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A first principles, general study of the thermodynamic and kinetic aspects of the B1-B2 phase transi-
tion in alkali halides is presented. Particular attention is paid to (a) how to construct models of increas-
ing complexity to be used with generic quantum-chemistry techniques and (b) the topological and
symmetry-dependent features of the energetic and the Gibbs potential surfaces analyzed. Our results in-
dicate that the transition may be thought of as involving the simultaneous opening of the rhombohedral
angle in the primitive B1 crystallographic cell while a contraction of the lattice parameter takes place.
Transition paths depend strongly on pressure and show large and asymmetric Gibbs barriers that quali-
tatively account for many of the empirical facts around the phenomenon of hysteresis.

I. INTRODUCTION

The alkali halides have been, due to their simplicity,
the preferred model systems in which new theories and
experimental methodologies have been validated since the
advent of solid-state theory. Their thermodynamic, elas-
tic, structural, and defect properties have been widely in-
vestigated' for over 70 years, and are well understood.
These compounds generally crystallize in either the Bl
(NaCl-type), or the B2 (CsCl-type) structures, and are
known to undergo pressure- and temperature-induced
first-order transitions, as described by the seminal work
of Slater.? Among them, the Bl to B2 pressure-induced
transition shown by many of the systems that exist in the
B1 phase at zero pressure is the best documented one,’
standing as one of the simplest nondisplacive first-order
transitions known. There is a considerable interest in the
understanding of the energetic and dynamic features of
the mechanism of this transformation, as it involves the
concerted and cooperative movement of a large number
of atoms and may be taken as a model for other solid-
solid transformations of great geological and planetary
importance. *

A large amount of experimental work has been done in
the last two decades along this direction, and a good deal
of thermodynamic and some kinetic data have been gath-
ered. A critical survey of the available information
shows that the kinetics is extremely sensitive to a big
number of variables such as the purity and the previous
thermal and mechanical treatments of the sample under
investigation,® the rate of increase of pressure, the pres-
sure gradient across the crystal or its grain structure,
etc. This fact precludes the extraction of meaningful,
general information about the transition dynamics. Some
of the studies have been primarily interested in the hys-
teresis phenomena. The transition is not thermodynami-
cally reversible in laboratory conditions: a pressure
higher than the thermodynamic phase transition pressure
is necessary to obtain the B2 phase when increasing the
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pressure of a Bl crystal and a lower pressure when going
in the opposite direction. The complete experiment cov-
ering direct and reverse transitions constitutes a hys-
teresis cycle and the pressure range between the B1— B2
and the B2— B1 transformations the hysteresis range. It
seems well established that the qualitative features of the
hystereis range depend reproducibly on the variables
commented above.” The hysteresis range is greater in
pure or thermally treated crystals and in the first hys-
teresis cycle. It increases abruptly with decreasing cation
size when examining a series of compounds. The hys-
teresis range also decreases almost exponentially with in-
creasing temperature, and becomes greater when the
pressure is changed suddenly. All these evidences point
towards the existence of large energetic barriers that
must be surmounted in the transition mechanism.

Basically, two successful models have been used to ex-
plain the transformation. The first one, initially proposed
by Shoji’ and later modified by Buerger® suggests a con-
traction along one of the threefold axes. The second was
put forward by Watanabe, Tokonami, and Morimoto’
(WTM) after observing orientational relations among
crystallographic directions in initial (B2) and final (B1)
phases of CsCl undergoing a temperature-induced trans-
formation. It consists of a highly concerted intralayer
rearrangement of atoms associated with interlayer
translations.

On the other hand, while a lot of calculations have
been published predicting the thermodynamic transition
pressure, very little work has been done on the kinetic
and mechanistic aspects of the phenomenon. This fact
emanates from what has been called “the crystal stability
problem:” it is very difficult to predict the structure that
a particular system exhibits for a given set of conditions
and even more difficult to assess the relative stability of
two energetically similar phases. Any theoretical investi-
gation addressing the B1-B2 transition mechanism should
rely upon a method with a positive answer to this first
problem. The vast majority of the theoretical analyses
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have tried to correctly predict the thermodynamic transi-
tion pressures using several techniques ranging from pair
potentials!® to density-functional'! or ab initio > models.
Regarding the mechanism of the transition or the hys-
teresis phenomena and, as far as we know, every theoreti-
cal attempt along this line has been based on some kind
of pairwise simulation. Nakagiri and Nomura!® used
Born-Mayer potentials supplemented with several van
der Waals terms to predict the existence of a barrier in
the WTM model. Ruff et al.'* applied isothermal-
isobaric molecular dynamics with Tosi-Fumi'® potentials
to discard Buerger’s mechanism and confirm the WTM
one. Their simulation was, however, extremely sensitive
to simulation parameters and the predicted transition
pressures computed tenths of times greater than experi-
ment. Nga and Ong!® used also isothermal-isobaric and
Parrinello-Rahman molecular dynamics with Tosi-Fumi
potentials to conclude that both Buerger and WTM were
essentially equivalent. Their predicted transition pres-
sures were also many times greater than the observed
values. Due to the shortcomings associated with the use
of empirical or semiempirical pair potentials in thermo-
dynamic conditions far from those used to generate
them, !” and given the actual problems in achieving realis-
tic size in isothermal-isobaric molecular-dynamics simu-
lations, we think that there is a deep demand of rigorous,
quantum-mechanical results that may open the way to
further studies.

