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We have modeled single-atom radiation damage events in diamond by a molecular-dynamics simula-
tion, using an empirical interatomic potential to describe the interaction between the atoms in diamond.
We find that the damage threshold energy needed to displace a single atom is well above simple estimates
based on the diamond cohesive energy. The threshold derived from our simulations is approximately 50
eV, and is relatively insensitive to the direction of initial motion of the displaced atom. The high thresh-
old energy is due to a rapid dissipation of kinetic energy from the bombarded atom into incoherent vi-
brational energy of its neighboring atoms before the displaced atom can overcome the structural energy
barrier to defect formation. This rapid dissipation can be understood qualitatively by noting that when
the kinetic energy of a carbon atom is comparable to the damage threshold energy, its velocity is compa-

rable to the speed of sound in diamond.

I. INTRODUCTION

Diamond has long been of technological interest' not
only for its mechanical properties, but also for its optical
and electrical properties (it is transparent over a wide
range of frequencies and has high electron mobility when
used as a semiconductor). More recently, the develop-
ment of chemical vapor deposition (CVD) techniques,’
which can successfully grow substantial quantities of dia-
mond in thin-film form, has resulted in a resurgence of in-
terest in the general properties of diamond. One of the
notable and useful properties of diamond is its radiation
hardness, i.e., its resistance to damage of the lattice struc-
ture by various forms of high-energy radiation.

The electrical and optical properties of diamond are
strongly affected by the presence of defects in the ideal
crystal structure. At any finite temperature, entropy con-
siderations demand that there must be a certain thermo-
dynamic equilibrium concentration of defects in the crys-
tal. More important, however, are those defects that are
introduced either during the growth of the diamond or
during its subsequent processing or use and which are
usually not in thermodynamic equilibrium. A defect
created in the crystal by a single high-energy radiation
event may be frozen in because the energy of thermal
fluctuation is too low to anneal the crystal back to its
original perfect lattice ordering.

A potentially important application of diamond is its
use in high-energy radiation detectors. The first use of
diamond in this way was by Woolridge, Ahearn, and Bur-
ton® in 1948. In principle, diamond has many desirable
properties for such detectors:* high electron mobility and
high electrical breakdown threshold, as well as its resis-
tance to damage by radiation, compared to the more
standard silicon or germanium detectors. In the past,
practical considerations, such as high cost and concentra-
tion of unwanted impurities of natural diamond, have
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limited the utility of the material for radiation detectors.
However, with the advent of CVD diamond growth,? the
possibility of widespread use of diamond in radiation
detectors has emerged. Moreover, because of their high
radiation damage threshold of diamond, it has been pro-
posed for use as a semiconductor in high-radiation envi-
ronments, such as in the upper atmosphere and outer
space. It is clear that a better understanding of the pro-
cess of radiation damage is very important to this tech-
nology.

There is a wealth of experimental data available for the
damage effects of various forms of radiation on diamond.’
However, there has been little detailed microscopic
theoretical work, apart from an early, very approximate
study of Corbett, Bourgoin, and Weigel.® Recent ad-
vances in the power of computers and in the development
of carbon interatomic potentials have now made detailed
microscopic studies of radiation damage processes possi-
ble.

The initial event in the damaging of a perfect crystal by
radiation is a sudden transfer of a large amount of kinetic
energy to the lattice—either to a single atom or many
atoms. If their kinetic energy is sufficiently large, the ex-
cited atoms then move from their lattice positions, leav-
ing vacancies behind and displacing other atoms from
their lattice sties, thus creating a damaged region.

In the present study, we will focus on one aspect of this
process, viz., the kinetic-energy threshold required to
permanently displace a single atom from its ideal dia-
mond lattice position when all other atoms are initially at
rest. In some sense, this may be considered the primary
and simplest of all radiation damage events. Despite its
fundamental character, the processes involved in this
simple damage event have not been previously investigat-
ed from a detailed microscopic point of view.

