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Empirical potential-energy function for calcium solids and clusters
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An empirical potential-energy function, consisting of two- and three-body terms, has been derived for
the study of calcium solids and clusters. With a single set of parameters, this potential reproduces the
phonon frequencies and elastic constants of both the low-temperature fcc and the high-temperature bcc
crystalline phases to a high degree of accuracy. It also gives a sensible energy profile for the tetragonal
(Bain path) interconversion of the two structures, which are both minima along the path. The potential
predicts that the fcc and hcp solids have almost equal cohesive energies, with that of the bcc phase being
0.02 eV lower. Other cubic phases and various two-dimensional and one-dimensional structures have
lower cohesive energies. The potential leads to the conclusion that the most stable clusters tend to be
polytetrahedral, leading to icosahedral packing, thereby maximizing coordination number.

I. INTRODUCTION

The group II metals (Be-Ba) possess fcc, hcp, or bcc
crystal structures depending on temperature and pres-
sure. ' For a given set of conditions IP, T], the most
stable phase is the one having the lowest chemical poten-
tial, but to calculate this we must have an expression for
the potential energy of the crystal which can be used to
calculate the phonon-dispersion curves and the density of
phonon states. The group II metals therefore constitute a
valuable testing ground for empirical potentials which
are intended to describe the structures and dynamics of a
number of solid phases with a single set of parameters.

The objective of the work described in this paper is to
derive a potential for calcium which simultaneously gives
a good description of the lattice dynamics of the fcc and
bcc allotropes. At atmospheric pressure, the low-
temperature fcc phase of Ca transforms to bcc at 721 K,
while at room temperature this transition occurs at an
applied pressure of 19.5 Gpa. It is essential that such a
potential should have no obvious deficiencies when ap-
plied to other three-, two-, and one-dimensional (3D, 2D,
1D) infinite structures or to Ca„clusters; it should not,
for example, make any structure more stable than the fcc
lattice.

We select Ca from the group II metals because
phonon-dispersion curves and elastic constants have been
measured (or derived) for both the fcc (at 300 K) (Ref. 4)
and bcc (at 726 K) (Ref. 5) phases, these temperatures be-
ing sufficiently close that anharmonic effects (which are
reflected in temperature-dependent lattice parameters)
will be small. For some time it was thought that Ca also
had an hcp phase (the room-temperature structure for Be
and Mg) but this is now known to be induced by impuri-
ties (probably hydrogen}. ' However, one can be confident
from the pattern of temperature- and pressure-induced
phase transitions observed in this group, ' that there will
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be little difference between the fcc and hcp lattice ener-
gies.
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with r," being the distance between atoms i and j. During
optimization a "hard wall" term is added to (1} to
prevent collapse of the 1attice for certain sets of
coeScients that may be explored during the optimization
procedure, ' the hard wall is not included in the final po-
tential. The function P is a polynomial in the symmetry
coordinates Q;, and both cubic and quartic polynomials
have been investigated. The totally symmetric quartic
polynomial is given by

II. THE POTENTIAL

The type of potential function that we have employed
in our treatment of Ca has two-body and three-body
terms. ' and has previously been applied to a variety of
metallic ' and nonmetallic' ' elemental solids and
clusters. Further details on the potential and expressions
for obtaining force constants (and subsequently elastic
constants and phonon frequencies) from the potential can
be found in previous papers. The potential is defined
as the sum of the following contributions:

Qi Q»Q3 }—co+et Q1+c2Q1+c3«2+Q3 }+c4Q1+c5Qi(Q2+Q3 }+c6(Q3—
3Q3Q2 }+c7Qt

+CSQ1(Q2+Q3)+C9(Q2+Q3) +cioQ1(Q3 3Q3Q2) .
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The coefficients of this polynomial are optimized to ex-
perimental data for selected values of az and a3 by a
least-squares routine and the best potential (specified by

a2, a3, and co —cio) is selected on the basis of the sum of
squared deviations and other criteria; this procedore will

be discussed more fully later. D and r, are scaling factors
which ensure that the lattice (or cohesive) energy and lat-
tice spacing of the reference structure (e.g. , fcc) are repro-
duced exactly.

