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Universal equation of state for compressed solids
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We derive a universal equation of state for compressed solids, based on thermodynamic arguments ap-

plied to virial expansions of E(p, T) and p(p, T), of the form p(v/U&)'= Ao+ A&(p/po)+ A&(p/po) ~

The thermal pressure is included from the beginning, and the only essential approximation is the trunca-
tion of expansions, which is justi6ed by molecular arguments. Agreement with experiment is very good
for a wide range of materials, including quantum solids, noble-gas and polar-gas solids, metals, ionic
compounds, and hydrocarbons. A separate assumption gives the temperature dependence of the param-
eters as A;( T)= A;+b; T —c; T lnT, for T )8&. The usual behavior of the Griineisen number as a func-

tion of temperature and density is accounted for in a simple way by these results.

I. INTRODUCTION

p =T Bp
BT

BE
Bu

where p is the pressure, T is the temperature, v is the mo-
lar volume, and E is the internal energy (per mole). Vinet
and co-workers neglected the term T(Bp/BT)„,the so-
called thermal pressure, and used the volume derivative
of the binding energy to approximate the tertn (BE/Bu) r,
the so-called internal pressure. The resulting EOS con-
tained only three parameters: the zero-pressure values of
the molar volume, of the isothermal bulk modulus,
B = —v(Bp/Bv)r, and of the pressure derivative of the
bulk modulus, 8'=(BBIBp)

Strictly speaking, the approximations made the univer-
sal EOS valid only at T =0 K, but, in fact, it was accu-

The equation of state of compressed solids (p-v-T rela-
tion) plays an important role in many fields, such as
condensed-matter physics and geophysics. Perhaps the
best-known equation of state (EOS) for solids is credited
to Murnaghan, ' and is based on the empirical observa-
tion that the isothermal bulk modulus (reciprocal
compressibility) is a linear function of pressure. The ori-

gin of this relation actually goes back to the work of Tait
on liquids, published in 1888. A modification and im-

provement of the Murnaghan EOS by Birch ' has been
widely used in geophysics.

In an extensive review in 1969, Macdonald stated, "It
is extremely unlikely that there exists a 'universal' equa-
tion of state, of useful degree of simplicity, best for all
condensed materials. " Despite this rather gloomy pre-
diction, a universal EOS for solids was proposed in 1986
by Vinet and co-workers, ' valid for ionic, metallic, co-
valent, and noble-gas solids, which was found to be more
accurate than both the Murnaghan and Birch equations,
especially at large compressions. No extra adjustable
constants were required. The basis of this universal EOS
was a universal relation between the binding energy of
the solid and intermolecular distance, from which the
EOS could be calculated via the thermodynamic relation

rate at least up to ordinary temperatures, with different
parameters vo Bp and Bo for each p-v isotherm. The au-
thors later extended the results to include high-
temperature behavior by introducing as a parameter the
zero-pressure value of the thermal expansion coefBcient,
a=u '(Bv/BT) .

Another universal relation for the compressibility of
solids was independently proposed in 1987 by Dodson,
using the same input data of vo, Bo, and Bo for each iso-
therm. The accuracy of the Dodson EOS is similar to
that of the EOS of Vinet and co-workers, even though the
explicit formulas di8'er. The Dodson EOS does not in-
clude temperature dependence.

The purpose of this paper is to present an improved
universal EOS for compressed solids. The development
uses some of the ideas of Vinet and co-workers, but
the results are both simpler and somewhat more accurate
for a wide variety of substances, including those with
phase transitions. The simplification follows from the re-
striction to solids in compression, so that we need to fit
only the rather featureless repulsive branch of the
binding-energy curve rather than the entire curve. This
simple fit of the repulsive branch also allows us to include
the thermal pressure from the beginning, instead of graft-
ing on temperature e6'ects at the end. The final result is
that pv is a quadratic in the density. This EOS contains
three parameters, which can be determined by fitting
high-pressure measurements, or can be taken as vo, Bo,
and Bo in the absence of phase transitions, as in the EOS
of Vinet and co-workers and of Dodson.

