Results from a numerical determination of
the phase boundary lines at higher H are also shown in
Fig. 4. It opens up on both the positive and negative
sides of b, '. For b, ' ) 0, the 3/8 phase persists up to
H 0.3. At very small values of H, the boundaries are
nearly flat followed by a rapid increase near 6' 10

IV. DISCUSSION AND CONCLUSIONS

terest in view of the variety of experimental results dis-
cussed in the Introduction, in particular, the absence of
shear stress between the columns and the presence of de-
fects in the stacks. Viscoelastic measurements at finite
frequency are clearly of interest in order to examine in
more detail the nature of the elastic interactions between
columns. Finally we note that the predicted distortions
of the 3/8 phase may be observable in scattering experi-
ments as higher harmonics of the principal wave vector,
provided that the thermal fluctuations associated with
these weaker-intensity peaks are not large.
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The phase boundaries presented in Fig. 4 show clearly
that the stability of a single column of D3 molecules in
an anisotropy field is strongly dependent on the symme-
try of its local environment. As indicated in the Intro-
duction, we may speculate that to a certain degree the
structure of the stack will depend on the natural angle
of rotation 6 (or a) and on the strength and symme-
try of the surrounding field. Assuming that the natural
angle of rotation for the HHTT molecules is 45' (i.e.,

6/2x = 0.3750), our results suggest that the undisplaced
columns will remain in the 3/8 phase for values H ( 0.3.
From the results indicated in Fig. 4 of Ref. 15, it can
then be expected that transitions will occur to 1/3 and
1/2 phases at H 2.4 and 4.0, respectively (with the
occurence of higher-order phases near these critical field
values). In contrast, the displaced columns experience
an anisotropy field which destabilizes the 3/8 phase even
for infinitesimal values of H. According to Fig. 1 of
Ref. 14, the stack would then be in an incommensurate
or higher-order commensurate phase corresponding to an
intermolecular turn angle larger than 45 . This result is
of interest in view of the observation in HHTT of a struc-
ture with a periodicity of less than eight molecules,
as discussed in the Introduction.

The three-dimensional state is certainly a cooperative
phase of all the columns and the effect of the intercolumn
interaction is more than to produce a local anisotropy
field. However, a rough model emerges from the results
reported here where the undisplaced stacks are kept in
the 3/8 commensurate state and the displaced stacks
must accommodate this environment. Two situations
may result kom these constraints. First, the displaced
stack is forced to also be in a type of 3/8 phase where
this is achieved only on the average, with regions of dis-
commensurations separating higher-order phases. The
second scenario is that the displaced stack is in an in-
commensurate phase. This latter possibility would al-
low for the displaced columns to glide freely along the
stacking axis. The sum of these possibilities is of in-

APPENDIX

b, —3x/4. (A1)

Assuming a distorted structure of period eight, the an-
gular coordinates P„ for finite H are written as

P„= n(3~/4)+(„+ C. (A2)

For H=O, the distortions („are zero and the global phase
angle 4 is undetermined. For H ) 0, the („are expressed
by

) A~ cos(qn + a~),
0&qg vr

(A3)

where the wave number q is limited by the periodic
boundary conditions of the full stack of N molecules and
to values compatible with the period of eight molecules.
The distortions having, respectively, one, two, three, and
four periods inside the eight sites are written as

( = t cos(7m/4) + iv sin(xn/4) + u cos(7m/2)

+v sin(em/2) + y c os(3 r7n/4)

+z sin(3xn/4) + (—1) x. (A4)

Using (A2) and this expression in the potential energy
(2) expanded to fourth order in A' and H, one finds that
the following amplitudes minimize the energy:

u = a sin(24) + 6 sin (24),

v = —a cos(2C') —b cos (24'),

(A5)

(A6)

x = csin(44), (A7)

The purpose of this calculation is to determine the
phase boundaries of the distorted 3/8 phase in a sixfold
anisotropy field at small values of H and 6' (with Jo =
1), given by
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where

1~ 10~i'2 5 ~3
2 4 16

1303
24

-H + —0 4'.
8 16

(A8)

(A9)

(A10)

gle soliton creation energy identi6es the limits of stability
of the 3/8 phase. Treating the position along the stack
n as a continuous variable, and using the results (A5)—
(A10), the potential energy relative to the distorted 3/8
phase is

—(6' + ,'H' ——
—,
'6" —,'6'H—'j [4(oo) —4(—oo)]

dn —,
'

i i
+ „'sH' cos'[44 (n)], (d4(n)&

dn )
To this low order in H, the amplitudes t, m, y, and z are
zero since they are associated with an odd number of pe-
riods inside the overall periodicity of eight. Substituting
(A5)—(A10) into the expression for the potential energy
yields the following lowest-order 4-dependent term:

b,E = —4sH sin (44). (A11)

This result demonstrates that the global phase angle is
pinned at 4' = 7r/8 by the field H. Figure 3 shows
schematically the distortions of the period-eight phase.
The inner full arrows indicate the directions of the ro-
tational distortions of period-two while the outer broken
arrows show the same property for the period-four dis-
tortions.

It is now assumed that the distorted 3/8 phase is ren-
dered unstable by the spontaneous appearance of soli-
tons. The defect we consider corresponds to a slow vari-
ation of the phase angle 4 along the stack with an overall
change of jz'/4. The solitons are taken to have a mutual
repulsive energy and as a consequence the zero of the sin-

(A12)

C(n) = —,'~+ -,'tan-'(exp ~ ,'g7H'n-). (A13)

The energy of these solutions is

~ = —(S'+ —,
'H' ——,

'S"—
—,'~'H') [C (~) —e(-~)]

+ ,', /7H'. — (A14)

For the (+) soliton, the boundary conditions are
4(—oo) = vr/8 and 4(oo) = 3'/8. The zero of the cre-

ation energy is then given by (5), with b, ( 0. The anti-
soliton (—) has the boundary conditions C (

—oo) = 37r/8
and 4'(oo) = z/8, with the zero of the creation energy

given by (6), also with 6' ( 0.

Solving the differential equation obtained from the ex-
tremal condition of this energy functional, with boundary
conditions 4(+oo) = z/8 or 3'/8, the following sohton
(+) or antisoliton (

—), centered at n = 0, is obtained
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