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Haldane fractional statistics in the fractional quantum Hall effect
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We have tested Haldane's "fractional-Pauli-principle" description of excitations around the v =
3

state in the fractional quantum Hall effect, using exact results for small systems of electrons. We
find that Haldane's prediction P = +1/m, for quasiholes and quasiparticles, respectively, describes
our results well with the modification Pqv

——2 ——rather than ——.We also find that this approach
enables us to better understand the energetics of the "daughter" states; in particular, we find good
evidence, in terms of the effective interaction between quasiparticles, that the states v =

~~ and $3
should not be stable.

The traditional way to define fractional statistics is
in terms of the exchange phase e' which is developed
by the wave function when two identical particles are
exchanged. For bosons o. = 0 and for fermions a = l.
Particles with fractional statistics (i.e., fractional n) can,
in principle, exist in two dimensions. A common model
of &actional statistics represents this exchange phase by
adding an infinitesimal tube of magnetic fiux (and a cou-
pling charge) to ordinary fermions or bosons.

Recently Haldanez proposed an alternative approach
to fractional statistics which applies to the case of sys-
tems with a finite Hilbert space (or subspace). Letting
d„be the size of the single-particle Hilbert space avail-
able to the nth identical particle, Haldane defined a fac-
tional exclusion coefficient P by P = —(d„+~„—d„)/6n.
Haldane argued for a correspondence between the ex-
change phase a and the generalized Pauli coefficient P
for the bulk excitations in the Factional quantum Hall
efFect (FICHE), s based on the variational form of their
wave functions. For quasiholes (qh) and quasiparticles

(qp) near filling factor v = 1/m, with m an odd integer,
Haldane obtained Pqi,

——1/m and Pqz
———1/m.

In this paper we test the utility of Haldane's approach
for describing the low-energy excitations in the FICHE,
using exact diagonalization of sma11 systems of electrons.
Our method relies on the single assumption that the num-
ber of qh and qp may be counted in the usual way. We
6rst obtain the many-particle generalization of Haldane's
de6nition, which is needed for analyzing the numerical
results. We then find that Haldane's description works
well —giving an unambiguous determination of the &ac-
tional exclusion coefficient P for a given energy scale—
with one significant modification, namely, that Pqv is pos-
itive. Our analysis yields as a further result information
about the effective interactions between the excitations,
in terms of which the absence of the fractions v = 4/13
and v = 4/11 can be simply understood.

The belief that bulk excitations in the FICHE should
exhibit fractional (o.) statistics is based upon the varia-
tionaI forms for their wave functions. These variational
forms accurately describe the numerically obtained eigen-
states for a single qh or qp (Ref. 5) or for several. s The
variational wave functions develop phases under the mo-
tion of a qh or qp exactly as if it saw the electrons as

quanta of flux. This is the basis of the "hierarchy" ex-
planation of the allowed fractions in the FICHE. s An
alternative construction of the bulk excitations is given

by a mapping to the integer quantum Hall eEect. This
has recently been used by Jain and co-workers to con-
struct other variational wave functions as an alternative
explanation of the FICHE. io

Here we are interested in analyzing the structure of
the exact low-energy spectrum (obtained numerically).
In the case of qh it was first shown by Johnson and
MacDonald that the nominal qh states are separated
by an energy gap &om other states, and that these agree
in number and multiplet structure with either the "hi-
erarchy" or "integer-mapping" approach. He, Xie, and
Zhang later showed a similar gap, less pronounced, for
nominal qp states; in this case the low-energy states
can be thought of as those with an extra two zeros in
their relative pseudo-wave-function. Here too the multi-
plet structure can be obtained either by the hierarchy
or integer-mapping approaches. In this paper we show
that the exact low-energy spectra of interacting electrons
can be described simply and usefully by appealing to Hal-
dane's formulation of &actional statistics.