It is the purpose of this paper to present a general
scope first-principles study of the B1-B2 phase-transition
thermodynamics and dynamics. The method used has
been the ab initio perturbed ion model (AIP]), 13 19(2),19(b)
a successful scheme in the prediction of both quantitative
thermodynamic data for a wide class of crystals and
trends along families of related compounds. We will
focus on the techniques used and on how to get physical
insight into the global characteristics of the transition.
Particular results will be discussed for a model system,
the LiCl crystal. A full quantitative and comparative dis-
cussion of the features here analyzed on the whole alkali
halides series will be published elsewhere.

The paper is organized as follows. In Sec. II, we will
briefly comment on the method employed and summarize
some thermodynamic results on the alkali halides. Sec-
tion IIT will be devoted to the transition mechanism and
its static (zero temperature, no zero-point contributions)
ab initio modeling. This issue is followed by a discussion
of the information contained in the energy and Gibbs po-
tential surfaces and their topological features (Sec. IV).
In Sec. V we will try to throw some light on the transi-
tion path and the origin of the hysteresis range and other
experimental kinetic behaviors from our first-principles
point of view and, finally, we will summarize our results
and comment some perspectives in Sec. V1.

II. METHOD

The ab initio perturbed ion method!®1%@):19b) ¢ 4
first-principles approach to the construction of the elec-
tronic structure of weakly overlapping pure and defective
solids. Its foundation lies in the theory of electronic
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separability?® for weakly overlapping groups?' and in the
Adams-Gilbert formalism.?>? It solves the Hartree-
Fock (HF) equations of the solid in a localized Fock
space by breaking the crystal wave function into local
nearly orthogonal group functions (atomic or ionic in na-
ture). At the end of a self-consistent process we get the
total energy of the system and a set of completely local-
ized wave functions for every crystallographically non-
equivalent atom or ion. These local functions may be
used to study the change in nature of the crystal constitu-
ents on going from the gas phase to the solid or to recon-
struct the band structure by rotating to the canonical HF
solution.

The localized nature of the AIPI procedure has for our
purposes a number of advantages over the usual canoni-
cal approach:?* (a) A localized picture is much better
suited to incorporate several degrees of approximations
in order to solve the equations. This has allowed the con-
struction of a very efficient algorithm using the nearly
HF multizeta exponential (Slater-type orbital) Clementi
and Roetti basis sets.?* (b) With a localized solution it is
easy and fruitful to divide the total energy of the system
into atomic (ionic) and interatomic (interionic) contribu-
tions. The latter may be further used to obtain crystal
adapted pair potentials.!” (c) As in weakly overlapping
solids the correlation energy correction is almost entirely
intra-atomic in nature (being therefore a sum of contribu-
tions from every group), localized wave functions may be
exploited to attain size consistent good estimations of this
correction. In the present implementation of the AIPI
code, the correlation energy correction is obtained
through Clementi’s Coulomb-Hartree-Fock method. 2

As far as the alkali halides are concerned, the method
has been proved to be a valuable predictive tool in ther-
modynamic studies. In a previous paper?’ we have re-
ported thermochemical, elastic, and p-V static data in al-
most quantitative agreement with the experimental
values.>%1328=35 I Table I we gather some of these re-
sults. Static transition pressures have been obtained in
the thermodynamic limit by solving for the pressure that
makes equal the Gibbs potentials of both phases:

Gp(T=0)=Up +p,Vp

ZGBZ(T=0)=UBZ+ptrVBZ 5 (1)

where U is the total computed energy of the crystal at
each volume. Note that there has not yet been found an
experimental B1-B2 transition in LiCl, while the AIPI
value for this system lies around 80 GPa. This is the fun-
damental reason to take this system as our model in this
general paper.

As stated in the Introduction, it is the overall agree-
ment with experimental trends that gives us confidence in
obtaining reliable results when exploring the transition
mechanism. This condition should always be borne in
mind in theoretical investigations on phase transitions.