We first show how the repulsive branch of binding-
energy curves can be represented by a simple function of
density, and then use this result to obtain the EOS. This
EOS is compared with measured p-v isotherms for a large
number of diferent types of solids. The temperature
dependences of the parameters are also considered. The
method of Vinet et al. predicts at most a linear tempera-
ture dependence for the present EOS parameters, which
is found to be satisfactory for some substances, but not
for all. We introduce a more accurate procedure. Final-
ly, we examine the predicted behavior of the Griineisen
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number, and find it to be only a weak function of temper-
ature at constant density, but a stronger function of den-
sity at constant temperature.

II. BINDING ENERGY

where hU is the equilibrium binding energy at a*=0,
and

a =(r —r, )/I, (3)

in which I is a scaling length that is treated as an adjust-
able parameter. This can be written for our purposes as

To show how the repulsive branch of the binding ener-

gy curve can be represented in a simple way, we first con-
sider the two-body interatomic potentials u (r) of the no-
ble gases, which are accurately known. In Fig. 1 we show
the result for argon, ' plotted in dimensionless form as
u'=ule vs (r, lr), where e is the potential well depth
and r, is the position of the potential minimum. The
reason for this representation is that (r, /r) is propor-
tional to the density in a solid. If the potential energy is
pairwise additive, this is virtually the same as the zero-
temperature binding energy of the solid as a function of
density (except for scale factors). The repulsive branch
(r (r, ) can be fitted very accurately by a simple polyno-
mial, of order 3 in this case. Such a representation of the
attractive branch (r ) r,

~
is of course completely errone-

ous, but this is of no importance for compressed solids.
The universal binding-energy function of Vinet and

co-workers ' can also be represented in a similar fashion
for r & r, . This function is

a*
U = —EU(1+a" )e

U(r)=b U[g 1 —ri(r/—r, )]e

where g =r, /I is a dimensionless "shape" parameter
whose values lie between about 3 and 8." In Fig. 2 we
show U'=U(r)/b. U as a function of (r, lr) for g=6
and 8; results for other values of q are similar. Again the
repulsive branches are accurately fitted by third-degree
polynomials.

It should be mentioned that we have used the symbol
U rather than E for the binding-energy function of Vinet
and co-workers, in order to indicate that it is a
configurational potential energy and not the thermo-
dynamic internal energy. The latter must depend on tem-
perature in order to have a nonzero specific heat.

On the basis of the above results, we conclude that the
binding energy in the repulsive region can generally be
represented by a cubic expression in the density, p= 1 /U,

U up + u ]p+ u 2p +u 3p

where uo, u &, . . . are constants characteristic of the par-
ticular substance. This result can be extended to the
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FIG. 1. Argon pair potential. The points are calculated from
the potential of Aziz and Slaman, and the curve is a third-
degree polynomial fitted to the repulsive wall.

FIG. 2. Universal binding-energy function of Vinet and co-
workers for r, /I =6 (0) and 8 (0). The points are calculated
from Eq. (4), and the curves are third-order polynomials fitted
to the repulsive walls.
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E =eo(T)+e, (T)p+e2(T)p +e3(T)p (6)

This is just a viral expansion and involves no approxima-
tion other than the truncation of the series after the cubic
term, which is suggested by the results illustrated in Figs.
1 and 2.

III. UNIVERSAL EQUATION OF STATE

The calculation of the EOS (i.e., of the pressure) is
based on the exact thermodynamic relation of Eq. (1).
The universal EOS of Yinet and co-workers is obtained
by neglecting the thermal pressure and approximating
(BE/Bv)T by (BU/Bv)T from Eq. (4). Their result is

thermodynamic internal energy E by allowing the
coefficients to depend on temperature,

C(p)=Cqp +C3p +C4p (12)

in which the constants C2, C3, and C4 can be imagined to
be determined, for example, by matching C(p) and its
first two derivatives at p=p„f.