We begin by proposing a many-particle generalization
of Haldane's definition. Let N„be the dimension of the
many-particle Hilbert space for n identical particles. (N„
is taken finite, by assuming a finite volume and an energy
cutofF. 2) Then

(d„+n —1'l Cdi + (1 —P)(n —1))
(1))

One can view this as a restatement of Haldane's de6nition
of P, via the single-particle dimension d . An alternative
derivation, which is both illustrative and appropriate to
the problem at hand, may be made by considering o.-

anyons in the lowest Landau level, confined to a disk
of radius R. These have wave functions

4'= f(z„z„.. . , z„) (z; —z, ) e ~ ~ "~ ~' (2)
i(j=l

where f is any symmetric polynomial. We can count
the allowed f 's by examining the related wave functions

24 = fe ~~'~ ~, which correspond to n fictitious bosons
in the lowest Landau level. For a & 0, the most compact
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such state has f = 1. This corresponds in 4' to putting
all n "bosons" in the single-particle state of angular mo-
mentum m = 0. We can move one boson to the edge by
putting f = g,. z, ; then ~@'~ barely fits in the disk if
M = R2 —a(n —1). Moreover, any O in which the bosons
occupy any of the single-particle states m = 0, 1, . . . , M
also yields a 4' cordined to the disk. The number of such
n-boson states, and hence the number of allowed 4', is
(I+i+a—i) (R +1+(1—a)la —1)) Th.
Eq. (1), with P equal to a. Thus, for particles in the
lowest Landau level, there is an intimate connection be-
tween the Haldane coefficient p and the exchange phase
cr (as noted by Haldane2), namely, cr = P (mod 2).

Consider in this example the smaller subset obtained

by keeping only those states with 2l extra relative zeros,
i.e., for which the symmetric polynomial can be written
with an extra Jastrow factor, f = g,.&.(z; —z~)2i f' Re.
peating the above argument, the subset with 2l extra
relative zeros can be described by a Haldane coefficient

P + 2l, and has a dimension

(di + (1 —P —2l)(n —I))
(3)

n

This correspondence between extra zeros and the value
of the Haldane P coefficient will prove to be very useful
in analyzing FICHE results.

Now we use these ideas to investigate the utility of
Haldane's approach to factional statistics. To test for

P statistics we work in a spherical geometry, i4 where N,
electrons move in a radially outward uniform magnetic
Geld with NL, —1 Hux quanta, giving NL, states in the
lowest Landau level. When Nl, = m(N, —1) + 1, the
filling factor in the ground state is exactly v = 1/m.
When n extra Bux quanta are added, we assume that n

qh are created; or when n are removed, n qp are present.
One can instead. create qh/qp by keeping the Hamilto-
nian fixed (holding NL, fixed) —which is necessary in the
determination of p—and instead changing N, . This cre-
ates qh or qp in multiples of m. We use the standard
decomposition for the interaction between electrons in
the lowest Landau level, resolving it into pseudopotential
parameters Vz, V3, V5, . . ., where V~ gives the energy of a
pair of electrons in relative angular momentum (RAM)
l. These fall off xnonotonically (if slowly) as l grows.

In this work we will mostly consider states near v =
1/3, with Vi and Vs nonzero, and Vs « Vi. The frac-
tional quantum Hall effect at v = 1/3 is related to the ex-
istence of states for v & 1/3 which completely avoid unit
RAM, and hence pay no Vq cost. These states do, how-

ever, typically have electron pairs in RAM 3, and hence
have energies on a scale set by V3. Thus the spectrum
(for v & 1/3) has a subset of low-energy (qh) states, lying
below a gap of order Vj and separated among themselves

by energies of order Vs. The qp side (v & 1/3) is similar
but energetically harder to separate. We will begin by
discussing the qh case.

We Gnd numerically that when there are nominally n
qh present (i.e., when Nl, ——3N, —2 + n), there is a
well-defined subset of states of dimension

(4)
n )

lying below a gap in energy of order V&. This is the case
for N, from 2 to 7 and n from 1 to 6. It is illustrated
for six electrons in Fig. 1(a). This dimension, and the
multiplet structure, can be explained equally well ei-
ther by mapping to bosons as in the bosonic hierarchy
approach, or by mapping to fermions as in the integer-
mapping approach.

The beauty of Haldane's treatment is that it pro-
vides an unambiguous determination of what P statis-
tics should be assigned to the excitations. Noting that
NL, ——3N, —2+ n states in the lowest Landau level give
n qh for v near but below 1/3, we can write Eq. (4) as

N„=
/

((N, + 4)/3+ (1 —1/3)(n —1))
(5)

From Eq. (5) we can read off, by comparison with Eq. (1),
a Haldane coefficient P = 1/3 for qh near v = 1/3.
(We have also verified that P~i, = +1/5 for qh near
v = 1/5. ) Hence we confirm, using exact electronic eigen-

pL
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FIG. 1. (a) The low-energy spectrum for two quasiholes
and six electrons on a sphere, in the truncated pseudopoten-
tial model with V3 ——0.01V&. The quasihole states lie below a

gap of order Vz and vary on an energy scale of order Vs. (h)
The low-energy spectrum for three quasiparticles and eight
electrons on a sphere, under the conditions of (a). The quasi-

particle states lie below a less evident gap of order Vq, and

vary on an energy scale which is also of order Vz.
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states and standard counting of the qh, the identification