In the simulations presented here, the interaction of
the incident high-energy radiation with the diamond lat-
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tice will be simulated as a sudden localized input of kinet-
ic energy to one atom. Thus we neglect the subsequent
interaction of the radiation particle with the diamond lat-
tice. It corresponds to the situation where the particle is
passing through the region of the crystal being studied,
but has not yet slowed down enough to actually stop
there. This is an appropriate approximation for radiation
damage by high-energy electrons (with energies of the or-
der of 1 MeV) or medium-energy neutrons (with energies
of the order of 1 keV), where the electrons or neutrons
remains energetic after the initial or subsequent col-
lisions. For processes such as ion bombardment or im-
plantation, while our simulations will give some impor-
tant qualitative insights concerning the transfer of local-
ized energy into the lattice, they cannot accurately
represent the damage to the lattice by heavy ions (nitro-
gen, etc.), where the heavy ion loses much of its energy
after the initial collision, and the subsequent interaction
and chemical bonding between it and diamond lattice is
important.

We will use Tersoff’s interatomic potential”® to calcu-
late the forces between carbon atoms in our molecular-
dynamics simulations. The Tersoff potential folds into a
classical description of the atoms the known chemical
bonding of carbon in the form of bond-stretching, bond-
bending, and bond-breaking energies. It is applicable not
only to the diamond structure, but also to a wide range of
carbon structures far away from the diamond struc-
ture.”® The Tersoff model is sufficiently short ranged (no
forces are directly affected by atoms further than 2.1 A
away) that forces can be computed relatively quickly.
Once the forces on each atom are determined, Newton’s
equations of motion can be numerically integrated very
accurately using the so-called ‘“leap-frog” method for
molecular dynamics,”!? which is accurate to second or-
der in the integration time-step length.

The experimental estimates of the threshold energy for
displacing an atom in diamond, derived from high-energy
electron scattering, vary from 35 to 80 eV.!!”!* A
theoretical estimate of 24-30 eV is obtained'? following
the procedure introduced by Kohn' for semiconductor
defects (where the energy threshold is taken to be the en-
ergy to break four bonds plus the work required for the
displaced atom to pass through the saddle point and go
to an interstitial position). From our simulations, we find
that the threshold kinetic energy at 0 K is 47 eV for ini-
tial motion of the displaced atom in the {100) direction,
50 eV in the (110) direction, and 54 eV in the {111)
direction. As we shall see below, the discrepancy be-
tween the estimate obtained following the procedure of
Kohn and the threshold obtained from dynamical simula-
tions is caused primarily by a rapid transfer of kinetic en-
ergy from the displaced atom into vibrational energy of
the lattice. Finite-temperature simulations have also
been performed, and the effects of finite temperature (300
K) on the threshold energy are found to be negligible.

II. METHOD

The molecular-dynamics (MD) technique was first used
in simulating radiation damage by Gibson et al.!° In the

present simulations, the interatomic forces are calculated
using the potential of Tersoff.”® Since we can simulate
only a finite number of atoms (of the order of several hun-
dred), while in a real crystal there are practically an
infinite number of atoms, we introduce a viscous damping
of the atomic motion at the boundaries of our simulated
region to mimic the effect of energy absorption into the
infinite lattice in a real crystal.!® (Alternately, one may
view this damping as a way of “impedance matching” the
boundary of the simulation region for vibrational waves
incident on the boundary in order to eliminate reflections
which would not be present in the infinite crystal.)

We enforce fixed boundary conditions (rather than
periodic or free boundary conditions) on the simulation
region as follows: The molecular-dynamics simulation
region (a rectangular parallelepiped, consisting of
ny Xn,Xn, cubic unit cells of the diamond lattice) is em-
bedded in a surrounding structure whose atoms are fixed
in their ideal diamond positions, so that the surface
atoms of the simulation region are in an ideal diamond
atomic environment and the forces acting on the surface
atoms of the simulated region are exactly the same as
those on the atoms within the simulated region when the
system is at rest. Thus the only extra forces needed on all
surface atoms are damping forces which dissipate the ab-
sorbed energy. In this fashion, we avoid the spurious re-
laxation of the surface which would occur with free
boundary conditions and the problem of appropriate dis-
sipation of the incident radiation energy which arises
with periodic boundary conditions.