Combining the foregoing results, we can write our final
EOS in reduced form as follows:

p (v/vo) = Av+ A, (p/pp)+ A2(p/pp) (13}

where vv =1/po is some standard volume, which is often
taken to be the (molar} volume at p =0, but which can be
quite arbitrary. The coefficients A; are functions of tem-

perature, given by

e, (T}
Ao(T)=T C2 —f dT pv,

p =3B 1 —X
~ g(1 —X)

X2 7 (7)
ez(T)

Ai(T)=T C3 2f— dT po, (14)

X=(v/vo)'~3,

from which the shape parameter g=r, /I can be found in
terms of Bo =(BB/Bp ) 0 to be g =3(Bv

—1 }/2. This
expresses each p-v isotherm in terms of the parameters
vo, Bo, and Bo, which can, in principle, be found experi-
mentally. The approximation of p = —(BU/Bv)z should
make this result valid only at low temperatures, but Vinet
and co-workers have show that room temperature is
"low" for many substances. Notice that this EOS re-
quires that v =vo when p =0, which rules out phases that
are stable only for p &0, unless vo, Bo, and g are con-
sidered to be arbitrary constants.

For comparison, the empirical EOS of Dodson has the
form

3 Bo 1

2 {1—p) X
—2P lnX+4P —1, (9)

4p
X

where P= 1 —
( 2/3B v ).

Our result is obtained by substitution of Eq. (6) for E
info Eq. (1) for p, which yields without approximation the
following difFerential equation for the EOS:

T = —
p (e&+2e2p+3e3p ) . (10)

B{p/T}

.P

Integration of Eq. (10) at constant density gives

e&(T), e2(T}~=C(p) p f — dT 2p' f dT—
T T2 T2

e3(T)3p'f—, dT,

where the "constant" of integration, C(p), is a function
of density only. If C(p) is expanded in general as a
power series, all power of p should appear, but a
simplification is possible if we need to represent C(p)
only for p ~p„f,where p„fis some nonzero reference den-
sity (not necessarily that corresponding to p =0). Since
the range 0 &p &p„fis then irrelevant, a reasonable rep-
resentation of C (p) can be taken to be

e3{T)
A2(T)=T C4 —3f dT po.

Notice that the coeScients A;(T) are linear in T if the
coefiicients e;(T) are constants. Such a result, however,
implies zero specific heat, since C„=(BE/BT)„.

If vv is taken to be the zero-pressure volume, then the
A, can be expressed in terms of Bo and Bo, and the EOS
(13) can be written in terms of the three parameters vv,

Bv, and B&, just as the EOS (7) of Vinet and co-workers
was. The result is

IV. CORRESPONDING STATES
AND THE REPRESENTATION OF DATA

An important feature of any universal EOS should be
its ability to be put in a convenient reduced form that
provides a principle of corresponding states and that sug-
gests a convenient way of analyzing experimental data.
Vinet and co-workers ' did this by writing their EOS in
the following form:

ln = 1nBO+ g(1 —X),pX
(16)

so that a plot of the experimental quantities given by the

p(v/vv) =
—,'Bv[(Bv —7)—2(Bv —6)(p/pv)

+(B&—5)(p/po)'] .

In practice, we have determined the A; by fitting p-v iso-
therms over the whole pressure range, rather than from
the limiting behavior of the isotherms at p =0. This pro-
cedure allows us to keep vv as arbitrary, and hence to
handle systems with phase transitions, in which one or
more phases exist only at higher pressures.

The important features of the present universal EOS
(13), irrespective of its particular mathematical form, are
that it involves no assumptions that limit its applicability
to low temperatures, and that it can be applied to systems
with phase transitions.
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120 400 I I I I

90 300

60-0 200

30 100

1.3 1.6 1.9 2.2 1.2 1.4 1,5 1.6

p/p~

FIG. 6. Test of Eq. (13) for the room-temperature isotherm
of NH3.

