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Electron-phonon interaction and transport properties
in the quantum-Hall-efFect regime
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The effect of electron-phonon interaction on the transport properties of two-dimensional electron
gas in a strong transverse magnetic field is investigated. Corrections to nondiagonal (Hall) com-
ponents of electrical and heat conductivities and thermopower tensors are obtained in the context
of the diagrammatic technique and are shown to be essential in a wide range of temperatures and
magnetic fields. Experimental conditions for the observation of electron-phonon interaction effects
in the electronic transport in the quantum-Hall-efFect regime are discussed.

Two-dimensional (2D) electron systems in quantized
magnetic fields have drawn considerable attention of both
theorists and experimentalists since the discovery of the
quantum Hall effect (QHE) (for an extensive review, see
Ref. 1). The advancement in the theory of this phe-
nomenon has followed two main directions. The first one
lies in refining the theory involving effects of electron-
electron interaction and in understanding the nature of
the fractional quantum Hall eKect. The second direction
(which the present work follows) is the consideration of
the quantum Hall behavior in models of materials more
realistic than the 2D ideal electron gas, which is nec-
essary for a better understanding and interpretation of
experimental data.

One of the most important properties of real mate-
rials is the disorder due to impurities. The influence
of impurity disorder on kinetic characteristics in the
quantum-Hall-eftect regime has been extensively stud-
ied theoretically. It was found that disorder alters the
shape of dependencies of o8-'diagonal components of the
electrical and heat '3 conductivity tensors as functions
of the chemical potential, and leads to the appearance of
nonzero diagonal components of these tensors. As for the
thermopower tensor, disorder changes drastically both
components. All these results are in rather good quali-
tative agreement with experimental data (see Ref. 1 for a
review for conductivity and Refs. 5—7 for thermopower),
but sometimes the essential deviations from theoretically
predicted dependencies has been observed. These de-
viations are often attributed to experimental errors and
other unphysical reasons. Nevertheless these discrepan-
cies between experimentally observed and "ideal" behav-
ior can be connected with some other features of real
materials which usually are not taken into considera-
tion. Among them the inelastic scattering of electrons,
for which the electron-phonon interaction is to a large
extent responsible, seems to be the most important. The
study of electron-phonon efFects in the electronic trans-
port in the QHE regime is the subject of the present
paper. For this purpose we consider the 2D electron sys-
tem interacting with 3D phonon field in strong trans-
verse magnetic field. We argue that the electron-phonon
scattering leads to deviations kom their "ideal" forms of

kinetic-coefBcients dependencies on the chemical poten-
tial.

As is well known (see, e.g. , Refs. 9 and 10), the elec-
tron transport in a strong magnetic field is characterized
by the fact that the Kubo formalism breaks down due
to the screening of transverse currents by currents flow-

ing on the surface of the sample. If this is the case, the
transverse components of kinetic-coeflicient tensors can
be expressed through the thermodynamic potential. So
our purpose is to calculate the correction in the ther-
modynamic potential of the 2D electron system due to
electron-phonon interaction.

The interaction term in the Hamiltonian has a form 2

S;„(r)= g f drr dr( K(r —i)cp+(r, r)g(r, r)p(ir),

Ojnt — T g d71 d72 d F1 fIdr f 2 G F1, F2& +1 72
2

xo A(ri, 7i', rs, T2) o G(r2, ri, 72 —Ti), (2)

(here and below 5 = 1), where g is the electron-phonon
coupling constant, Q(r, r) and P(tt, r) are electron and
phonon field operators, respectively, and K(r) is a screen-
ing function [r = (z, y) and (e = (x, y, z)j. The inte-
gration in Eq. (1) is performed over electron (2D) and
phonon (SD) coordinates. To make further calculations
tractable we adopt below the most simple form of the
screening function: K(r) = b(r). Physically this as-
sumption means that screening takes place at distances
shorter than a lattice period. This speculation is always
adequate for metallic systems, but for semiconductors it
is in doubt and may be considered as the simplest model
assumption only.

