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Phase transitions of PbHPO4- and PbDPO4-type ferroelectrics
investigated with a Green s-function technique
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(Received 28 July 1993)

A Green s-function technique is used to study the effects of spin-phonon interactions in PbHPO4-
and PbDPO4-type ferroelectrics including higher-order anharmonic terms. The renormalized energy
and the damping of the spin waves and the phonons have been evaluated. The anharmonicity effects
play an important role in the vicinity of T, and above T, . The transverse dynamic structure factor
exhibits three peaks due to the coupling of the transverse soft mode and the acoustic-phonon mode.
The width of the central peak is proportional to the phonon damping.

I. INTRODUCTION

Recently a central mode of H-bonded ferroelectric (FE)
PbHPO4 (LHP) and PbDPO4 (LDP) has been found
in the paraelectric phase by hyper-Raman scattering by
Shin et al. From the temperature and polarization de-
pendences of the central mode it is concluded that the
central mode is the soft mode in LHP. The phase tran-
sition can be considered as an order-disorder type phase
transition.

Theoretical studies of the properties of LHP-type FE's
have been carried out by many authors. Chunlei et
at. have investigated the thermodynamic properties of
LHP and LDP using the three-dimensional transverse
Ising model including the fourth-order pseudospin in-

teraction and obtained good agreement with the ex-
perimental data of the spontaneous polarization. The
dynamic properties are not calculated in this work.
Wesselinowa has treated the three-dimensional Ising
inodel in a transverse Beld including the fourth-order
interaction by means of the Green's-function technique.
She calculated the spin-wave energy and the damping
above and below T, . The coupling between the transverse
soft mode and the relaxing longitudinal mode produces
a central mode in the dynamic structure factor. The di-

electric properties of LHP near to the direction of spon-
taneous polarization P, were investigated by Briskot and
Happ. The soft proton mode which causes the Curie-
Weiss anomaly of the dielectric constant e, at T, is of
relaxation type. It can be described by a Debye formula.
A very small value of the tunneling integral 0 (found the-
oretically in LHP with the help of the pseudospin model)
supports the conclusion that tunneling plays no essential
role in the dynamics of the proton system.

Chaudhuri et al. and Banderjee et al. used the
pseudospin-lattice-coupled mode model to study the
static and dynamic properties of LHP. They have not
considered a term of the form, '-

&&; '. Sk S&',

pointed out that it may be important for describing more
correctly the dynamics of the phase transition in some H-

bonded FE's. Another point which was mentioned is that
the small value of the transition entropy DS observed
in LHP and squaric acid crystals seems to be due to

the large value of the proton-lattice interaction constant;
i.e. , this indicates the importance of proton-phonon and
phonon-phonon interactions.

Recently Serra et al. have presented a study of
the Raman spectra of potassium dihydrogen phosphate
(KDP) and its temperature dependence below the transi-
tion to the ferroelectric phase. Two lattice modes display
an exponential dependence with T which is explained by
third- and fourth-order anharmonic effects. Silva and
Roversi also predicted the existence of strong anhar-
monicity in KDP that affects the crystalline structure of
the ferroelectric phase at temperatures near T, = 123 K.

The aim of the present paper is to study in detail the
dynamic properties of LHP- ar:.d LDP-type FE's. To
this we extend the treatment of our previous work by
including interactions between the spin mode and the
phonons and by taking into account higher-order anhar-
monic terms.

II. MODEL AND METHOD

The Hamiltonian of the pseudospin-phonon model is
given by

H =H, +H„+H,„.
H, is the Hamiltonian of the pseudospin system,

H, = —20 Q S,* ——) J,,S;S;.

4
—— Q 1,', „,S;S;-S„'S;, (2)

where 0 is the tunneling frequency. S, is the proton oc-
cupation difference at the two equilibrium positions of
the H bound at the ith site; it measures the proton or-
dering. The first term in (2) is the contribution of the
tunneling effect, the second term represents the dipole
contribution, and the third the quadrupole contribution.