A detailed description of the form of Tersoff’s potential
can be found in Ref. 7. Two sets of parameters have been
proposed by Tersoff.”® In our study, where the primary
concern is the creation of defects in the diamond struc-
ture, the parameters given in Ref. 8 are more appropri-
ate. As mentioned by Tersoff, this set of parameters is
constrained to reproduce the energy of the vacancy in di-
amond given by Bernholc et al.'® That results in a poor-
er description of graphite, which is, however, not relevant
to our study. A smooth cutoff distance is used, as sug-
gested in Ref. 7, since the smoothness of the potential is
important in the MD simulation.

We can best understand the relevant differences of the
two sets of parameters for the Tersoff interatomic poten-
tial (from Refs. 7 and 8, respectively) by examining the
structural energy as a single atom is slowly displaced
from equilibrium while the surrounding atoms relax (see
Fig. 1), using the two different sets of parameters. The
curves shown in Fig. 1 are calculated by constraining the
displaced atom to move in 0.1-A steps along the (100)
direction, letting the structure fully relax about the posi-
tion of the displaced atom at each step, before proceeding
to the next step. (Note that the curve is not perfectly
continuous and shows some hysteresis effects due to the
presence of multiple local minima of the energy of the
structure as the position of the displaced atom is varied
near the top of the energy barrier.) The difference be-
tween structural energy of the ideal diamond structure
(atomic displacement=0) and the energy at the local
minimum, where the atomic displacement is approxi-
mately 3 A, corresponding to a vacancy interstitial de-
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FIG. 1. Potential energy of the relaxed crystal minus the
ideal diamond structure energy (in eV) vs atomic displacement
(in A), as one atom is constrained to move along the {100)
direction. The potential energy is calculated for a structure
with 6X3X 3 diamond cubic unit-cell structure, with the dis-
placed atom at the center and fixed boundaries. The potential
energy was calculated using the Tersoff interatomic potential.
Curve a was calculated using the parameters for the potential
given in Ref. 7 and curve b using the parameters in Ref. 8.

fect, gives us an estimate of the defect energies using the
two sets of parameters. We see that for the potentlal
from Ref. 7, the peak of the potentxal barrier at 2.2 Ais
25.4 eV and the local potential minimum at 3.1 Ais13.4
eV, giving too favorable an energy for the vacancy inter-
stitial defect. For the potential from Ref. 8, the peak of
the potential barrier at 2.3 A is 23.7 eV and the local po-
tential minimum at 2.9 A is 19.3 eV. For both potentials,
the defect structure near the displaced atom is that of the
{100) split interstitial.!” We will discuss the differences
between the two potentials for the dynamical simulations
below (see Sec. III).

The viscous damping on the surface atoms cannot per-
fectly match the effects of the infinite crystal (i.e., no
reflection of the energy at the boundary). We seek in-
stead to minimize the reflection of energy at the bound-
ary. This was done by using different values of the damp-
ing constant on surface atoms to determine which value
gives the maximum dissipation rate of energy out of the
simulated region (i.e., the reflection of energy is
minimum). Different sizes of structure have been used to
check the boundary effects. The results have been found
not to be sensitive to boundary effects. The results for a
structure with 3 X3 X3 cubic unit cells is shown in Fig. 2.
The value of the damping constant used in the results
presented below was 7X 1073 kg/sec.