V. COMPARISON WITH EXPERIMENT

We begin with the quantum solids He, H2, Dz, and Ne,
which are very compressible because of their zero-point

1200

P~Po

FIG. 8. Test of Eq. (13) for the 25'C isotherm of LiF'.

energy. There is nothing in the derivation of Eq. (13) that
limits it to classical solids. The measurements of
Stewart' at 4 K are shown in Fig. 4 as p (u/uo) vs p/po,
and can be seen to be fitted very well by quadratic func-
tions, shown as the curves. The curves have not been
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FICx. 7. Test of Eq. (13) for the 25 C isotherm of Cu; same
data as in Fig. 3.

p/p ~
FICx. 9. Test of Eq. (13) for the room-temperature isotherm

of magnetite (Fe304).



3054 GHOLAMABBAS PARSAFAR AND E. A. MASON 49

20 30

20

CC

A

10

10

0
&.0 1 2 1,4 1.6

OL
1.0 1.2 1.3

P/Po

FIG. 10. Test of Eq. (13) for the 25'C isotherm of n

hexadecane (n-C&6H34) ~

FIG. 12. Test of Eq. (13) for the 25'C isotherm of Melmac

404, a melamine-formaldehyde polymer.
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FIG. 11. Test of Eq. (13) for the 25 C isotherm of acena-

phthene (C»H&0).
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FIG. 13. Test of Eq. (13) for the two-phase system of u and y
cerium.



49 UNIVERSAL EQUATION OF STATE FORTE FOR COMPRESSED SOLIDS 3055

20

15

60

C4

0

C4

7 40
c5

A

cj 20

0

0 ~ ~

1.00 1.02
I I I

1.04 1.06
s I

1.08 1.10

P/Po

1.1 2 -20
0.6 0.?

V/V 0

0.8 0 g

FIG. 14. Test ofo Eq. (13) for the two- hwo-p asesystem MnS 0.n n

FIG. 16. Devieviation plots for s
C isotherm of CU.

s. (7) (0) and (13) (~ ) for the

200

150

100

0

A

50

-2-

0L
'). 00 1.05 1.10 1.20

-3
0.8 0.9

FIG. 15. Testof . 1o Eq. (13) for the two-wo-phase system A R 0 .g e 4.

FIG. 17. Deviat
0

eviation plots for s.
isotherm of n-h d- exadecane.

for the



3056 GHOLAMABBAS PARSAFAR AND E. A. MASON

constrained to give p/p0=1 at p =0, but those for H2,
D2, and Ne very nearly meet this requirement. The curve
for He clearly does not, nor should it, since He melts at
about 130 bar at 4 K.

A similar plot is shown in Fig. 5 for the 77 K isotherm
of Ar. ' Again a quadratic fit is very good.

Results are shown in Fig. 6 for the polar material NH3
at room temperature, ' like the above systems a gas un-
der ordinary conditions. The data are for the hexagonal
close-packed phase that forms at 42.1 kbar, and vo is the
(extrapolated) molar volume at 1 atom. A quadratic
gives a very good fit, although, because of the scatter, a
straight line would probably fit about as well in the exper-
imental range.

Data for Cu are shown in Fig. 7. These are the same
results as shown plotted differently in Fig. 3. Small irre-
gularities in the low-pressure data do not show up in this
type of plot. Notice that the pressure range is very much
greater than for the previous systems, although the
volume change is comparable.

Results for the ionic compound LiF are shown in Fig.
8, taken from the AIP compilation. ' The quadratic fit is
excellent.

Room-temperature results' on the mineral magnetite
(Fe304) are shown in Fig. 9. The quadrative fit is once
more very good.

Equation (13) also works very well for organic com-
pounds, as illustrated in Fig. 10 for n-hexadecane and

TABLE I. Fitted parameters for the EOS {13);hp gives the pressure range of the data fitted.