III. DATA USED IN POTENTIAL OPTIMIZATION

Phonon-dispersion curves for fcc Ca have been deter-
mined by Stassis et al. , by single-crystal inelastic neutron
scattering at 300 K. Their tabulated phonon frequen-
cies, at selected points along the high-symmetry (recipro-
cal space) q vectors [q00], [qq0], and [qqq], have been
used as input to the least-squares routine (14 frequencies
in all). Phonon frequencies are squared, multiplied by the
atomic mass and divided by the lattice constant to give a
quantity with the same dimensions as the elastic con-
stants, which have also been determined by Stassis et al. ,
using force constants obtained from an eighth-neighbor
Born-von Karman (BvK) fit to the phonon-dispersion
curves. There are independent elastic constants for fcc
Ca which have been determined by Heiroth et al. , from
polycrystalline neutron data combined with the mea-
sured bulk modulus [Bo=—,'(C»+2Ci2)=0. 183X10'
dyncm ],' but for consistency with the phonon fre-
quency data we have used the values calculated by Stassis
et al. , in our optimization.

It was shown in an earlier paper" that the vacancy-
formation energy is an important quantity in determining
the balance between two-body and three-body terms in
the potential. To our knowledge, there has been no ex-
perimental determination of the vacancy-formation ener-

gy for Ca, so we have taken a value of 0.5 eV, roughly the
arithmetic mean of the experimental' values for K (0.39
eV) and Al (0.66 eV). Recent calculations by Ghorai give
a value of 0.33 eV for the vacancy-formation energy of
Ca, ' but since this is the energy required to form a re-
laxed vacancy, we believe we are justified in taking the
slightly higher value of 0.5 eV. Taking the phonon and
elastic constant data in units of 10' dyn cm and the va-

cancy energy in eV, gives 18 pieces of data, all in the
range 0—1, which are given equal weighting in the least
squares procedure. The data for fcc Ca are summarized
in Table I.

The phonon-dispersion curves of bcc Ca have been
determined, by Heiroth et al. , using force constants de-
rived from a third-neighbor axially-symmetric BvK fit to
their poly,".rystalline neutron time-of-fiight spectra (mea-
sured at 72t K). We h. ave measured selected frequencies
from the published curves and treated them in an analo-
gous manner to chat described above for fcc Ca. As in
the case of fcc Ca, there has been no direct experimental
measurement of the elastic constants of bcc Ca, although
Heiroth et al. , did obtain estimates for C44 and the

1
tetragonal shear constant [C'= —(C» —Ciz)] by fitting

the low-frequency region of their spectra. Since we re-
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P2
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p4
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p6
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P9
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Pi2

pi4

0.5,0,0
0.5,0,0
1.0,0,0
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0.5,0.5,0.5
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L
T
L
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L
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T1
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0.9992
0.2619
0.7299
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0.3982
0.7674
0.4288
0.9061

Pi5 =Ci1 =0.2780
Pl6 =Cl2 =0.1822
Pl7 =C44 =0.1630
Pls=E„„=0.5 eV
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PZl
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Pzs
P29

P3O

bcc: r, =4.480 A, U=1.84 eV
L 0.8469 P33 =C) ) =0.3170
T 0.5636 P34 C &2

=0.2340
L = T 1.4662 P35 C44 =0.1870

L 1.0346 P36 =E„„=0.5 eV
T 0.2586

L = T 0.6387
L 0 3103
T 1.0346
L 0.9384
T1 0.0710
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0.5,0.5,0.5
0.7,0.7,0.7
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0.3,0.3,0
0.3,0.3,0
0.5,0.5,0
0.5,0.5,0
0.5,0.5,0

quire a complete set of elastic constants, we have adopted
the values calculated by Singh and Singh ' (SecS) who
have performed seven shell effective-pair potential calcu-
lations using a modified Heine-Abarenkov model pseudo-
potential, with parameters obtained by fitting the pho-
non frequency "data" of Heiroth et al. There is likewise
no experimental or theoretical value available for the
vacancy-formation energy of bcc Ca so the value of 0.5
eV, chosen for the fcc structure, has also been used for
the bcc phase. The data used in the fitting procedure for
bcc Ca are also summarized in Table I.