H„contains the lattice vibrations including third- and
fourth-order anharmonic phonon interactions,
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where Q„, P~, and ~~ are, respectively, the normal co-
ordinate, momentum, and &equency of the lattice mode
with wave vector q. The vibrational normal coordinate

Qz and the momentum Pz can be expressed in terms of
phonon creation and annihilation operators,

Qz
——(2~&) & (a&+ a ), Pz ——i(or~/2) & (at —a z),

(4)

constants.
In the ferroelectric phase we have (S ) P 0 and (S') g

0; therefore it is appropriate to choose a new coordinate
system by rotating the original one used in (1) by an
angle 0 in the xy plane,

S&
———[(1 —2p1) cos 8 —(b1 + b1) sin 8],

1

2

Si = —[(1 —2pi) sin8+ (b& + bl) cos8],*=1 ~ t
2

S" = (b ——bi).

The rotation angle 8 is determined by the requirement

(S ) = 0 in the new coordinate system. bi and b1t are

the Pauli operators in the rotated system; pi
——b&bi. In

this paper we consider only the case S = 1/2.
The retarded Green's function to be calculated is de-

fined in matrix form as

where [az, at, ] = b'z~ .
H,p descrLes the interaction of the pseudospins with

the phonons,

H,p = —) F(q)Q~S' ——) B(q, p)Q~Q pSp ~

1—
3 ).&(q, p, r) Q&Q-pQ. S;, ,

q,p)r

Gk(t) = —'O(t}([Bk(t);Bk]). (7)

The operator Bg stands symbolically for the set bg, b k,
ag, a &. For an approximate evaluation of this Green's
function we use Tserkovnikov's method, which is ap-
propriate for spin problems. After a formal integration
of the equation of motion for the Green's function one
obtains

where Fz ——Fz/(2uz)2, Rz ——Rz/(2ur~), and T~

T~/(2~~)~ represent the pseudospin-lattice interaction
I

where

Gk(t) = —iO(t)([Bk, Bkt]) exp( —iEk(t)t),

'„..., & ([j'(t) j,'(t')l)
i([B.(t) B,'(t')])

([jk(t) B,'(t')]) ([B.(t) jk'(t')]) &

([B (t) B'(t')]}' )
with jk = [Bk,H;„t]. The time-independent term

~k = ([[Bk Hl k])/([ k k])

gives the spin-wave energy in the generalized Hartree-Fock approximation. The remaining time-dependent term
includes damping effects.

III. THE TRANSUERSE GREEN'S FUNCTION

We get for the transverse Green s function in the generalized Hartree-Fock approximation

where

z~ 20'(6k —ek )
E2 2 '@~a(E) '

pen(E) 2E 11 41[ek (ek k ) + zE+g ][Ek &k & fk (~mph + E)]
&ph + 2'&I h+

(12)

and

f(k) = yg{,jap {,imp

= 20sin0+ —J g cos 8 ——sin 0Jg,
2 4

(14)

Ek = ——sin 8Jg)
4

13 = —os sin 0,
2

~ 3
7l FgcT slIl 0 ) ~.~.b(~k —.k).

q

(17)
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o (T) is the relative polarization in the direction of the
mean field which is equal to 2(S' ). ' In the generalized
Hartree-Fock approximation we find the following two
solutions for the rotation angle 0:

with

1
2bt)k

~

cos ~Rk +k Bk (Qk) bkp
(2 2

+o Tk(Qk)~kp
I t (21)

(1) cos8 = 0, i.e. , 8 = vr/2, if T & T., (18)
o cos 8(Fk + Tp) —Bp

~k —0 cosORk+ Ak

(2) sino = 40/(o J,p) = o,/o, if T & T„ (19)

1 2, 2 (Fp + 2Tp)2Fkbkp
efF 0 + W 0COS +

4 ~g —0 cos ORg + 0.5Ak

(20)