The rest of the paper will be based on AIPI calcula-
tions made with Clementi and Roetti’s basis sets, the
Coulomb-Hartree-Fock method for the estimation of the
correlation energy correction, and a convergence in the
crystal total energies better than 107% Hartree. This
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TABLE I. Cohesive and thermodynamic transition phase data for the alkali chlorides. R, stands for
the first-neighbor distance, E),, for the lattice energy, B, for the zero-pressure isothermal bulk
modulus, P, for the thermodynamic transition pressure, V,, for the molar volume at the transition
point, and HR for the hysteresis range. Theoretical values obtained after AIPI computations (Ref. 27).

LiCl NaCl KCl RbCl CsCl
R, (A) B1 2.591 2.800 3.267 3.391 3.366
B2 2.828 2.975 3.385 3.459 3.407
Expt. 2.539° 2.789" 3.116° 3.259° 3.571°
Epe B1 —200.8 —189.6 —163.1 —159.5 —161.0
(kcal/mol) B2 —183.1 —178.8 —160.5 —159.2 —166.0
Expt. —202° —185° —170° —162° —155.1¢
B, (GPa) B1 31.2 28.8 15.5 15.3 10.0
B2 24.1 25.6 19.6 19.3 12.5
Expt. 35.5¢ 28.5¢ 20.2¢ 18.5¢ 16.61
P,. (GPa) Theor. ~80 22 2 0.2
Expt. 268 2 0.5
V.. Bl Theor. 10.3 18.6 37.9 45.6
Expt. 17.36" 34.35 41.43
VB2 Theor. 9.3 16.5 33.0 37.5
Expt. 16.37" 30.141 35.38'
HR (GPa) Expt. 6.8! 0.5¢ 0.15'

*Reference 28.
"Reference 29.
‘Reference 30.
dReference 31.
“Reference 32.
Reference 33.

represents adding up quantum contributions to the in-
teraction energies up to neighbors 30 bohr away from a
chosen atom.

III. AB INITIO MODELING AND MECHANISM

The ab initio modeling of a solid-solid transformation,
considered in the chemical sense of reaction as the move-
ment of the system onto a high-dimensional potential-
energy surface, is not an easy task given the huge number
of degrees of freedom involved. It is then necessary to in-
troduce some simplifying assumptions that, according to
our point of view, and due to the controversial experi-
mental and theoretical investigations on the transition
mechanism, should be as wide as possible and should nev-
er discriminate some mechanisms in favor of others.
These assumptions must also be constructed in a
hierarchical and easy generalizable manner. We have un-
dertaken such a program in an ordered way.

First, we assume that a continuous path on some high-
dimensional (though not infinite dimensional) space exists
connecting the Bl and B2 phases. This space will be
called the transition configuration space. Assuming that
the phase transition is an extremely cooperative and con-
certed process, it seems plausible to suppose perfect
periodic lattices at each point of this space. It is true that
there are both experimental® and theoretical'* evidences
indicating a very important role of defects in the kinetics
of the transition, but it is also certain that in its absence
the reaction keeps taking place through even more con-
certed paths.

As the second step, we must now decide the number of

EReference 6.
"Reference 34.
iReference 35.
’Reference 6.
kReference 13.
Reference 5.

crystallographically nonequivalent ions per primitive unit
cell. This choice sets up our hierarchy of models. In this
way, the simplest possible model is that in which there is
only one different cation and one different anion remain-
ing translationally invariant to every other during the
transformation. Without loss of generality, we can set
the crystallographic coordinates of the cation equal to
(0,0,0) and leave the anion position float into the interior
of the cell (x,y,z). We have then nine parameters: three
of them coming from the (x,y,z), and the other six from
the sizes and angles of the primitive unit -cell
(a,b,c,a,B,7). This is the nine-dimensional (9D) transi-
tion configuration space model or, in brief, the 9D model.
Both the B1 and B2 phases lie at particular points of the
9D transition configuration space:

—B1l: a=b=c, a=B=y=60°, x=y=z=1,

[S1ES

Il

—B2: a=b=c, a=B=y=90", x=y=z=

’

[SIES

and all our discussions will refer to it from now on. It is
straightforward to increase the complexity (dimensionali-
ty) of such class of models, each new pair of nonequiva-
lent ions adding six dimensions to the transition
configuration space.