IV. POTENTIAL OPTIMIZATION

A. Fitting fcc Ca

We first obtained a potential by fitting the data for fcc
Ca alone. The two-body terms V ' were summed over

all atoms j within a radius of three times the nearest-
neighbor distance about an arbitrary central atom i. For
the fcc structure this means that we are including up to
tenth-neighbor interactions. ' " The three-body terms

TABLE I. Data used in the optimization procedure. Pl —Pl&
and P» —P» have been obtained from phonon frequencies co(q):
P=Mco (q)/r&, where M is the atomic mass (40.08) (Ref. 19)
and r, the lattice constant (Ref. 2). These quantities have the
same dimensions as the elastic constants P» —Pl7 and P» —P35
and are expressed in units of 10' dyn cm

fcc: r& =5.5884 A, U=1.84 eV (Ref. 20)
Phonon vector Mode Value
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TABLE II. Comparison of the best fcc, bcc, and dual-

optimized potentials. A measure of the accuracy of the
fit to data is given by the quantity F

1 g[(P "' P—; "')/Pda™] '~ . Elastic constants in units
n

10' dyncm . Asterisks show values either fixed or optimized
to data.

fcc bcc Dual Data

F (fcc)
F (bcc)
C» (fcc)
C» (fcc)
C44 (fcc)
C» (bcc)
C» (bcc)
C44 (bcc)
U (fcc)/eV
U (bcc)/eV
E„„(fcc)/eV
E„„(bcc)/eV
r, (fcc)/A
r& (bcc)/A

'Reference 4.
Reference 5.

'Reference 21.

0.014
0.375
0.267
0.191*
0.149*
0.509
0.500
0.403
1.840
1.844
0.500*
0.457
5.588*
4.495

0.045
0.022
0.296
0.230
0.134
0.309*
0.232*
0.121
1.843
1.840*
0.470
0.500*
5.617
4.480*

0.026
0.024
0.309*
0.198*
0.143
0.295
0.246*
0.120*
1.840*
1.818
0.538
0.461
5.588*
4.361

0.278', 0.228
0. 182',0. 16b

0.163',0 14"
0 317c
0.234'
0. 187' 0. 12
1.840
1.840 est
0.500 est
0.500 est
5.588
4.480

B. Fitting bcc Ca

The above procedure has been applied to the bcc data.
The three-times nearest-neighbor cutoff leads to inclusion
of 11 shells for the bcc structure. ' ' We again obtained
an excellent fit to the experimental phonon frequencies,
and good elastic constants, with the best fit being ob-
tained for a2=a3=6.0. This potential gave the fcc and
bcc structures almost equal lattice energies, with the hcp
structure 0.02 eV less stable. When applied to fcc Ca, the
mean root squared deviation F (see Table II) for the fcc
data is three times worse than with the fcc-optimized po-
tential, with the calculated frequency of the higher mode
at [1,0,0] on the Brillouin zone (BZ) surface being partic-
ularly poor. However, the overall picture from this po-
tential is quite good and suggested that a dual optimiza-
tion, of both the fcc and bcc data together, could be
achieved.

Vzk' were likewise summed over all atoms Z and k within
the two-body cutofF radius around i. The lowest sum of
squared deviations was obtained for a2=6.0; a3=7.0,
with the experimental phonon-dispersion curves repro-
duced exactly and elastic constants fitted very well. This
potential, however, gave an order of stability,
hcp & bcc )fcc, which is clearly incompatible with exper-
iment. Although the fcc potential gives the bcc structure
as a local minimum, it leads to a considerable overestima-
tion of the phonon frequencies and elastic constants of
bcc Ca (see Table II). This can be seen from the bcc
mean root squared deviation F, defined and listed in
Table II, which is more than 30 times higher than that
for the fcc structure.

TABLE III. Dual-optimized potential function for Ca. Pa-
rameters are defined in expressions (1)—(5).