In all the simulations, we initially give only one atom a
velocity along one of the three symmetry axes {100),
(110), or (111). This atom which absorbs the initial
kinetic energy is chosen to be at the center of the simula-
tion region in order to minimize boundary effects on the
results. The size of the simulated region is so chosen that
the atoms near the boundaries do not have large displace-
ments from their lattice sites when they finally settle
down after the damage event. In this way, we can be sure
that the structure is big enough to contain all the damage
events and at the same time small enough to be computa-
tionally manageable. We have performed simulations for
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FIG. 2. Energy decay rate a out of the simulated region (in
units of the optical-phonon frequency, v,=4X 10> Hz), as a
function of damping constant for surface atoms (in units of
70=1.56 X 1073 kg/sec). Since most of the energy is lost during
the initial stage, we have used the data in the first ten optical-
phonon periods in a least-squares fitting of the rate. The curve
is based on a 3 X3 X 3 structure, where 94 atoms are in the simu-
lated region.

regions with 3X3X3, 4X4X4, 5X3X3, SX5X3, and
6X3X3 diamond cubic unit cells. We find only minor
changes in the damage thresholds from the smallest to
the largest, but find that the structure of the final defects
is significantly affected by boundaries in the smallest.
(Note that the effects of long-range crystal strain fields on
the final defect energies is not accurately included here.
However, on the energy scale of interest in this study,
this is a very small effect.)

A natural and convenient set of units for discussion for
the dynamics in the present problem can be chosen as fol-
lows: unit length Ly=1 A and unit energy E,=1 eV; the
unit time 7,=2.502X 107" sec is such that a carbon
atom with a kinetic energy of 1 eV would have unit veloc-
ity ¥V,=3.994X10°> m/sec. We note that the unit of
time, Ty, happens to be very close to the period of the I'-
point optical phonon, which is 2.506X 10~ sec, and so
provides a convenient time scale for the discussion of lo-
calized vibrational processes in the crystal.

For an accurate numerical integration of Newton’s
equations of motion, the integration step should be
chosen so that the forces do not vary abruptly from one
step to the next. As might be expected intuitively, we
have found that by keeping the integration step to be
much smaller than the shortest phonon period, the varia-
tions of forces can be kept smooth. In our simulations, at
the initial stage of the damage events (for about ten
optical-phonon periods), when the velocity of some atoms
can be very large, the integration step is T,/100
=2.5X 10716 sec (i.e., 15 of the optical-phonon period).
At a later stage, when the velocities of all atoms are slow,
the integration step is chosen to be T,/40. Smaller in-
tegration steps have been used in test runs to check the
accuracy of integration using these integration step
lengths, and we find that the integration steps chosen are
sufficiently accurate for our simulation.

The effects of finite temperature in the lattice can be in-
troduced by having random external forces on the boun-
daries, corresponding to the thermal vibrations of the ex-
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tended crystal. The magnitude of the Brownian forces of
the surface atoms is chosen to satisfy the fluctuation-
dissipation theorem, given the damping of the boundary
atoms discussed above. Then the Langevin equation can
be integrated and finite-temperature effects can be incor-
porated into the simulation.'®

II1. RESULTS

We have performed simulations for values of the initial
kinetic energy of the displaced atom in the range 0-70
eV. We initially give only one atom a velocity along one
of the three symmetry axes {100), (110), or (111). (We
have also performed some simulations with the initial ve-
locity directed slightly off these high-symmetry direc-
tions, without any significant change in the results.) The
damage thresholds for initial motion in the major symme-
try directions are presented in Table I.

In order to give some idea of the sensitivity of these re-
sults to the exact form of the potential used, we show re-
sults for the Tersoff potential, using the two different sets
of parameters from Refs. 7 and 8. As discussed above,
the potential from Ref. 8 is more appropriate for the
present purposes. However, the results for the damage
thresholds using the two different potentials do not differ
greatly, except for the rather high value in the (111)
direction for the potential from Ref. 7.

The most notable aspect of the dynamical simulations
is that the damage threshold is approximately twice as
large as the energy barrier for adiabatic displacement of
the atom. The final defect structure formed is, however,
the same as when the atom is adiabatically displaced
along the appropriate direction.