Despite being our simplest model, a 9D hypersurface is
very hard to explore by ab initio methodologies, even in
small molecules. Fortunately, symmetry can play a very
important role in the simplification of the problem. It is
well known from perturbative arguments®® that if a non-
degenerate chemical system does not leave its fundamen-
tal state electronic surface during the course of a trans-
formation, the reaction coordinate must belong to the to-
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tally symmetric representation of the point group at each
point of the path with a nonzero energy gradient. As a
corollary, once a system starts on a given reaction path, it
must maintain the same point group symmetry along it
until a zero-gradient energy point (critical point) is found
(usually a transition state). As usual,’’ a system enters a
reaction path from a critical point along the direction of
minimum energy increase. Though it is possible to argue
against electronically adiabatic phase transitions at con-
stant pressure, it is extremely difficult to make actual cal-
culations releasing that constraint, and we will not do it.
We have begun our modeling of the transition by tak-
ing fully into account the symmetry restrictions to the
path just commented. Starting from one-parameter
minimum energy optimized structures for the Bl and B2
crystals (note that due to cubic symmetry the lattice spac-
ing is the only free parameter in the two phases), we have
numerically constructed and diagonalized the (9 X9) Hes-
sian matrix of the total energy at both configurations.
Representative results for the LiCl crystal are shown in
Table II, and will be further discussed in other sections.
Qualitatively similar data are found for the other alkali
halides. Our conclusions are highly significative. The
minimum energy eigenvalue corresponds to a path start-
ing in the direction a =b =c, a=B=y, x =y =z=1,
with a definite ratio between the @ and o movements.
The highest symmetry compatible with these relations is

TABLE II. Properties of the energetically optimum B1 and
B2 configurations onto the 9D {a,b,c,a,B,7,x,y,z} surface. V,
refers to the w component of the energy gradient and H,, to
the ww' component of the energy Hessian. ¢, and ¥V, are, re-
spectively, the lowest eigenvalue of the (9X9) Hessian matrix
and its associated eigenvector in the {a,b,c,a,8,7,x,y,z} coordi-
nates. Only the minimal set of derivatives is shown. All values
in atomic units.

BI1 B2
a 6.918933 6.177 646
v, 0.00011100 0.000006 73
' 0.00000312 0
v, 0 0
H, 0.81951 1.13749
H, —0.04620 —0.28290
H,, —0.06713 0
H, 0 0
H,, 0 0
Hag 0.20236 0
H, 0 0
H, 0 0
H,, 0.48090 —0.34581
Hg —0.06775 0
H,, 0.15831 —0.00789
H,, 0.09210 0
Emin 0.12118 —0.34581°
V min (a,a,a,b,b,b,0,0,0) (0,0,0,1,0,0,0,0,0)*
a=-—0.302878"
b=0.491 529"

*Threefold degenerate. The eigenvectors follow the three angle
directions. Only one of these eigenvectors is shown here.
*Symmetry fixed.
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R3m and, therefore, the whole path must lie on this re-
striction of the 9D surface. Moreover, as the
stoichiometry must be preserved, the inner position can-
not be altered on an R3m path. The minimum energy
transition path must lie then on a 2D surface:
u =a =b =c, v=a=pB=y. Under the restriction of only
one different kind of each ion, we have arrived at a
modified Buerger mechanism, and the transformation is
viewed as the opening of the rhombohedral angles of the
primitive B1 cell coupled to a simultaneous change in the
lattice spacing (Fig. 1). Our arguments hold true when
the Gibbs potential surface, and not the total-energy sur-
face, is analyzed. Though we have not exhausted all pos-
sible periodic mechanisms, our study has a clear generali-
ty not exploited up to now. We think that the picture
drawn so far is completely general and that other theoret-
ical schemes could take advantage of it.

The 2D AIPI static total energy (U) and 0-K Gibbs
potential (G =U +pV) surfaces have been obtained for a
2500-point grid in the systems under investigation. This
has been possible in a reasonable amount of time due to
the computational performance of the AIPI scheme. As
an example, the CPU time needed to calculate the total
energy of the LiCl crystal at a point of the 9D surface
was 64 s on a CONVEX C-120. Benchmark times for
other machines are gathered in Fig. 4 of Ref. 19(b). In
Fig. 2 we depict the U surface versus the lattice spacing
and the rhombohedral angle. Two facts are indeed re-
markable: (a) the B1 point is a true minimum both in the
2D and 9D surfaces (see also Table II); (b) the B2 struc-
ture is a saddle point (six positive eigenvalues and three
negative ones), and in the 2D restriction is unstable with
respect to the rhombohedral angle. Therefore, the B2
phase is not even metastable at zero pressure for LiCl,
though this situation changes with the system studied
and will change as external pressure is applied.

The 0-K Gibbs potential surface is easily constructed
at each pressure by adding the pV term to the U surface.
As p increases, the B2 phase is favored against the Bl,
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FIG. 1. Primitive B1 (a) and B2 (b) cells (P cells). The rhom-
bohedral B1 cell is represented in relation to the usual face-
centered cell (F cell). The arrows show the deformation of the
B1 cell in Buerger’s mechanism of the B1-B2 phase transition.
Cationic sites are numbered in both cells in order to clarify the
coordination relations during the transition. (After West, Ref.
42)
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FIG. 2. Static total energy (U) 2D surface for the LiCl pure
crystal according to AIPI calculations. The Bl and B2
configurations are shown as minimum and saddle points located
at a=60° and a =90, respectively.

going from a saddle point to a minimum and eventually
becoming more stable than the B1 structure.