D/eV
r, /A

6.2
9.5

0.399
4.012

Cp

C)

C2

C3

C4

C5

C6

C7

C8

C9

C&p

0.0476
1.1610
6.5902
0.2765
2.8266

—5.6875
4.5711

13.6829
0.2587

—14.2926
19.9282

C. Dual optimization

The approach we adopted for dual optimization (i.e.,
optimizing to two structures simultaneously} was to cal-
culate the scaling factors D and r, so that the fcc
cohesive energy and lattice spacing are reproduced exact-
ly, to calculate the fcc phonon frequencies and elastic
constants, and then to use the potential to calculate the
cohesive energy and lattice spacing of the bcc structure.
The bcc phonon frequencies and elastic constants were
then calculated for this theoretical bcc structure. The
vacancy-formation energy for fcc Ca was included in the
data set for fitting, but the bcc vacancy energy, cohesive
energy, and lattice spacing were allowed to vary freely to
provide an independent test of the potential.

The best potential derived with the dual optimization
procedure is listed in Table III. Although the two-body
exponent (at =6.2) is close to those of the fcc and bcc po-
tentials, the three-body exponent (a &

=9.5) is significantly
larger. For a3 in the range 5-7, it was possible to get a
good fit to the experimental lattice-dynamical data of
both fcc and bcc Ca, but these potentials were found to
be unsatisfactory: collapsing at short range and/or giving
the wrong stability order of solid structures. A thorough
search in the space of the exponents a2 and a3 was car-
ried out which revealed that the best potentials which
simultaneously fit the experimental data of fcc and bcc
Ca and which have sensible orderings of 3D, 2D, and 1D
lattices, and do not collapse at short internuclear separa-
tions, have large a3 values. The relationship between po-
tentials optimized to single structures (bcc or fcc} and
dual optimized potentials is currently being investigated
for a number of metals.

The phonon-dispersion curves, calculated using the
dual optimized potential of Table III, for fcc and bcc Ca,
are shown in Figs. I and 2, respectively. The agreement
with experiment is excellent, with the largest error being
in the higher frequency mode at the point [—,', —,', —,'] on the
BZ surface. Our calculated frequencies are significantly
better than those obtained by S&S (for both fcc and bcc
Ca), using force constants calculated from their semi-
empirical pseudopotential. ' They are also better than
those obtained by Moriarty from his generalized pseudo-
potential calculations on fcc Ca, ' and comparable with
Wang and Overhauser's dynamic pseudopotential calcu-
lations on the fcc structure. The fit is also better than
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[q00] [qq0] [qqq]

4.0—

3.0—

1.0 -j

FIG. 1. Phonon-dispersion curves for fcc
Ca along high-symmetry lines [q00], [qq0],
and [qqq]. The solid lines have been calculat-
ed using the dual-optimized quartic potential
listed in Table III. Experimental data {circles
and triangles) have been taken from Stassis
et al. {Ref. 4). L = longitudinal modes;
T =transverse modes. The reduced wave vec-
tor q is in units of 2m. /r, (where r, is the lat-
tice spacing).

0.0 ——-~-—~—
0.0 0.2 0.4 0.6 0.8 1.0

t T T

0.8 0.6 0.4 0.2 0.0 0.1 0.2 0.3 0.4 0.5

that obtained by Li and Goddard, from their interstitial
electron model. In fact, for both the fcc and the bcc
phases, our phonon-dispersion curves are effectively as
good as the direct (unconstrained by an underlying poten-
tial) BvK fits to the experimental data performed by
Stassis et al. , Heiroth et al. , and Ghorai. '

The elastic constants are fitted satisfactorily, given that
there are no direct experimental measurements for either
structure. Our calculated value for C~ (bcc) is

significantly smaller than the value (due to SEcS) (Ref. 21)
used in our optimization, and is in fact equal to the value

obtained by Heiroth et al. by fitting the low-frequency

polycrystalline neutron data.
Perhaps the most significant defect in our potential is

that, as can be seen from Table II, we underestimate the
value of the lattice spacing (r, ) for the bcc structure (we

0

calculate a value of 4.361 A, compared with the experi-
mental value of 4.480 A). This makes the bcc structure

more dense (volume per atom, Vb„=41.47 A ) than fcc
0 3

(volume per atom, V&„=43.63 A ), contrary to experi-
ment (the experimental value of Vb„ is 44.96 A ), . Pos-
sible reasons for this discrepancy include the neglect of
anharmonicity (which may be large for bcc Ca at 726 K)
and the fact that there is no explicit temperature depen-
dence of the potential in our model.