He'
Ne'
Ar'

Solid

N2'
n-H2 b

n-D2 b

NH3'
CU
Au'
a-Mn f

y-Ces
LiP
NaCl"
CsI'
MgO'
CaO(81)"
MnO'

SiOz
T&02
Fe304"
MgSi03'
Mg2Si04'
MnSn03
MnSn03
y-Fe2Si04
y-Co2Si04
y-Ni2Si04
AgRe04
n-CsH&s d

n-C &6H34'

acenaphthene
Melmac 404d

'Reference 13.
Reference 16.

'Reference 14.
Reference 12.

'Reference 17.
Reference 18.

~Reference 19.
"Reference 20.
'Reference 21.

4
4

65
77
65
4.2
4.2

298
298
298
298
298
298
298
298
298
298
298
298
298
298
298
298
298
298
298
298
298
298
298
298
298
298

o

(kbar)

—0.7466
1.73

14.80
—19.34
—1.55
—1.505
—2.585

—67.7
—1535
—1613
—471.5

—1194
—710.6
—254.4
—74.30

—6349
—1477
—1622
—10.15 x 10'

3357
—3010
—12.13x10

—778
—17.80x 10'
—25.62 x 10'
—6. 12x10'

2.1

2548
3453

143.2
114.8
138.0
90.3

Al
(kbar)

0.5013
—15.21
—46.72
—50.06
—9.35

0.739
1.291

60.7
1668
1584

—392.1

2202
792.1

267. 1

26.89
9071
1837
1633

17.29 x 10
—8591

4168
22.46 x 10

361
33 ~ 23x 10'
46.01x 10'
10.15 x 10'
—1960
—7219
—7208
—220.9
—211.3
—337.8
—267.4

'Reference 22.
"Reference 23.
'Reference 24.

Reference 25.
"Reference 15.
'Reference 26.
"Reference 27.
qReference 28.

A2
(kbar)

0.2930
13.40
31.92
30.72
10.93
0.724
1.247
7.0

—133
41

862.9
—1008

—81.6
—12.8

47.24
—2936
—358
—10

—7. 13x10'
5234

—1158
—10.34x 10

417
—15.43 x 10'
—20.52 x10'
—4.03 x10'

1959
4671
3755

87.0
97.2

199.9
177.2

hp
(kbar)

0-20
0-20
0—19
0—19
0—10
0—25
0—25

42-559
20-4500
44—701
13-420

1-7
15—800

1 —31
0-508

437-941
0-641
30—605
7-111
6—60
0—44
20-62
18-99
0—72

74-192
8—78
6—71
7-74

0-110
0—40
0—40
0—40
0—40
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TABLE II. Comparision of values of BD and B0 from the
present EOS (13) and from the literature.

Solid
B, (lbar)

Eq. (13} Lit. Eq. (13}
BQ

Lit.

n-Hz
n-D~

NH3
Au
a-Mn
y-Ce
NaCl
CsI
CaO(B1)
MnO
Si02
TiO&

Fe304
Mg2Si04
y-Fe2Si04
y-Co2Si04
y-Ni2Si04
AgRe04

2.10
3.69

74.9
1691
1332

186
241
121

1127
1617
3023
1877
1852
1196
2078
1960
2123

302

1 74'
3 37'

75.6
1666'
1310
191'
240'
119g

1147"
1620'
2980'
1880'
1810"
1200'
2020'
2030
2030'

309m

5.85
5.75
5.18
5.01
6.30

—5.84
4.90
5.79
4.35
4.98
0.23

10.6
3.75
5.70
1.12
7.00
9.40

29.9

5.4'
5.4'
5.29
5.5'
6.6

—10'
S.01'
5.93~

4.10"
4.8'

0.7'

10.6'

5 sk

s.6'

2.2'

5.0'

12.13

30 9m

'References 16 and 29.
Reference 14.