IV. 2D SURFACE TOPOLOGY AND PHASE STABILITY

We have found that the main topological properties of
the U and G surfaces, and subsequently of the transfor-
mation, are determined fundamentally by symmetry.
One of the most important facts discovered is that both
the B1 and B2 configurations turn out to be critical (null
gradient) points of the Gibbs potential surface at every
pressure examined, ranging from 0 to 300 GPa for LiCl
On increasing p, the B2 structure turns from a saddle to a
degenerate point and then to a deeper and deeper
minimum. Simultaneously, the B1 configuration suffers
the reverse process. It is very interesting to clarify why
these characteristics are symmetry determined.

To do so, let us introduce the well-known expansion of
the crystal total energy in Lagrangian strain parameters,
€k, for a general homogeneous deformation of a crystal-
line solid around a fixed point:3?

U=Uy+ Uy +1UMeue, ()

where ¢, =3(g;; —g,-(} ), g and g° being the metric tensors
of the distorted and original unit cells. The contravariant
character of the U7 and U™/ coefficients as well as the
covariant properties of €; under coordinate changes is
well known, and is the basis of our treatment. Establish-
ing the connection between U derivatives with respect to
cell parameters, {a;}=(a,b,c,a,B,7), and U derivatives
with respect to Lagrangian strain parameters is an ele-
mentary task. Introducing now the Voigt components of
Lagrangian strain parameters,

=€y

€,7€yp , €37 E33,

(3)
€428y, E5=2813, E¢—2€Ep,
the matrix relating the a;’s and the Voigt components is
easily obtained and will not be presented.
We can now pay particular attention to each of the two
phases. As the B2 phase is concerned (a=B=y =90"),

we can derive the following relations:
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oU _ ,dU . _
—88,- a; —aa,- {i=1,2,3},
4)
oU oU
Y =92 (i=4:56
dg; da; ti=4,5.6},

where (a% b°,c?) are the lattice parameters of the original
cell. A

The UY matrix [Eq. (2)] transforms contravariantly un-
der coordinate changes, and must remain unchanged un-
der the symmetry operations of the crystal. Applying all
the symmetry operations of the O, group we arrive at a
simultaneous group of equalities that impose stringent re-
strictions on the possible values of the U” coefficients.
Doing so, we verify that

oU _ oU _ aU
=009, X =0T,
da 9B dy ~ Ba 9 dc > ©)

As the argument only depends on cubic symmetry, the
next statement follows: every cubic symmetry point must
have null energy derivatives with respect to cubic angles.

In the B1 structure, the above relations still hold in the
face-centered-cubic cell (F cell). However, in the rhom-
bohedral primitive cell frame (P cell), the angle deriva-
tives will certainly not be zero. It is, however, possible to
convert the former to the latter using once again the
transformation properties of the UY and the matrix relat-
ing the P-cell unit vectors to the F-cell ones.

Equating the derivatives of U with respect to angles in
the F cell to zero, we obtain the attractive, nontrivial ex-
pression valid at every B1 point:

U U _dU _, 0dU _,, 03U _, 03U
QU _9U _0U _;q008 _ 3007 —p 092
3a o8 oy ¢ a b ¢ e
V3
=2 ®

It is perhaps interesting to remark that Eq. (6) was ini-
tially found as a not-easy-to-understand relation numeri-
cally satisfied by the two components of the energy gra-
dient along the ¢=60° line on analyzing our AIPI 2D
total-energy surface. That “experimental” discovery in-
spired the above treatment.

Thus, the topological features of the energy are beauti-
fully determined by symmetry constraints and boundary
conditions. Let us summarize them. As regards bound-
ary conditions, in the a-a space that we are considering,
the Pauli principle forces the a=0° and 120° lines to be
infinite energy asymptotes, as both situations correspond
to zero-volume cells. The same can be said of the a=0
line. The @ = o region turns out to be a constant energy
(free-ion energy) asymptotic plateau. Regarding symme-
try restrictions, the @a=90° line is always a null gradient
line, and the a=60° line fulfills constant ratios between
the two gradient components [Eq. (6)].