It should be noted that the fcc-optimized potential
leads to a bcc structure (r& =4.495 A; Vb„=45.41 A )

which is less dense than fcc and the bcc-optimized poten-
tial gives an fcc structure (r& =5.617 A; V&„=44.31 A )

which is more dense than bcc, in agreement with experi-
ment. Though neither of these potentials was a suitable
candidate for a global Ca potential, for reasons which
have been given above, we believe that it should be possi-
ble (without introducing anharmonicity or explicit tem-

perature dependence into the potential) to obtain a dual-

optimized potential which has the correct ordering of bcc

[qqo] [q00] [qqq]

5.0 $

4.0

x
3.0 ~~

V
C

U'

2.0 -t-

FIG. 2. Phonon-dispersion curves for bcc
Ca along high-symmetry lines [q00], [qq0],
and [qqq]. The solid lines have been calculat-
ed using the dual-optimized quartic potential
listed in Table III. Experimental data (circles
and triangles) have been taken from Heiroth
et al. (Ref. 5). The reduced wave vector q is in

units of 2m/r, (where r, is the lattice spacing).

0.0
0.5 0.4 0.3 0.2 0.1 0.0 0.2 0.4 0.6 0.8 1.0 0.8 0.6 0.4 0.2 0.0
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and fcc densities, by including the experimental lattice
constant of bcc in the fitting procedure and this is
currently being investigated.

V. APPLICATIONS OF THE DUAL-OPTIMIZED
POTENTIAL

(i.e., hcp more stable than fcc) to 0.012 eV. The other
structures show a general decrease in stability with de-

creasing coordination number, due to the dominance of
the two-body potential-energy term.

B. The Bain deformation

A. Relative stabilities of other solid structures

For a potential to be applicable to the study of the stat-
ics and dynamics of solids, surfaces, liquids, and clusters,
it should be valid over a wide range of coordination num-
bers and geometries. We have therefore used our poten-
tial, which was optimized to the lattice-dynamical prop-
erties of fcc and bcc Ca to calculate the cohesive energies,
nearest-neighbor distances, and vacancy-formation ener-
gies of a number of infinite 1D, 2D, and 3D structures. '

The results of these calculations are listed in Table IV.
The bcc cohesive energy, which is not fitted in our op-

timization procedure, is calculated to be 0.022 eV smaller
than that of fcc. This value for the difference in energy
between the bcc and fcc structures is consistent with
those calculated by Moriarty (0.005 —0.024 eV) (Refs. 6
and 23) and Skriver, using the linear muffin-tin orbital
method (0.024 eV). The bcc lattice spacing (also not
fitted) is calculated to be 0.119 A shorter than the experi-
mental high-temperature value of 4.48 A. Due to anhar-
monicity the lattice spacing increases with increasing
temperature, so our underestimation is consistent with
our potential having an effective temperature which is
lower than that at which the lattice constant was mea-
sured.

The hcp structure is calculated to be approximately
0.001 eV less stable than fcc, consistent with the calcula-
tions of Moriarty and Skriver, who calculate a
difference in cohesive energy ranging from —0.004 eV

TABLE IV. Calculated nearest-neighbor distances (d) and
cohesive energies U for some 3D, 2D, and 1D structures.
sh=simple hexagonal, dia=diamond, f111, f100, and f110
are 2D, two-layer slabs of atoms at the fcc surfaces specified.
tri, sq, and hex are 2D single-layer planar nets of triangles,
squares, and hexagons, respectively.