'Reference 17.
Reference 18.

'Reference 19.
'Reference 20.
Reference 21.

"Reference 23.
'Reference 24.
'Reference 25.
"Reference 15.
'Reference 26.

Reference 28.

Fig. 11 for acenaphthene (C,zH, u, a derivative of na-

phthalene), with data taken from the AIP compilation. '

The alkane is liquid at 25'C, and v0 refers to the liquid

volume; freezing occurs at 0.4 kbar. Figure 12 shows re-
sults' for a melamine-formaldehyde polymer, Melmac
404.

We have carried out similar comparison with experi-
ment for a number of other systems; the main results are
summarized in Table I. ' In all cases the data were
fitted very well by quadratics.

For systems with phase transitions, each phase can be
fitted separately by Eq. (13). Examples for Ce, '

MnSn03, and AgRe04 (Ref. 28) are shown in Figs.
13-15.

The bulk modulus and its pressure derivative at any
density and temperature are easily calculated from Eq.
(13). The zero-pressure values of these quantities, B0 and

80, are often reported in the literature. They determine
the linear dependence of 8 upon p that is specified by the
Tait-Murnaghan relation. Comparisons of some values
of B0 and BD for Eq. (13) and from the literature are
given in Table II. The agreement is generally satisfacto-
ry, and most the variation arises from different methods
of fitting p-v-T data, with the exception of the ultrasonic

measurements on n-H2 and n-D2.29

In order to illustrate the pressure range over which the
present EOS holds, we have examined a deviation plot for
Cu, for which data exist up to 4.5 Mbar. ' The results
are shown in Fig. 16, where they are compared with
those for the EOS of Vinet and co-workers. The devia-
tions for both equations are very small at low pressures.
However, the deviations from Eq. (13) do not exceed a
few kilobars over the whole pressure range, whereas the
deviations from Eq. (7) rise to some tens of kilobars at the
highest pressures. Even so, the percentage deviations are
small.

The present EOS is accurate for organic solids as well,
as shown in Figs. 10-12. However, we have noticed that
the semilog plots of Eq. (16) of Vinet and co-workers de-
viate significantly from linearity for organic solids. The
di6'erence is shown in a deviation plot for n-hexadecane
in Fig. 17. Since the highest pressure reported is only 40
kbar, ' even the percentage deviations are appreciable for
Eq. (16).

VI. TEMPERATURE DEPENDENCE
OF PARAMETERS

Knowledge of the temperature dependence of the pa-
rameters of an EOS greatly increases the power of predic-
tion from minimal input data. This is especially impor-
tant in geophysical applications, for example, where
knowledge of high-temperature behavior is often needed.

To predict high-temperature behavior, Vinet et al. as-
sumed that the thermal pressure is (i) linear with respect
to T and (ii) independent of density, when T & 8D, where

OD is the Debye temperature. With these assumptions
they showed that

p(v, T)=p (v, Ttt )+au(Ttt )Bu(TR )(T —
Ttt ), (19)

where Tz is a reference temperature and a0 is the
thermal expansion coeilicient at p =0. Using Eq. (7) for
the reference isotherm p (v, Ttt ), they tested Eq. (19) with
data on Au, NaCl, and Xe and obtained good agreement
with experiment. The important feature of Eq. (19) plus
Eq. (7) is that only four constants —(uTv„), Bu(Ttt),
Bu( Ttt ), and av( Ttt )—are needed to predict all the p-u
isotherms at temperatures above Hn.

The essential final feature of Eq. (19) is that

=a0( Tg }Ba(Ttt }=const (20)

Indeed, Eq. (19) is obviously just the integrated form of
(Bp/BT)„=const. Examination of the p u Tdata for--
Au, ' NaC1, and Xe (Ref. 30) shows that bp/hT at
constant volume is only a weak function of T and v, and
Eq. (19) is quite successful for these systems. However,
many substances do not meet the criterion of constant
(t}p/t)T)„and so would not be accurately described by
Eq. (19); for example, bp/hT for CsI varies by an order
of magnitude over the experimental range. ' We there-
fore attempt a more accurate description of the tempera-
ture dependence of the EOS parameters.