The characteristics of the 0-K G surface can now be as-
certained and related to the thermodynamic phase stabili-
ty problem. Introducing in its full form the molar
volume into the static G function, we verify, after
straightforward derivations, that both Egs. (5) and (6) are
also satisfied with G instead of U. The thermodynamical-
ly most stable configuration at a chosen p is that which
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minimizes the Gibbs potential. When obtaining the op-
timum lattice parameter at every pressure for the Bl and
B2 phases with conventional techniques [making
U +pV (a) minimum], Egs. (5) and (6) assure that we are
finding not only a critical point in the 1D a space, but
also in the 2D a-a space. This conclusion is also general-
izable to the general 9D surface. All optimum B1 or B2
points being critical points of the G function, how do
their stabilities vary with pressure? To answer this ques-
tion, we must explore the Hessian matrix of G and ob-
serve how its eigenvalues vary with p. This study is actu-
ally closely related to the elastic behavior of the crystal,
as the elastic and effective elastic constants are generical-
ly defined as follows:

j_ 1 23U
cli=—=_9Y
V 9¢;0¢; ’
)]
j 1 3G
Cek ™ 5, .
V 0g;0¢;

Due to the contravariant nature of the €;’s, it is possible
to relate these parameters to derivatives of the energy or
the Gibbs potential with respect to the lattice parameters
in the same way as done before.

For the B2 phase, the 2D Hessian of G at each op-
timum critical point acquires the subsequent simple
structure:

2
an 0
_ Ju
H= 26
0 —_—
dv?
*U iU
o
38(12 6aaab+60p 0
- U |, PU ’
0 315~ 4 —3pa’
% 68(18[3 3pa

(8)

the crossed derivatives coming from the fact that in the
2D surface we assume ¥ =a =b =c, v=a=B=y. Ap-
plying point group symmetry arguments to second
derivatives of U similar to those previously used, it may
be proven that the crossed angle derivative is zero at any
cubic symmetry point. With Eq. (7), it follows that

_ 3V

11 12
Huu— a? (Ceﬂ'+2ceﬂ') ’

H,,U=3Vc‘:‘,‘f , 9)

cr=c''—p,
The Hessian of G in the Bl phase is also connected to
the effective elastic constants. It is first necessary to use
Eq. (7) to obtain the elastic constants in the rhom-
bohedral P cell and then transform them to the usual cu-
bic F-cell frame by using their covariance properties. We
can always look at Egs. (8) and (9) as also referred to the
B1 configurations if we remind the reader that a and «a
are now cubic parameters and not rhombohedral ones,

12 _ 12 4 _ 4
cg=c*+p, cg=c*—p.

algd that the volume term now involves a*/4 instead of
a’.

Now we see how the nature of the Bl and B2 critical
points onto the 2D Gibbs surface is altered on changing
the pressure. The H,, element (or, in other words,
clk+2c!2) increases abruptly with pressure and is always
greater than zero, since the isotropic compression second
derivative of the total energy of any crystal grows with
decreasing volume. Both the B1 and B2 phases are stable
with respect to isotropic compression. However, the
response of the H,, (or c%) element to p is very different.
The existence of one positive and one negative term
makes their mutual balance crucial in determining the
sign of its sum. Those configurations with positive values
of H,, are minima onto the 2D surface and describe,
therefore, thermodynamically stable or metastable crys-
tals. Those with negative values are saddle points and de-
scribe thermodynamically unstable systems. The same
can be said of the proper elastic constants.
Configurations with positive c¢* are mechanically (ener-
getically) stable or metastable, while those with negative
c* correspond to mechanically unstable systems. It is in-
teresting to note that long ago Born* proposed a c*
mechanical instability to explain the B1-B2 phase transi-
tion.

Figure 3 shows the elastic and effective elastic ¢* con-
stants of the B1 and B2 phases as a function of pressure.
At zero p, the Bl crystal is thermodynamically and
mechanically stable, while the B2 is not. As pressure in-
creases, the B2 system becomes first mechanically stable
and then thermodynamically metastable (its G function
value is still greater than that of the B1 crystal). Eventu-
ally, and at a pressure higher than the theoretical ther-
modynamic transition pressure (around 80 GPa), the Bl
crystal becomes thermodynamically unstable while the
B2 phase remains stable up to the greatest pressure stud-
ied (300 GPa). The driving force of the transition is, in
this picture, seen as a cubic angle instability. We can also
understand that it is at least theoretically possible to ob-
tain metastable crystals in one chosen phase in regions
where the thermodynamically stable phase is the other

700 —— c44(B1 -
: 036381% o
600 ---= c44(B2
------- céf(B2 I
500
400 F

c44 (GPa)

50 100 150 200 250 300
P (GPa)

FIG. 3. Elastic and effective elastic constants (c* com-
ponent) for the Bl and B2 LiCl crystals as a function of pressure
according to AIPI calculations. Both thermodynamic (c*=0)
and mechanical (¢ *=0) instabilities are patent.
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one if, and only if, we are in the inner p region where
both c% are positive (the stability range). It should not
be viable (and hence attempted) to isolate the B2 phase at
pressures below ~20 GPa or the B1 phase beyond ~250
GPa. We will see in the next section that these two
values are indeed the theoretically obtained limits for the
hysteresis range at 0 K.