Since the dual-optimized potential gives both the fcc
and bcc structures as local minima (i.e., both structures
are mechanically stable), it is interesting to consider path-
ways which can interconvert these phases. In principle
there are a large number of diffusionless (Martensitic)
transformations which can accomplish this interconver-
sion. One such homogeneous strain pathway, involving
minimum atomic motion, is the tetragonal Bain deforma-
tion,' this interconverts fcc and bcc via a body-centered
tetragonal (bct) transition state. Figure 3 shows the
correspondence between the bct cell (shaded atoms) and
the larger face-centered-tetragonal (fct) cell (dotted lines),
which is rotated by 45' with respect to the bct cell. In
terms of the bct definition the bcc and fcc structures
occur when the c/a ratio is 1.0 and &2, respectively.
The fcc structure can therefore be smoothly transformed
into bcc by contracting parallel to the c axis and expand-
ing parallel to the a and b axes.

In calculating the cohesive energy of Ca along the Bain
path we used a cutoff of three times the nearest-neighbor
distance, as in the potential optimization procedure. For
this it was necessary to include 258 atoms around the ori-
gin atom in the coordinate data base, since this ensures
that all the atoms that are within the cutoff at both ex-
tremes of the distortion path (which we calculated from
c/a =0.8 to 1.6) are included.

Figure 4 shows a plot of the cohesive energy ( U) as a
function of the c/a ratio along the Bain path, using the
dual-optimized potential listed in Table III. Two minima
can clearly be seen, corresponding to the bcc (local
minimum, i.e., metastable) and fcc (global minimum)
structures. That there are only two distinct minima relat-
ed by the tetragonal distortion, may be seen from Fig. 5,

3D

Structure

fcc
hcp
bcc
sh
sc
dla

Coord. No.

12
12

8

8
6
4

8 (A)

3.95
3.95
3.78
3.90
3.47
3.06

U (eV)

1.840
1.839
1 ~ 818
1.61
1.49
1.47

~ ~

2D f111
f100
f110
tri
sq
hex

3.92
3.90
3.91
3.96
3.91
3.97

1.53
1.45
1 ~ 18
1.11
0.88
0.62

~ o ~ ~ ~

~ ~
~ ~

1D zig-zag
linear

3.96
4.02

0.76
0.40

FIG. 3. Relationship between bct (shaded atoms) and rotated
fct (dotted lines) unit cells. The body-centered atom of the bct
cell is indicated by cross hatching.
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section we report the results of our calculations, using the
dual-optimized potential of Table III, on small calcium
clusters Ca„(n 20). Energy minimization is performed
on precursors which are either fragments of the cubic
solids and icosahedral structures or randomly generated
structures. This procedure can give rnetastable structures
(local minima) as well as the lowest energy structure,
though we cannot guarantee that all minima (or even the
global minimum) on the potential-energy surface have
been found. Table V lists the structures and binding en-
ergies of the most stable cluster isometers that we have
obtained for Ca3-Ca&0, together with some metastable and
transition state structures. The structures are shown in
Fig. 6.

For Ca3 and Ca4 our potential predicts equilateral tri-
angular (D3&', 1) and tetrahedral (Td; 3) structures, re-
spectively, in agreement with the ab initio calculations of
Lee, Rendell, and Taylor ' Due to the closed-shell nature
of the calcium atom, small clusters with high symmetries
are closed-shell and do not undergo Jahn-Teller distor-
tions, unlike small alkali metal clusters. ' Table VI com-
pares the bond lengths (rb), binding energies (E&) and vi-
brational frequencies (co;) of these two clusters, calculated
from our potential, with those obtained by Lee, Rendell,
and Taylor, together with our predictions for Ca& (trigo-

nal bipyramidal geometry; D3h', 5) and Ca6 (octahedral;
Oz,' 7). Table VI shows that our potential leads to an
overestimation of the stability (i.e., the binding energies
are greater than those calculated by ab initio methods) of
these small clusters, with a consequent underestimation
of their bond lengths and overestimation of the vibration-
al frequencies. This probably reflects the fact that while
the bonding in small Ca clusters is mainly due to van der
Waals-type interactions, our potential, which was derived
from the solid, has metallic-type bonding implicitly in-
cluded via the parametrization procedure, which leads to
stronger, shorter bonds than those due to dispersion
forces. Table VI shows that, for our potential the bond
lengths decrease from Ca3 to Ca6. This is consistent with
the ab initio calculations on Ca3 and Ca4, ' as well as pre-
vious calculations on small Be and Mg clusters, and is
the opposite trend to that observed for open-shell
atoms. " It is not yet known at what nuclearity the
average bond length starts to rise again towards the bulk
value of 3.95 A.