The defects along the (100) and (111) directions are
rather stable and form for a wide range of impulse ener-
gies. The defect created along the (110) direction, on
the other hand, is unstable and exists only over a window
of approximately 1 eV above threshold; for initial kinetic
energies above a second threshold, the broken bonds re-
form and the displaced atom returns to its original lattice
position, leaving the lattice intact. Thus, although the in-
itial damage threshold for displacement in the (110)
direction is close to the thresholds in the (100) and
(111) directions, no stable defect structure is formed in
the (110) cases and the incipient lattice damage is not

TABLE 1. Kinetic-energy threshold for defect formation and
the resulting defect energies for various directions of the initial
velocity of the displaced atom. Pot. I and Pot. II are the results
using the interatomic potentials from Refs. 7 and 8, respective-
ly. (Note that Pot. II is expected to be more accurate potential
for the present application.) The size of the structures simulat-
ed is (see text) 6X3X 3 for the (100) direction and 4 X4 X 4 for
the (110) and (111) directions. All energies are given in eV.
All results are for 0 K.

Threshold Defect energy

Direction Pot. 1 Pot. 11 Pot. I Pot. 11
{100) 51 47 13.1 19.5
(110) 52 50 13.5 18.4
(110) 66 54 24.5 24.1
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permanent. We have not investigated much higher initial
kinetic energies, where more complex defect structures
may form.

By examination of the detailed trajectories of the atoms
in the simulation, we observe that the presence or ab-
sence of permanent lattice damage is clearly resolved
soon after the initial impulse to the atom. In Fig. 3 we
show the displacement along the (110) direction of the
atom, knocked in that direction from its ideal lattice posi-
tion, as a function of time elapsed after the initial im-
pulse. We see that, after a large initial displacement, the
atom which received an initial kinetic energy of 46 eV
(just below threshold) settles back to its original location,
without any lattice damage. For an initial kinetic energy
of 48 eV (just above threshold), an indication of per-
manent lattice damage is resolved very soon after the ini-
tial impulse, as the displaced atom oscillates about its
final defect location.

We have also performed simulations at finite tempera-
ture, allowing the lattice to reach thermal equilibrium be-
fore and after the application of a large impulse to one of
the atoms. The results at 300 K are similar to the results
at 0 K. Note, however, that the time scale of our simula-
tions does not allow us to investigate the possibility of
slow thermal annealing of the vacancy interstitial pairs
formed in the initial damage process.

IV. DISCUSSION

The value obtained for the damage threshold is very
close to the most recent value of 55 eV, proposed by
Prins, Derry, and Sellschop'* on the basis of ion bom-
bardment experiments. Prins, Derry, and Sellschop de-
vised a statistical model with the assumption that volume
expansion at low ion doses is a direct measure of immo-
bile vacancies remaining in the damaged region after the
out-diffusion of interstitials. After obtaining the
vacancy-ion number from their experiment, they then
compared it with the results from the TRIM program
(transport of ions in matter, a Monte Carlo program
which follows the collisions each ion undergoes in target
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FIG. 3. Displacement of the knocked atom from its lattice
position (in A) along the (100) direction as a function of time
elapsed (in units of the optical-phonon period, 2.5X 107 !* sec)
after the initial impulse. Curve a corresponds to an initial
kinetic energy of the atom equal to 46 eV (motion along the
(100) direction), which is 1 eV below the damage threshold en-
ergy, and curve b to an initial kinetic energy of 48 eV, which is 1
eV above the damage threshold.



3034

material).'!® A value of 55 eV for the displacement energy
was found to produce the same number of vacancies per
ion in the simulations as found experimentally.

The most striking aspect of the dynamical simulations
is the fact that the damage threshold proves to be much
higher than the energy barrier for “adiabatic formation”
of the defect. One might have assumed that, as long as
the initial kinetic energy is somewhat greater than the po-
tential energy barrier height in Fig. 1, a defect would be
created. Indeed, the height of the barrier for adiabatic
displacement of an atom is very close to the threshold en-
ergy'? estimated following the procedure of Kohn."”
Thus any underestimation of the threshold in Ref. 12 is
not due to a poor estimate of the bond-breaking or crys-
talline strain energies, which give rise to the energy bar-
rier in Fig. 1.