V. TRANSITION PATH AND TRANSITION KINETICS

In Sec. IIT we showed how the reaction path for our
simplest 9D model was really restricted to a 2D surface.
After studying the main topological features of this sur-
face and their physical meaning, we turn to the actual
determination of the transition path. We define it as the
minimum Gibbs potential path connecting the end
configurations (B1,B2) at each pressure. Since the most
representative coordinate of the transition out of the
transition configuration space is the rhombohedral angle
a, we have chosen it as the reaction coordinate. Figure 4
shows the Gibbs reaction diagram for our model system
(LiCl). The G values are referred to the B1 configuration
for each p to better observe the relative stability of the
phases. It is apparent from the plot that both the Bl and
B2 points are always critical points, the second changing
from a maximum to a deep minimum on increasing p,
and the first one experiencing the reverse transformation.
These results may be successfully compared with those
encountered in the previous section: for example, the sta-
bility range introduced there is nothing but the pressure
region in which both structures are local minima (see Fig.
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FIG. 4. Theoretical LiCl reaction diagrams onto the 2D 0-K
Gibbs surface as a function of pressure.

4). The thermodynamic transition pressure is that in
which both phases have the same G function value.

Figure 4 gives detailed information about the nuclear
process that generates the angle instability. The whole
series of transition paths can be interpreted as the move-
ment of a maximum across the angle axis. Whenever it
touches one of our end configurations, the latter critical
point changes from one type to another. At the moment
of this change, one maximum and one minimum coalesce.
The process is then catastrophic*® and one dimensional.
The cubic nature of the path in the vicinity of the insta-
bility, along with a simple algebraic analysis that we will
omit here, allows us to state that the angle instability is a
codimension-1 fold catastrophe.®

It is also crucial to note that stable or metastable Bl
and B2 structures are connected through paths with large
barriers, even at pressures well above the thermodynamic
transition pressure. This point will be further analyzed,
since it lies at the very heart of the hysteresis phenomena.

Figure 5 shows the coupling of the a,a coordinates
along the path as a function of pressure. All the curves
are practically parallel, so we can say that the a,a cou-
pling does not change in nature with p. The angle starts
to open at the Bl point while the lattice parameter de-
creases. Near the B2 configuration both movements un-
couple each other and at the very B2 point the reaction
path only changes the cubic angle. As repeatedly en-
countered in this paper, this behavior is fundamentally
symmetry constrained. Since our paths are minimum G
paths, the analytical equation of each trajectory in the
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FIG. 5. a-a coupling along the transition paths as a function
of pressure. The slopes of the curves at the a=60° and a=90°
lines are symmetry determined.
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a,a plane is
3G (a,a) _ dU(a,a)
da da
+3pa?[1—3 cos¥(a)+2cos’(a)]1/?

=§E££ﬁ)—+3pazf(a)=0, (10)

and then the derivative of a with respect to a along the
path takes the following expression:

U -
dada

20U _d'U
a 9a  Qa?

da _ \3pa2fia)+ (11)
da

At a=60°, and reminding the reader that the crossed
U second derivative is zero by symmetry, da /da is null,
no matter the pressure. It is also easy to show, though
more cumbersome, that the derivative at the B1 position
is also constant with pressure. If the slope of the paths
are equal and fixed at the two extreme points, the Bl and
B2 ones, there is little room left for diversity.

The kinetics of a solid-solid transformation is difficult
to model due to the many factors involved. It is generally
assumed that the main two dominant processes are (a) the
cooperative transformation of small regions of a given
crystal into the thermodynamically stable phase and, (b)
the growing of the grains so formed. As we have seen,
the first one has a large Gibbs activation energy in the
neighborhood of the thermodynamic transition pressure.
The grain growing problem is also affected by a barrier
coming from the surface Gibbs energy contribution to
the total Gibbs potential, and is much more difficult to
study theoretically. As commented in the Introduction,
there is experimental evidence that for large, very pure
crystals the transformation may occur suddenly and
simultaneously over the whole crystal volume. In these
cases, the relative kinetic significance of grain growing
and grain boundary factors is diminished. In order to
properly understand the kinetical information embodied
in our results, we shall omit grain aspects in the follow-
ing.