From Eq. (20) it is evident that the pseudospin-phonon
interaction leads to a renormalization of the spin-spin
interaction constant, which is now temperature depen-
dent. The effect of the anharmonicity parameter Ag is
to decrease the effective exchange coupling J,g while the
effects of the pseudospin-lattice coupling Fk, Rg, and Tg
are to increase its value. These observations for Ak and
Fk are in agreement with those of Ganguli et at. The
terms containing Rk and Tj, are not taken into account
in this work.

up is the renormalized energy of the acoustic phonons,
I

The acoustic-phonon energy ~k is renormalized due to
the anharmonic phonon interaction terms. If they are not
taken into account, then ug is identical with the energy of
the uncoupled acoustic phonon ~p. The anharmonicity
increases the initial phonon frequency. The modification
of the phonon frequency appears to be very important
as in the case of Rochelle salt where the disappearance
of ferroelectricity in presence of foreign impurities was
explained by considering the change of renormalized
phonon frequency.

and yah are the spin-wave damping and the phonon
damping, respectively. Calculations yield the following
expression for the spin-wave damping:

11~(k) = ~..+~.,
p„ is the damping part caused by the spin-spin interac-
tion and has been discussed in Ref. 19:

7t

2 ) (( q, k —q+ k —p —q,p+q) [ p( + p+q+ k —q) p+q k —q)

x 8 (ek —q + Ep+q ep ek) slI1 OVq k —q[(Jp + Jp+q)mp+q(np 71k—q)

+ (Jp + Jk—q)mk —q(&p &pqq)]&(&k —q + &p+q &p &k) ) t (24)

with

Vqk q ——cos OJq ——sin OJg q,
2 1 2—

'b q (25)

J = J + —0 J cos gq — q 4 q (26)

(27)

~12
chc —Ib bt ):tbcb c): coth ( )2E'q

(28)

p„(k) takes its maximum values at k = 0; it increases with decreasing tunneling frequency O.

p,„is the damping due to the spin-phonon interaction,

csin 0 x cos 0
7 p = Fk~(bb)k ~k) + ) Fq[(Nq rbk —q)~( bb)q + &k —q ~k)

q

K cos
+ (1+Nq+nk q)b(~q+Ek q

—6k)]+ ) R (q, p)[Np(1+ Nq+rbk+p q)
q v

~ 2
—Nqhk+p q]b((dq —bdp+ Ek+p q

—Ek) + ) R (q, k+ q)(Nq —Nk+q)
q

X 6 (bt)k+q —bttq —Ek ),

with



PHASE TRANSITIONS OF PbHPO4- AND PbDPO4-TYPE. . . 3101

Nq = (at aq) = 1/[exp(2q/T) —1]. (30)

At T = 0, Eq. (29) simplifies to

K cos
f p(T = 0) = —sill OFk8(tdk ek) + ) Fqh(~q + ek —q ek).

q

At low temperatures p,z is very small. The anharmonic terms do not contribute to the spin-wave damping at T = 0.
With increasing temperature, the damping p,„increases, and the contribution of the anharmonic term increases, too.
For temperatures close to T, and above T, we obtain

2 g
p,„(T& T,) = Fkh'(~k —ek) + ) R (q, k+ q)(Nq —Nk+q)h(~k+q —~q —ek).

q

(32)

The Grst term is temperature independent. Hence the anharmonic terms give the main contribution to the spin-wave
damping p,~ in the vicinity of T, and above T„and so they must be taken into account.

For all temperatures below and above T, and for small wave vectors k the damping due to the spin-phonon
interaction is small in comparison with the damping due to the spin-spin interaction,

1,„(1c)« 7„(lt). (33)

For the phonon damping we obtain the following expression in the ferroelectric region:

~pk(1) = pro sin 8

4
pro. cos2 0+ 2 ) R (k, q, p) [np(1+ Nq+ Ap+k —q) Nqrip+k —q]h(4/q ep + ep+k —q 4)k)

2 g
+ ) R (q, k)[(Nq —

haik q)8(&q —ek q
—&k) + (1+Nq+ haik q)h(~q+ ek q

—~k)]
q

16m+ 2 ) A (k& q& P) [Np(1 + Nq + Np+k —q) —NqNp+k —q]h(&q &p + &p+k —q &k)

9x+ —).~ (l, q)(Nq —N. q)[h(~q —~k .—~k) —h(-~q+~k, —~k)].