Using the standard diagrammatic technique one may
express the correction to the thermodynamic potential in
the lowest order in electron-phonon interaction in terms
of Green's functions. In order to avoid difhculties asso-
ciated with analytical continuation &om Matsubara to
real &equencies we use the Keldysh formalism with elec-
tron G and phonon D Green's functions represented by
matrices. For the thermodynamic potential we have
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where o. is the Pauli matrix and we have introduced

A(ri, ri, r2, r2) = dzi dz2 D(ri —r2, zi —z2, 71 —T2)

(we assume magnetic field B along the z axis and Lan-

dau gauge for vector-potential: A„= B2:). Then we

perform the required Fourier transforrnations over spatial
and temporal variables to express the thermodynamic po-
tential (2) in terms of well-known electron and phonon
Green's functions in the momentum-frequency represen-
tation. Expanding the electron Green's functions over
the eigenfunctions of the electron in a magnetic field we
find after straightforward summations and integrations

32vr c u n ( 2T ) ( 2T )
n/2

x dP cos P e ~' ' ~ I„ i (Pcos P) (4)

Here lH = (c/eB)i~2 is the magnetic length, P
~,/mu (u is the sound velocity), and L(z) are Laguerre
polynomials. When deriving Eq. (4) we have taken into
account the interaction of electrons with acoustic longi-
tudinal phonons in the context of the Debye model. We
have introduced two inore assumptions to get Eq. (4).
First, we adopted that qLil~ )) 1 (qLi is the Debye mo-
mentum) to expand the upper limit of momentum in-
tegration to infinity. Second, for further simplifications
we assume also that only electron transitions between
neighboring Landau levels are essential, which is justified
in sufBciently high magnetic field u, )& T. The conse-
quences of these restrictions for the limits of validity of
the theory proposed will be discussed below.

As it was mentioned above, transverse components of
kinetic coefBcients in the presence of a quantized mag-
netic field may be expressed through the thermodynamic
potential. We begin &om the phonon contribution to
the Hall component of the electrical conductivity tensor,
which may be obtained in terms of the thermodynamic
potential (4) as

1 1
0 —

p2 i N)1 (7)

c,t' BAi~t )
Bi, BT)„~

Iiv P
eg2 (u, s (u, (N + 1/2) —p

64m T u i2 .(N~&l&i w)—COS 2z,

For transverse heat-conductivity we find

Equations (5) and (7) define the correction to the Hall
conductivity due to electron-phonon interaction. It is
seen that this correction has a series of maxima near
Landau-level positions. It is worth mentioning that the
height of the peak near the zero Landau level varies
quadratically in magnetic field while others peak heights
vary linearly.

For ofF-diagonal component of the thermoelectric coef-
ficient P we obtain

ec /BA;„t)r
b,o,„=—B(Bp)T

64m2T u
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(
(Nwl/2) —
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(9)

where the number of Landau levels N is such that
~
u, (N + 1/2) —p ~( a, /2, and we define

~/2

Iiv(P) = dPcos Pe ~' ' ~
0

1
(p cos p) }

tI~ i (Pcos Q)—) (6)

Note that for N = 0 the second term in square brackets in
Eq. (5) has to be omitted. One can evaluate the value of
the integral IN (P) in the high-field approximation P )& 1
by expansion in powers of the parameter P i. By means
of the standard relations with the Laguerre polynomials
we have

Dependencies of corrections to the transverse thermoelec-
tric coeKcient and heat conductivity on the chemical po-
tential also have the shape of sets of peaks localized near
the Landau-level positions. However the shape of these
peaks divers considerably from those of the Hall con-
ductivity, indicating that the Wiedemann-Franz law is
violated in the case under consideration. Dependencies
of the corrections (5) and (9) on chemical potential are
shown in Fig. 1.