Regarding the present Eq. (13), the condition of con-
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stant (Bp/BT)„leads to the conclusion that Ao, 3„and
A2 are all independent of T, which is generally contrary
to experiment. However, if we use just the first assump-
tion of Vinet et al. and define the thermal pressure to be

p —p(T =0), we obtain the more reasonable conclusion
that all the A; are linear in T. As already mentioned,
this conclusion has the annoying side effect that the
coefficients e;(T) in Eq. (14) are constants, and hence that
the internal energy E is independent of temperature and
C, =0. However, this side effect has no direct influence
on the EOS (only on its present derivation}, and it is
therefore worth examining the linearity of the A;( T).

For this purpose we use the experimental p-u-T data
on Au, ' NaCl and CsI, ' with the results shown in
Figs. 18-20. It is clear that the linearity is good for Au,
only fair for NaC1, and rather poor for CsI.

In order to obtain a more accurate description of the
temperature dependence of the A;(T}, we assume that
the e;(T) are linear in T rather than constants. This as-
sumption makes C, a function on1y of density, not of
temperature, and restricts the results to T )HD(p). In-
tegration of Eq. (14) then yields the following form for
the temperature dependence of the A; ( T):

100

100—

-.enn
500 600 700

A;( T)=a;+b; T —c; T lnT, (21)
'I'(K)

where a;, b;, and c; are constants (independent of both T
and p). The curves in Figs. 18—20 are the least-square
fits of Eq. (21) to the experimental results.

In other words, if (Bp/BT), is not constant, the EOS
for T & OD requires not the four constants of Vinet et al. ,

FIG. 19. Same as Fig. 18, for NaCl.
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FIG. 18. Temperature dependence of the EOS parameters for

Au: A0( ~ ), —A&(A, ), and A&(~). The curves are least-square
fits of Eq. (21) to the points.
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FIG. 20. Same as Fig. 18, for CsI.
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number of metals, and y now appears in many discus-
sions of compressed solids. In particu1ar, it is used to
reduce shock-compression data to p-v isotherms, ' on the
assumption that y depends on density alone. It is there-
fore of interest to see what the EOS predicts about the
behavior of y.

If C„is known as a function of temperature at p =0,
then y can be determined from the EOS because the den-
sity dependence of C„is given by

C„(T,p)=C„O(T)+Tf du,
0 dT

0.7

0.6

0.5
0 100 200 300 400 500

p (kbar)

FIG. 21. Predicted (curves) and experimental (points)
volumes as a function of pressure for CsI at O'C (~ ) and 200'C
(0).

VII. GRUNEISEN NUMBER

An important parameter related to the EOS of solids is
the Gruneisen number y, given in terms of experimental
quantities as

vs
C

v Bp

C„BT (22)

where a =u '(du /d T)~ is the coefficient of thermal ex-
pansion. Gruneisen ' noted empirically in 1908 that the
ratio a/C„ is almost independent of temperature for a

but rather nine constants —three for each of the three
A;(T). That is, measurements of three p-u isotherms are
required to predict the entire p-v-T surface. Any reduc-
tion in the number of constants needed would seem to re-
quire a more detailed microscopic theory of the solid
state than we have used.

Since the fit of Eq. (21) to the experimental results is
only approximate, especially for CsI (Fig. 20), we have
carried out a sensitivity test to see how the fit of Eq. (21}
affects the p-v isotherms. We have used the experimental
data ' on CsI at 25, 300, and 600'C, which give the
points in Fig. 20 that are not well fitted by the curves, to
calculate the nine constants, and then used these con-
stants to predict the p-v isotherms at 0 and 200'C. The
results are shown in Fig. 21; the agreement is quite good,
which suggests that there is some compensation of errors
in the determination of the three A;(T).

in which the integral is evaluated at constant T. For the
EOS of Vinet et al. ,

s C„=C„ubecause (3 p/BT )„=0;y,
therefore, should vary directly as v at constant T. Direct
measurements on NaC1 show this behavior. The tem-
perature dependence of y at constant p thus is deter-
mined by C„o(T), which depends only weakly on temper-
ature for T &OD.