At T = 0, Eq. (34) simplifies to

7rcrsin 0
&pk(T = 0) = Fkh(ek —~k).

4

Provided that the h function can be satisfied, we get a phonon damping at T = 0 due to the spin-phonon coupling.
The anharmonic terms do not contribute to p~g at T = 0 and at low temperatures.

With increasing temperature pph increases, but remains finite at T = T,. The phonon damping in the paraelectric
region is given by the last two terms in Eq. (34):

16'
gpss(T ) T, ) = ) A (k, pq)[ N(1pN+qN+p+k q) —NqNp+k q]8(uq —urp+ up+k q

—uk)

9'+ —) & (&, q)(Nq —Nk —q)[h(~q ~k —q ~k) h( ~q+~k —q ~k)]. (36)

We can see that only the anharmonic terms contribute
to the phonon damping in the vicinity of T and above
T; and so they play an important role.

For small wave vector k and at temperatures above T
mph is small compared with the spin-wave damping

P,h(k) « q"(k).

IV. THE DYNAMICAL STRUCTURE FACTOR

The 4x4 matrix, Eq. (7), can be diagonalized for dif-
ferent limiting cases. Two limiting cases are those of
real coupling, i.e., p&

——0, or of imaginary coupling with
——0. In general, therefore, there are an infinite num-

ber of mathematically correct descriptions of a coupled-
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8(ek ) (dkyph(ek —ek )

(39)

4(e13)2ldk(ell e12)(E2 g2 ~2 )

(40)

Equation (38) shows a three-peak structure.
In the ferroelectric region exists a central peak centered

at E = 0, the width of which is

2
k

c RPh 2+4( 13)2~ (41)

and two soft-mode peaks of the width

4(.")'
~Ph 2 r $3i2 + +k~k+4(~g )

(42)

The soft-mode peaks are situated at

mode spectrum. As Barker and Hopfield pointed out
several years earlier, any ir or Raman spectrum of two
coupled modes may be fitted exactly with either a real ofI'-

diagonal matrix element or an imaginary coupling con-
stant.

We assume at first a real coupling energy, i.e., p&
——0.

As can be seen from Eq. (16), ek is temperature indepen-
dent and it has a finite value at T, . For 0 ~ 0 ek goes
to zero. In this limit then no or a very small coupling
exists between the spin waves and the phonons. This
means also that the deuterated materials must have a
much smaller coupling constant, which is in agreement
with the experimental data. ek13 is proportional to A(16),
whereas pk13 03(17). For substances with smaller tun-
neling field, i.e., 0/Je « 1, it is valid: pk « ek13, so that
this limiting case gives a better fit to the experimen-
tal data. Raman spectroscopic and dielectric results
show, in contrast to the case of KDP crystal, a very low

value of the tunneling integral in LHP [0 = 2.168 cm
for LHP and 0 = 0.273 cm for LDP (Ref. 6)] as well as
a very small value of the soft proton mode although very
large changes of T, and the Curie-Weiss constant C oc-
cur on deuteration. So this limiting case of real coupling,
i.e. , p&

——0, must be considered in the case of LHP and
LDP.

The transverse dynamic structure factor S**(k,E) is
calculated via the imaginary part of G**(k,E) [Eq. (11)].
We obtain this in the form

40 611 612
gxx(k E) ( k k)

1 —e E/T

ReI'k* (E)
[E —e —Iml'k*(E)] + [ReI'*„*(E)]2'

(38)
with

At low temperatures 8 * exhibits only the sharp soft-
mode peak. As T increases the soft-mode peak becomes
lower and wider and shifts towards the origin. At higher
temperatures a central peak appears additionally to the
soft-mode peaks. Approaching T, the intensity moves
from the soft-mode peak to the central peak. The central
peak comes out to be very narrow. The frequency of the
soft mode does not reach zero at T = T, but it remains
finite,

(da (Tc) ~ 26k (44)

The central peak is due to the coupling between the
transverse soft mode and the acoustic-phonon mode.