We have obtained the barriers or activation Gibbs en-
ergies for the B1--B2 and B2— Bl processes as a func-
tion of pressure. It is to be noticed that (a) B1-—B2 and
B2— B1 activation energies are different at a constant p
except at the thermodynamic transition pressure. They
decrease almost exponentially as p increases for the
B1— B2 process, doing the opposite for the B2— B1 one.
(b) Pressures with thermally surmountable B1— B2 ac-
tivation energies are higher than the thermodynamic
transition pressure. The contrary occurs for the B2—B1
transition.

If, as usually done, we ascribe the meaning of the bar-
riers to energy that the system must possess in order to
overcome the saddle point along the path, and take into
account that in a solid reaction this energy has to be vi-
brational (thermal) in nature, we arrive at a consistent
picture of the kinetic experimental facts. Since we have
not really enough theoretical information to estimate the
absolute thermal energy of a crystal from our calcula-
tions, we have supposed a simple Debye model. Though

being only a qualitative guess of the authentic thermal
energies, it will serve for our purposes here. Let us imag-
ine now a compression-decompression cycle starting from
a B1 crystal at constant temperature (see Fig. 4). In the
first stages of compression the initial system does not
have energy enough to change phase until the pressure
takes a value quite bigger than the thermodynamic tran-
sition pressure. If we take the recently formed B2 crystal
and decompress, the backward transformation now
occurs at a pressure lower than the thermodynamic tran-
sition pressure. This is a hysteresis cycle and the inter-
sections of a constant energy (temperature) line with the
activation curves define the hysteresis range. It is seen
how this hysteresis range decreases abruptly (actually al-
most exponentially) with increasing 7. The transforma-
tion is quasireversible only at large temperatures. The
enormous B1— B2 pressures needed at usual tempera-
tures may be the key to understand why the phase transi-
tion has not yet been observed in LiCl.

The appearance of hysteresis cycles may be clarified
with a simple master equation model. If we denote n;
and n, the concentration of the Bl and B2 phases, sup-
pose Boltzmann factors for both the Bl—B2 and
B2 B1 processes, and identify time direction with pres-
sure increase direction, we can write
dn, ~AGE gy /KT

d—p =w,e ny—mye
where the numerators of the exponents are the barrier
Gibbs energies of both processes and the w parameters
are adjustable constants in this work that will be investi-
gated in the near future. Making use of our theoretical
barriers, Eq. (12) is able to describe hysteresis cycles with
the following features: (a) the width of the hysteresis cy-
cle decreases quickly as T increases and as the rate of
pressure change decreases; (b) once the appropriate p is
reached in both directions, the transformation is complet-
ed in a very narrow p range. Infinitely slow transforma-
tions are reversible and take place at the thermodynamic
transition pressure at any temperature.

Though the kinetic model used here is a very simple
one and does not take into account properly many impor-
tant variables involved in the phase transition, we think
that the main qualitative and physical aspects of the bulk
B1-B2 phase transition are well described, and shows
how an ab initio solid-state methodology can help in the
understanding of these difficult problems.

—AGY,_ . /kT
B2-B1 n,, (12)

VI. CONCLUSIONS AND PERSPECTIVES

We have shown in this paper how a series of models of
growing complexity can be hierarchically and systemati-
cally constructed in order to study rigorously the thermo-
dynamic and kinetical behavior of the pressure-induced
B1-B2 phase transition in alkali halides. The full analysis
of the simplest of these models, the 9D model, has shown
how important the adequate treatment of symmetry is to
reduce the dimensionality of the interesting regions of the
transition configuration space, and how the main topo-
logical and physical properties of the energetic and Gibbs
surfaces are constrained by this symmetry. These results
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point towards a more detailed consideration of the alge-
braic aspects of the theoretical studies to be made in the
future. With the aid of the AIPI scheme and always
within the constrained 9D model, the transition has been
shown to obey a modified Buerger mechanism. We have
also found that its kinetics is closely related to the phase
stability problem and that the driving force of the process
is a cubic angle thermodynamic instability. This instabil-
ity is one dimensional and may be seen as a fold catas-
trophe in Thom’s sense.*> Many of the experimental
findings also emerge from the physical model presented.
We also believe that the present study can be used, due
to its general scope, to compare results coming from oth-
er simulation techniques (molecular dynamics, Monte
Carlo, etc.) and tune the many parameters involved in
those methods. Perhaps a combined (ab initio and pair
potential based) strategy to the problem could be the best
way to go further. As regards ab initio calculations, the
astonishing developments in computer speed allow the
consideration of greater dimensionality models that will
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reduce even more the number of plausible mechanisms
involved. We are also studying the transition from the
point of view of the chemical bond determining the topo-
logical aspects of the electronic density in Bader’s*! sense.
We expect to find in this way that the transition is ac-
companied by a sudden change of chemical connectivity
at a given point along the transition path and construct a
coherent and global outlook of the transformation.
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