However, for a substance such as CsI, (dp/dT)„ in-

creases very rapidly with increasing pressure ' and conse-
quently so does y. The temperature dependence of
(Bp/BT)„ for CsI is weak, however, and in fact changes
sign as the pressure is increased. The net result is that y
is a strong function of density but only a weak function of
temperature.

The general behavior of y is easily assessed for the
present EOS. For T )8D the dominant explicit tempera-
ture dependence of y arises from (Bp/dT)„and
(8 p/BT )„,and hence from the temperature dependence
of the A;( T). From Eq. (21) we find

dA;
=(b; —c;}—c; lnT, (24)

d A;
T

dT
(25)

from which we can see that y has only a weak logarith-
mic temperature dependence at constant p. The density
dependence of y at constant T can be quite strong, how-
ever, depending on the signs and magnitudes of the
A, (T). This is in general accord with available experi-
mental information. ' ' '

VIII. DISCUSSION

Although we have used several microscopic arguments
in a heuristic way in obtaining the universal EOS (13), its
actual basis amounts only to the use of viral expansions
for E(p, T) and p(p, T), and truncation of these expan-
sions is the only approximation. As justification for the
accuracy of the truncation, other than good agreement
with experimental data, we note that the energy E(p, T)
has to account only for the repulsive energy in a
compressed solid, and that p (p, T} has to cover a density
range of only about a factor of 2 or less. However, there
is no direct indication of any upper density limit on the
EOS.

These latter two facts probably also account for the
fact that many of the EOS proposed for solids can
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represent experimental data with similar accuracy over a
reasonable range of compression, despite the fact that the
equations often have quite different mathematical forms.
Schlosser and Ferrante have compared a number of
popular EOS. By expanding in powers of the compres-
sion they showed that all the EOS agreed at small
compressions, but differed at high compressions. They
concluded that the EOS of Vinet and co-workers gave the
best fit of experimental data over the full range of
compressions experimentally available. This justifies the
restriction of our detailed comparisons to just the EOS of
Vinet and co-workers.

Compared with the universal EOS (7) of Vinet and co-
workers, the present Eq. (13) gives p-v isotherms that are
somewhat more accurate and that apply to a wider range
of materials, especially hydrocarbons. Both universal
equations can be put into forms that show how to plot ex-
perimental data to give straight lines, a convenient
feature for the analysis of data. However, the present re-
sults do not give any a priori way of finding cohesive en-
ergies, as does the universal binding-energy function (2)
of Vinet and co-workers. The best that can be done is to
calculate the binding energy at higher densities from a
known binding energy at lower density, by integration of
the thermodynamic relation

BE Bpa, '
aT

Although the thermal pressure is included from the be-
ginning in the derivation of Eq. (13), no explicit informa-
tion is forthcoming on the temperature dependence of the
parameters A;(T). The method used by Vinet and co-
workers to include temperature effects is equivalent to
taking (Bp/BT), =const, which is too restrictive a result.
The simplest assumption leading to satisfactory results
for Eq. (13) is that E(p, T) is linear in T, which leads to
Eq. (21) for the A;(T). This gives useful predictions for
T )OD, but the price is that nine constants must be
determined experimentally, rather than four constants if
(Bp/BT)„ is assumed to be constant. The appearance of
undetermined constants is one of the limitations of an
essentially thermodynamic approach.

Finally, Eqs. (13) and (21) account in a direct and sim-

ple way for the behavior of the Gruneisen number with
temperature and density.
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