Rather, the large discrepancy is due to the fact that, as
the energized atom moves through the diamond lattice, it
loses a substantial fraction of its initial kinetic energy, not
only to the static local strain energy of the lattice, but to
the vibrational energy of its surrounding atoms before it
can reach the barrier. Thus the atom cannot climb the
potential barrier by having “just enough” initial kinetic
energy to overcome the adiabatic energy barrier; it must
have much more initial energy in order to reach the top
of the potential barrier, having irreversibly lost a large
fraction to vibrational energy of the lattice (i.e., approxi-
mately harmonic, incoherent lattice vibrations) on its way
to the top.

This is illustrated in Fig. 4, which shows the evolution
of the distribution of kinetic and potential energies
among the atoms after an initial impulse of 48 eV in the
(100) direction to the displaced atom. We see that a
large fraction of the initial kinetic energy of the displaced
atom is transferred to the other atoms in the simulation
before it reaches the top of the potential-energy barrier.
When the displaced atom has a displacement near the top
of the potential shown in Fig. 1 (at a time of 0.677 in
Fig. 4), the kinetic energy of the whole system is approxi-
mately 11.3 eV and the potential energy is approximately
36.6eV.

If we break down these energies at the peak of the en-
ergy barrier, assigning an energy to approximately in-

3
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FIG. 4. Kinetic energy of all the atoms except the displaced
atom in a 6X 3 X3 structure (curve a), kinetic energy of the dis-
placed atom (curve b), and potential energy of all the atoms
(curve ¢), as a function of the time (in units of the optical-
phonon period, 2.5 X 10~ sec) elapsed since bombardment.
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coherent harmonic vibrations of the system equal to
twice the kinetic energy of atoms other than the dis-
placed atom (since the kinetic and potential energies are
equal for incoherent harmonic vibrations), we are left
with a remaining contribution of 25.3 eV, which we may
assign to a ‘“‘static” strain energy of the system. Al-
though the pattern of oscillations of the potential and
kinetic energies of the total system shortly after passage
of the displaced atom over the barrier shows that the vi-
brational energy of the system is not completely in-
coherent for some time (approximately 27 ) after the ini-
tial event, nevertheless the energy of the system at time
2T, can be simply viewed as being made up of approxi-
mately 19-20 eV of defect formation energy, with an
average of 12-13 eV each in the vibrational kinetic and
potential energies. Thus the approximate assignment of
““static strain” and “incoherent harmonic vibration” en-
ergies determined by the time the displaced atom reaches
the energy barrier to defect formation remains qualita-
tively valid for all times afterwards. In this sense, we
may think of the loss of kinetic energy of the displaced
particle as consisting simply of two components: one to
the (reversible) strain energy and the other (irreversible
loss) to the incoherent vibrations (or heat) of the lattice.
The results of Fig. 4 suggest that this qualitative picture
applies even on the very short time scale of initial damage
process (time < T).

We note that the total transfer of kinetic energy from
the knocked atom to all other atoms in the finite crystal is
slightly higher than that indicated in Fig. 4 since we are
only dealing with the atoms in the simulated region and
do not account exactly for kinetic energy transferred
across its boundary in the infinite crystal. This loss of
kinetic energy to the distant atoms of the crystal is
represented in our simulations by viscous damping of
atoms near the boundary as the initially localized distur-
bance propagates out to the boundary, which can be seen
in Fig. 4 by the slow decay of the total energy of the sys-
tem.