Pqi, = +1/m originally given by Haldane. This is, to our
knowledge, the first nonvariational calculation of frac-
tional statistics in the FQHE. is

Haldane's scheme can be used to obtain further infor-
mation &om the structure of the low-energy spectrum.
We use as a guide pseudo-wave-functions of the form
Eq. (2). Such wave functions vanish at zero separation
according to the power law r where r = ~z; —z~~. It
is possible to identify smaller subsets which vanish ac-
cording to a higher power law, e.g. , as r '+ . The num-
ber of such states with 2l extra zeros is, by Eq. (3),
(

'+" " ). We find that it is in fact possible to
identify subsets of two qh states with 2l extra zeros. This
enables us to estimate efFective two-body interaction en-

ergies for the excitations, which in turn allows a clear
evaluation of the stability of certain hierarchy &actions.

We use a procedure for analyzing the multiplets which
has been described previously. i A slight generalization of
this procedure enables us to identify the multiplet struc-
tures of the subsets with 2l or more extra zeros. Consider,
for example, n = 2 qh and N, = 6 electrons. There are,
by Eq. (1), 28 states lying below the Vi gap; these break
into multiplets with L = 0, 2, 4, 6. Now, by Eq. (3), there
are 15 states with two or more extra zeros in the eHec-
tive qh wave function; these turn out to have multiplets
L = 0, 2, 4. In a similar way we can identify the sub-
sets with 2l or more extra zeros; the results are given in
Table I 17

Quasiholes are expected to repel one another. Thus
states with extra zeros, which are further apart, are ex-
pected to be low in energy. That is generally what we
find (see Table I). The multiplets which by our analysis
should have extra zeros usually turn out to be either the
lowest-energy multiplets, or among the lowest. These re-
sults give semiquantitative information about the details
of the qh interactions which can explain features of the
FQHE hierarchy. To begin with, notice that a daughter
of the 1/m level exists whenever the ground state is non-

degenerate. This happens when the state with 2t extra
zeros is a singlet (N2 = 1), if that state is the ground
state. If this occurs for 2l = 2, then there is one state in
which all of the qh's avoid the minimum angular momen-
tum (i.e. , in which they all have an extra pair of zeros).
The resulting state is v = 2/7. The states in which all
qh's have 2l = 4, 6, . . . extra relative zeros are, respec-
tively, v = 4/13, 6/19, . . . .

This arithmetic suggests which states might exist in
the hierarchy picture. 7's Whether or not they actually are
stable is a question of energetics. We can study this in
analogy to ordinary particles (bosons, say) in the lowest
Landau level. When only two particles are present, the
eigenstates of this sytem have the two particles in states
of definite RAM (2l = 0, 2, 4, . . . for bosons). The energy
of these is exactly the Haldane pseudopotential parame-
ters V2i plus the kinetic energy. The two qh states have
a similar multiplet structure, and, in analogy, we assume
that in these the qh are in states of definite RAM (21 be-
yond the minimum required by statistics), with energies

given by eH'ective pseudopotential parameters V2l plus an
unknown constant kinetic energy. We can then read the
V2i off directly from the two qh spectra. is (These pa-
rameters have been estimated for qp, using a different
method that is based on trial wave functions, by Beran
and Morf. i

)
Our results are shown in Fig. 2. For example, for

N, = 6 electrons and n = 2 qh, the multiplets are in
order V6 & V2 & V4 & V0,. the multiplet with six extra
zeros is the lowest in energy, that with no extra zeros the
highest. The most interesting feature is that the V2l are
nonmonotonic, unlike the Vl which describe the Coulomb
interaction between electrons. In every case tested we see
one feature in common: V2 & V4. This nonmonotonicity

0.03

0.02 —',

TABLE I. Multiplicity of eigenstates for many-quasihole
states near v = 1/3. N, is the number of electrons, n the
number of quasiholes, and Nl. the corresponding number of
states in the lowest Landau level on the sphere. N„ is the total
number of quasihole states, i.e., those lying below the gap of
order Vj. The remaining columns show the multiplicities of
the degenerate states with no extra zeros, two or more extra
zeros, etc. The multiplets are listed in order of increasing
energy. Notice that states with extra zeros are typically lower
in energy.