Deuteration causes a reduction of the frequency of the
soft ferroelectric mode and we obtain

ELD p (k) (( ELHp (k) . (45)

The ferroelectric soft mode for LHP-type FE's is under-

damped for low temperatures and overdamped near and
above T, . The spin-spin damping increases with decreas-
ing tunneling frequency 0,

'7LDP (k) ++ fLHP (k) (46)

Therefore the underdamped character of the soft mode
should disappear on deuteration due to the decrease in
the tunneling integral 0,

~LDP(k) « 'YLDP (k) ~ (47)

V. CONCLUSIONS

The ferroelectric mode in LDP is heavily overdamped, in
agreement with the experimental data. 2

In the case of deuteration, where (45) is valid, the soft-
mode peaks shifts towards the origin and its intensity
decreases. In LDP the peak around the soft ferroelectric
mode is absent and the ferroelectric mode spectra below
T, consist only of the central peak around E = 0. The
height of the central peak increases as T m T, .

Above T, the ferroelectric mode in LHP and LDP is
overdamped. S** is represented by a peak centered at
E = 0. For T ~ T, this central peak becomes higher
and narrower. This is in agreement with the experimen-
tal results of Shin et al. The peak in the deuterated
case is much smaller than in the undeuterated case; then
the width of the central peak (41) is proportional to the
phonon damping: I', p~h 0 . As a consequence
deuteration (0 —0) may decrease the width of the cen-
tral peak, in agreement with Shin et al. 2

We have shown that the anharmonic terms in mph (34)
play an important role in the vicinity of T and above T .
It is evident that they give the main contribution to the
central peak in LHP and LDP.

The numerical calculations are in preparation and will
be published elsewhere.

~k + (~k')'. (43)
In the generalized Hartree-Fock approximation we get

the renormalized energy of the spin waves and the
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phonons. The phonon energy is renormalized due to
the anharmonicity effects. Deuteration causes a reduc-
tion of the frequency of the soft ferroelectric mode,
er,Dp (k) (( eLHp (k), and an increase in the spin-spin
damping, pLDp(k) )) pLHp(k). As a consequence the
underdamped character of the soft mode disappears on
deuteration due to the decrease in the tunneling integral
0, erDp(k) (( '71Dp(k). The ferroelectric mode in LDP
is heavily overdamped.

The coupling constant e& is temperature independent.
It has a Gnite value at T,. For 0 ~ 0, e& goes to zero.
In this limit no or very small coupling exists between
the spin waves and the phonons. This means that the
deuterated materials must have a much smaller coupling
constant which is in agreement with the experimental
data.

The dynamical structure factor 8* (k, E) exhibits
three peaks: a central peak centered at E = 0 and two
soft-mode peaks situated at u, = +gekz+2(e&~s)z. In
LDP the peak around the soft ferroelectric mode is ab-
sent and the ferroelectric mode spectra below T, consist
only of the central peak around E = 0.

Above T, the ferroelectric mode in LHP and LDP is
overdamped. S* is represented by a peak centered at

E = 0. The peak intensity of the central mode increases
and its half width becomes narrower as the temperature
decreases toward T„ in agreement with the experimental
data. The peak in the deuterated case is much smaller
than in the undeuterated case, in agreement wit Shin et
ajt.2

The central peak is due to the coupling between the
transverse soft mode and the acoustic-phonon-mode.
The width of the central peak is proportional to the
phonon-mode damping. We have shown that the an-
harmonic terms play an important role in the vicinity
of T, and above T, . It is evident that they give the main
contribution to the intensity and the half width of the
central peak and must be taken into account if we want
to obtain correct results.
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