Now we have to compare the magnitude of the cor-
rections to the electrical and heat conductivities (5) and

(9) obtained above with the free-electron and disorder-
induced conductivities. (A problem of thermopower
is more complicated and is discussed separately. ) For
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(11) the Hall conductivity for N & ] may be a~~~~~d
simply to be Ne /2nh, . and we have Eq. (8) divided by
this factor:
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where we have taken into account the fact that the diago-
nal component of P due to electron-phonon interaction is

onl th
muc smaller than the off-diagonal one. One can s th tan see a
o y t e diagonal component of tensor S exists under our
assumptions. Estimation (12), however, is not valid for
N = 0 and this case should be treated separately with the
temperature dependence of the Hall conductivity being
taken into account. As a result we obtain

/Cdc
FIG. 1. Correction to off-diagonal components of electrical

conductivity (solid line) and heat conductivity (dashed line)
tensors as functions of chemical potential (oo ——e g mT/u,
~0 = g2mT /u).

o'„~"(N = 0)
CT

0 T Q)D
(10)

thos purpose we estimate the value of the electron-
phonon co p

'
g on t nt as g ~ a Z2&&hijkM )

(au&)/(Mu ), where a is the lattice constant and Z
~ P)

and M are the valence, density, and mass of ions, respec-
tively. Comparing the maximal value of the correction to
the Hall conductivity (5) for the zero Landau level with
zero-temperature value of the free-electron Hall conduc-
tivity oo„= e2/2mb we obtain

2 2g mu, u, /2 —p
j (13&

SxcT '4
y + /2 pexp

Dependence of the thermopower diagonal coInponent on
the chemical potential is shown in Fig. 2.

A direct comparison with the disorder-induced contri-
butions to the thermopower4 gives finally the same es-
timations (10) and (11) that take place for the conduc-
tivities. One circumstance is remarkable, however. The
diagonal thermopower is very sensitive to the presence
of disorder, 4 contrary to off-diagonal electrical and heat
conductivities, where disorder results in small corrections
of order (~,r) 2 (r being the electron-impurity relax-
ation time). So the case of strong disorder (5/r » T)
needs a separate treatment. As it is known, 2 for this
case the thermopower increases in comparison with the

Here we introduce Debye &equency ~~ and used the re-
lation Mu mv+. We see that the correction due to
the electron-phonon interaction may be essential in the
case of low temperatures and rather strong fields. At field
B —5 T correction (5) may reach 10%%uo of free-electron
conductivity at temperatures T & 1 K. In other words,
the electron-phonon interaction may lead to essential dis-
tortions of the Hall conductivity dependence in the vicin-
ity of the Landau levels (near the steps). Naturally, it
does not affect the plateau height far Rom steps. Note
that, as it was shown above, the height of the second and
others peaks in the phonon corrections to the Hall con-
ductivity are linear in magnetic field. For those we have
an estimation,

o'„~ (N ) 0) ~, mu2 o'„~"(N = 0)
10 —' « " . (11)

0 T ca)~ (7
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So an effect of the electron-phonon interaction on other
Landau levels is that it is weaker than for the zero Landau
level. Similar estimations for the heat conductivity (9)
lead to the same results.

Let us now turn to the correction to the thermopower
tensor 8 = —Po ~. As it is seen from Eqs. (10) and
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FIG. 2. Dependence of correct&on to diagonal compo-
nent of thermopower tensor on the chemical potential
(So = gmT/ue). —
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clean limit by a factor h/7 T and hence the ratio of the
electron-phonon correction to the thermopower diagonal
component and the value due to electron-impurity scat-
tering is 10 wu, /hcuD (for N = 0). As a result one can
see that the relative magnitude of the maximum in the
thermopower dependence on the chemical potential may
become comparable with the maximum of the impurity-
induced thermopower even for T 3 K when magnetic
field is of order of several T.