0.01—

0.00

—0.01—

N=4

N=7
N=6

Coulomb && N=6

N, Nl. n N„
4 12 2 15

13 3 35
14 4 70

5 15 2 21
16 3 56
17 4 126
18 5 252

6 18 2 28
19 3 84
20 4 210
21 5 462
22 6 924

7 21 2 36
22 3 120

2l & 0
5,9,1

1,7,9,5,13
5,9)11)5)1)13,9,17

7,3,11
4, 10,8,12,6,16

5,9,7,13,. . .
4,10,8,12,. . .

1,9,5,13
7,13,3,11,15,7,9,19

7, 15,13,9, . . .
1,9,13,5, . . .

11,3,7,15
10,6,16,8, . . .

2l &2
5,1

1

73
4

1,9,5
73

1

11,3,7
10,674

2l & 4
1

1,5

37

2l&6 —0

FIG. 2. EfFective pseudopotential parameters for quasi-
holes near v = 1/3, as extracted from two-quasihole spec-
tra. V2& is the energy of a pair of quasiholes in a state with
relative angular momentum 2l more than the minimum re-
quired by statistics. Notice the nonmonotonicity which can
explain the absence of certain FQHE fractions (see text). The
solid lines are for the truncated pseudopotential model, with
Vs = 0.01Vi. The dashed line is the Coulomb result (in units
of e //, where f. is the magnetic length). We find similar
results for quasiparticles.
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can explain the absence of certain &actions. The hierar-
chy construction predicts that v = 4/13 is a daughter of
1/3 in which the qh avoid paying Vz, i.e., every pair of
qh has at least four extra zeros. By doing so, however,
they pay a V4 cost. If V4 ) V2, as we find, the v = 4/13
state is not stable a conclusion apparently consistent
with experiment.

We also note that, in contrast to the estimates of
Beran and Morf for qp, our estimates for V2~ are not al-
ways positive. These results are puzzling, but cannot be
viewed as an artifact of our method: they simply mean
that there are some two qh states which are lower in en-

ergy than twice the lowest one qh energy. Further study
is needed to test the significance of this result.

The detailed analysis we have performed of the qh
spectrum can be repeated for the qp case, with the im-

portant difference that the gap separating the low-

lying states is typically of the same magnitude as the
splitting among these states —i.e. , of order Vi [compare
Figs. 1(a) and 1(b)]. However, we can in most cases iden-

tify (in agreement with Ref. 12) a low-energy subspace
with which to test Haldane counting.

Haldane's argument suggests that qp should have
statistics coefficient P = —1/m. Note that qp see elec-
trons as flux in the opposite direction of that seen by qh,
and so the appropriate pseudo-wave-functions to guide
analysis of the qp spectrum involve factors of the form"

(z,
' —z". )

i~ . However, such a behavior for qp at short

distances is energetically costly. Hence we expect not to
see a subspace with negative P, but rather only subsets
with P = 2l —(1/m) for nonzero 2l.

This expectation is borne out in our results. Repeating
the procedure applied to qh states, we find a Haldane
coefficient P = 2 —1/3 for qp states near v = 1/3. For
general v = 1/m, this approach gives P = 2 —1/m. As

argued above, the states in the low-energy subspace can
be viewed as those of P = —1/3 particles with two or
more extra zeros. In fact, either the states with no extra
zeros do not exist at all, or they are hidden in the higher-
energy states. Hence it is better to view P = 2 —1/3 as
the fundamental statistics coefficient for the qp, to be
compared with P = 1/3 for qh.

The multiplet structures can be also understood as
in the qh case, with similar results. We again find a
consistently nonmonotonic behavior of the V2i (V4 ) Vq

always), with V2 and Vs typically negative. Hence we
find, in close analogy to our qh result, that the 4/11
state should not be stable —again in agreement with
experiment and with previous work.

In summary, we have tested the application of Hal-
dane's generalization of the Pauli principle to charged
excitations of the FICHE, using exact spectra for small
numbers of electrons, and assuming only that we know
how to count the excitations. At the largest energy scale
at which the daughter states are defined, we find frac-
tional exclusion coefficients Pqh = 1/3 and Pqp ——2 —1/3.
Our results thus confirm Haldane's suggestion that, in
the FICHE, fractional n is accompanied by fractional P—
i.e., a fractional exclusion principle. Our confirmation
then strongly suggests that models of anyons involving
flux attached to bosons or fermions (fractional ix, inte-
gral P) may not be well justified for application to real
condensed-mat ter systems.
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