Table V reveals that the binding energy per atom (E~)
increases with increasing cluster nuclearity. This trend
can be seen more clearly from Fig. 7, which is a plot of
E~ vs n for Ca„(n =2—20). The rise is quite slow, so that
for Cazo, E& is only 65% of the bulk value (1.84 eV). It

15 16 17

19 2Q

1Q

21 22 23

12 13 14 24 25

FIG. 6. Structures of the most stable clusters obtained, using the potential of Table III, for Ca3-Ca20. For Ca3-Ca7, some metasta-
ble and saddle point structures have also been included. The binding energies of these clusters are listed in Table V.
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1.2—

1.0—

0.8—

0.6—

0.4—

Cluster Eb (eV) rb (A) co; (cm ')

Ca3 ( 1 ) 0.39(0.16) 3.97(4.17) 106(83), 145(94)
Ca~(3) 0.59(0.34) 3.93(4.02) 94(86), 132(105), 187(127)
Ca, (5) 0.69 3.90, 3.93 73, 112, 124, 139, 167, 204
Ca6(7) 0.77 3.92 75, 89, 125, 157, 179

TABLE VI. Calculated binding energies (per atom), bond
lengths and vibration frequencies for small calcium clusters and
comparison with best ab initio results (CCSD(T); 6s 5p 2d 1f;
numbers in parentheses), (Ref. 31).

0.2—

f

2 4 6 8 10 12 14 16 18 20

No. of atoms

FIG. 7. Plot of binding energy per atom (Eb) against number
of atoms for the most stable structures obtained, using the po-
tential of Table III, for Ca2-Ca20.

can be seen from Fig. 6 that the most stable structures
(that we have found) tend to be based on the fusing of
tetrahedral units. Such "polytetrahedral" growth,
which maximizes atomic coordination, has previously
been observed for alkali metal and noble-metal clusters
and leads eventually, Uia building blocks such as the pen-
tagonal bipyramid (the most stable geometry for Ca7; 12),
to centered icosahedral Ca» (Ih, 19) and larger fused
icosahedral structures such as Ca» (Dst, ', 25). Kinks in

the curve of Eb vs n at these "magic number" nuclearities
(Ca» and Ca&9 actually have higher binding energies per
atom than Ca,4 and Ca2o, respectively) arise due to the
enhanced stability of these structures in which even the
surface atoms have fairly high coordination numbers.
The occurrence of large Ca clusters with icosahedral she11

structures has been suggested by the experiments of Mar-
tin et al. Similar growth patterns are observed for inert
gas clusters, which are also closed-shell systems.

VI. CONCLUSIONS

In this paper we have shown that it is possible to derive
a many-body potential for calcium by simultaneously

fitting the lattice-dynamical properties of fcc and bcc Ca.
This potential gives a very good fit to the experimental
phonon frequencies and elastic constants of both struc-
tures. It also gives a reasonable stability ordering for a
number of 1D, 2D, and 3D solids and a smooth, continu-
ous reaction profile (along the Bain path) for the inter-
conversion of the fcc and bcc structures. When applied
to small Ca clusters the potential gives results (predicted
geometries, bond lengths, binding energies and vibration-
al frequencies) which are in qualitative agreement with ab
initio calculations.

In view of the successful application of the potential to
a range of problems, we are satisfied that the search for a
global calcium potential, i.e., one that will be valid over a
wide range of structures and may, therefore be applied to
study liquids, surfaces, large clusters, etc. , is worthwhile
and that the dual-optimized potential reported here
represents a significant step towards that goal. The
search for such a global potential would be aided by more
accurate, directly measured elastic constants for both fcc
and bcc Ca, as well as good estimates of the vacancy-
formation energies of these structures.
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