When the above-discussed results were obtained, we in-
troduced a number of assumptions: ~, )) T, qDlH )) 1,
and u, )) mu . This set of assumptions restricts the
magnetic field both &om the bottom and Rom the top.
The first one is also the restriction on temperature and
may be easily satisfied for strong magnetic fields ( 5—20
T) and for rather low temperatures. Two other con-
ditions may be satisfied also for this range of mag-
netic fields, because under real experimental conditions
ms2 & 0.1 K while q& & 100 A.. So all these condi-
tions may be satisfied simultaneously. Note also that
the condition u ~ )) 1 is needed for the possibility of
/HE observation. In the case when impurity scattering
is negligible the finite electron state lifetime w is con-
nected with the electron-phonon interaction. Since for
rather low temperatures electron-phonon relaxation timeT, the condition in question reduces to a
form u, )) T, which was already discussed.

Two more points require comment. First, as it was
mentioned, the screening of the phonon field was assumed
to be full in calculations above, which is not valid for

semiconductor structures. The second is that the free
phonon Green's function was employed in the calcula-
tions above. This means that phonon drag effects are
omitted. These effects can essentially affect the ther-
mopower at low temperatures (in zero magnetic field at
least) and require special consideration. However, it is
believed that the main conclusion of the present paper
strong phonon renormalization of kinetic coefFicients in
the vicinity of the Landau-level positions retains its va-
lidity for a more widespread spectrum of models than was
assumed in the consideration above. Note that the im-
portance of electron-phonon interaction effects on ther-
mopower in the quantum-Hall-effect regime was pointed
out in Refs. 7 and 8.

In conclusion, we have shown that the effect of
electron-phonon interaction on transport properties in
the quantum-Hall-effect regime may be essential in a
rather wide range of temperatures and magnetic fields.
For transverse components of electric and heat con-
ductivities tensors this effect leads to deviations from
"ideal" free-electron behavior near Landau-level posi-
tions, but does not affect the height of the plateau.
On the contrary, for diagonal thermopower, correction
due to electron-phonon interaction may dominate impure
and free-electron thermopower for rather strong mag-
netic fields and low temperatures. Corrections due to
electron-phonon interaction may be observed experimen-
tally against the background of effects of impurity dis-
order with respect to the characteristic magnetic field
dependence.

* Electronic address: blanterOs43. msk. su
The Quantum Hall Egect, edited by R. E. Prsnge snd
S. M. Girvin (Springer-Verlsg, New York, 1987).
H. Oji, Phys. Rev. B 29, 3148 (1984); J. Phys. C 17, 3059
(1984).
Ys. M. Blsnter, D. V. Livsnov, snd M. O. Rodin (unpub-
lished).
M. Jonson snd S. M. Girvin, Phys. Rev. B 29, 1939 (1984).
H. Obloh, K. von Klitzing, and K. Ploog, Surf. Sci. 142,
236 (1984).
R. P. Smith, H. Closs, and P. J. Stiles, Surf. Sci. 142, 246
(1984).
J. S. Davidson, E. Dan Dahlberg, A. J. Valois, and

G. Y. Robinson, Phys. Rev. B 33, 8238 (1986).
M. R. Cimberle, C. Ferdeghini, M. Putti, and A. S. Siri,
Int. J. Mod. Phys. B 3, 327 (1989).
Yu. N. Obrsztsov, Fiz. Tverd. Tels (Leningrad) 6, 414
(1964) [Sov. Phys. Solid State 6, 331 (1964)].
H. Oji snd P. Streds, Phys. Rev. B 31, 7291 (1985).
P. S. Zyryanov and V. P. Silin, Fiz. Met. Metalloved. 17,
934 (1964) [Phys. Met. Metsllogr. 17, 130 (1964)].
A. A. Abrikosov, L. P. Gor'kov, and I. Ye. Dzyaloshinskii,
Quantum FieLd Theoretical Methods in Statistical Physics
(Pergsmon Press, New York, 1965).
B. L. Altshuler, Zh. Eksp. Teor. Fiz. 75, 1330 (1978) [Sov.
Phys. JETP 48, 610 (1978)].