The time scale for transfer of localized kinetic energy
to the vibrational energy of the lattice is determined in a
qualitative way by the speed of sound in the crystal. This
transfer of energy is not primarily due to anharmonic
coupling of the normal modes of the crystal, but occurs
because the initial localized motion of a single atom is not
a single harmonic mode of the crystal—rather, the initial
motion can be considered to be a superposition of crystal
normal modes with momenta throughout the Brillouin
zone, each of which executes harmonic motion at the ap-
propriate phonon frequency. Even before anharmonic
coupling can dephase the initial superposition of normal
modes and cause a strictly incoherent mixture of modes
(i.e., heat), the large range of incommensurate phonon
frequencies excited will rapidly give rise to an equal
amount of potential and kinetic vibrational energies dis-
tributed over many atoms of the system. For the present
purposes, this distributed variational motion of the sys-
tem is indistinguishable from heat.

The vibrational energy will be transported through the
system at a speed comparable to the speed of sound,
which is given approximately by V'B /p, where B is the
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bulk modulus and p is the density. For diamond,
VB /p~1.1X10* m/sec. (In fact, we find that the highly
localized disturbance simulated here propagates some-
what faster than this as a result of dispersion at large mo-
menta in the Brillouin zone, but the qualitative argument
remains valid.) However, a carbon atom with a kinetic
energy of 25 eV (approximately equal to the potential-
energy barrier for adiabatic displacement of an atom) has
a velocity of 2X 10* m/sec, less than twice the speed of
sound. With this comparison in mind, it is not then
surprising that a substantial fraction of its kinetic energy
is transferred to vibrations of the lattice before it can
reach the top of the energy barrier shown in Fig. 1.

Although the radiation damage process is not by any
means adiabatic, nevertheless the ‘“‘adiabatically relaxed”
potential energy curve in Fig. 1 does appear to have
direct relevance for the dynamical behavior. From Fig.
3, we can see that for an initial kinetic energy of 46 eV, 1
eV below the threshold energy, the energized atom moves
away from its lattice position by as much as 2.19 A. But
in Fig. 1, the highest point of the potential barrier occurs
at 2.3 A with a value of 23.7 eV. So the knocked atom
does not climb over the barrier and it is bounced back
from the potential barrier, eventually settling down
around its original position without any damage to the
lattice. For an initial kinetic energy of 48 eV, we can see
from Fig. 3 that the kicked atom successfully passes the
top of the potential barrier (where our above assignment
of 25.3 eV to a “‘static strain energy”’ proves to be re-
markably close to the barrier of 23.7 eV from Fig. 1) and
settles in a damped oscillatory fashion about a new equi-
librium position, finally forming the vacancy interstitial
defect.

For atoms moving at the velocities appropriate for
single-defect formation (25-70 eV), the qualitative pic-
ture which emerges from the simulation is that of the
knocked atom passing through a highly viscous medium
under the influence of a potential-energy surface deter-
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mined approximately by the “relaxed adiabatic” potential
energy. It is quite remarkable that this picture applies,
even on the short time scale relevant to the initial forma-
tion of the simple defects. This qualitative picture of the
energy-transfer process (and its associated time scale)
should also be relevant to localized dynamical processes
involving other bombarding particles, such as in implan-
tation, where chemical bonding changes may also occur.
In conclusion, we have simulated the microscopic pro-
cess of single-atom displacement due to radiation damage
in diamond. We find that the kinetic-energy threshold
for permanent lattice damage is approximately 50 eV.
This value is in accord with the suggested range of values
of Clarke and Mitchell,' derived from experiments using
high-energy electron bombardment of diamond. Also,
this value is very close to the value of 55 eV more recent-
ly proposed by Prins, Derry, and Sellschop!* for the dis-
placement energy in diamond. We find that the damage
threshold is approximately twice as large as the esti-
mate'? based on the sum of bond-breaking and crystal
strain energies. This discrepancy is due primarily to the
rapid transfer of kinetic energy from the displaced atom
to incoherent vibrations (heat) of the surrounding crystal
before the atom can reach the top of the energy barrier
for defect formation. The transfer of kinetic energy is
effective on the time scale of the present problem because
the speed of the displaced carbon atom is comparable to
the speed of sound in diamond. Thus the exceptional ra-
diation hardness of diamond is due, not only to its large
binding energy, but also to its high sound velocity.
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