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The electron correlation effect in a double-quantum-well structure is investigated. The local-field
correction and static structural factors are calculated for these structures. It is found that the static
structural factors show an anomalous behavior at small g due to the coupled quantum-well-plasma exci-
tation and the interlayer structural factor is negative at large g. We also found that the long-wavelength
acoustic plasma mode is further softened due to short-range electron correlations. The minifaum critical
well separation for this mode to exist increases by an amount ~1/k,, where k , is the Fermi wave vec-

tor of the well with higher electron concentration.

Recently, there has been considerable interest, both
theoretically and experimentally, on the coupling effects
of two isolated, parallel quasi-two-dimensional electron
gases.!”® For the simplest such structure, namely, the
double quantum well (DQW), recent experiments' have
suggested that interwell interaction can dramatically al-
ter the single-electron levels in samples with thin tunnel-
ing barriers. Even in a DQW with negligible tunneling,
fractional filling states in the extreme quantum limit have
been investigated based on the interlayer electron-
electron interaction.>3 Such direct electron interaction is
also believed to be the dominant mechanism responsible
for the interlayer momentum relaxation.””® While the
random-phase approximation (RPA) is generally satisfac-
tory in these structures, the deviation from the RPA can
sometimes be quite significant. In this paper, we shall
study the short-range correlation effect in such a DQW
structure. We are mainly interested in the correlation
effect on those physical properties related to the interwell
coupling. For example, the high-frequency acoustic plas-
ma mode. Our result shows that the existence of this
mode depends on the correlation effect very significantly.
On the other hand, the dielectric response of the coupled
system also affects the intrawell static structural factor.
The formalism used here was developed by Singwi
et al.'® and was later generalized to the two-dimensional
system'! and the layered superlattice structure.!? The
correlation effect in the presence of a perpendicular mag-
netic field has also been investigated recently.'3

The system we are considering is a double-quantum-
well structure, where electrons are confined in either left
or right quantum wells separated by a barrier region. Let
well 1 have electrons of density n; and mass m, and well
2 have electrons of density n, and mass m, on layer 2.
Our main concern is the intrawell and interwell short-
range correlation effects among the mobile electrons.
Therefore we shall adopt a simplified model with the fol-
lowing approximations: (i) the interwell tunneling shall
be neglected and the only interwell coupling between the
electrons on the different layer is the dynamically
screened Coulomb interaction; (ii) the finite spread of the
electronic wave function within the well shall be neglect-
ed, i.e., we will restrict ourselves to the case where the
Fermi energy on either layer is smaller compared to the

0163-1829/94/49(4)/2939(4)/$06.00 49

subband spacing and only the lowest subband is partially
occupied. In this case, the electronic wave function
on each well can be approximated as ¢(p,r,z)
=e'PTE(z —z, ,), where £(z) is defined in such a way that
it gives 8-function-like distribution, |&(z)|>=8(z). Here
p,r are, respectively, the two-dimensional momentum
and position vector along the plane, z,=0 and z,=d.
The Hamiltonian of our two-layer electronic system is
given as

H=H,+V, (1)
where
H,=3 3 E,a}.a,, )
p i=12

and V consists of electron-electron interactions, given by

— it t
V=313 X Vldijlapiqiap g9, 9pi- (3
p.p’q ij=12
Here Ep,,-=p2/2m,- is the kinetic energy of an electron
having momentum p. a,;,a,, represent, respectively,
the electron creation and destruction operators with
momentum p. The coupling term V,(ij) is the Fourier
transform of the Coulomb interaction for planar elec-
trons,

2me?

- - = —2gd
V,(11)=V,(22)= » Vo(12)=V, (11)e "% .
The density operator is given as

PP=Z a]qiap; (i=12).
P

Let us consider the second time derivative of the density
operator

8%, (q) . 2 ]2
et Pqg., 9" t
ot? % m; * 2m, | frraifei
2
qn;
+ > Viilglp;(q)
mi J
1
+— 3 Vi(@)a-qdp;(q')p;(q—q') . (4)
i q'#q,j
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We now employ the following approximation,'®!?

its static average, i.e.,

p,-(q’)p,-(q—q’)=2 expliq-r;(p)

]2 exp{i(q—q’)-[r;(n)—
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in which the summation over the electron coordinates is replaced by

r;(v)]}

——zexpzqr ()] <2exp {i(q—q')[r;( )—r,»(v)]}>

=2 exp[iq-r;(1)]S;;(q—q) ,
n

where r;(u) denotes the position of uth electron on layer i
and S(q) is the static structural factor. Equation (4) can
now be written as

3%p,(q) 2
LA SN Ppa., 9 i
at? =2 m; +2m- Iptaidp,i

p 1 1

2

qn;

+ - 2 Uilglp;(q), (6)
i

where the effective potential U;; is given as

The local-field correction G~ is

1 d?
Gij(q)=—f( 999y (g')(s,(q—

N—8.]1. (®
2m)? ¢ d 2

The static structural factor is also related to the dynami-
cal dielectric-response function e(q,w) through the
fluctuation-dissipation theorem, which has the following
form for a two-dimensional two-component electronic

system:
|

szku

k}
wi=1 | B G g+
2 mi mj

_ 4r51r52kf]kf2vfz~lv}2P —3q[(1—

Gll)rslkflv}‘l +

Silq)=— Tf do coth

-1
2men Im[e;; (q,0)] .

Bo
2

9

The dielectric function is a 2 X2 matrix which can be ob-
tained by considering the density fluctuation in an exter-
nal potential,
=Y e€;'(qo
J

)0;(g,0)Vi™(g,0) ,

where Q; is the electronic polarizability in the absence of

electron-electron interaction. Explicitly, each component
of €;; and its inverse can be written as

€ij =6ij —-U;0; ,

€;'=€;/D, €;'=—¢€,/D (i#]),

(10)
where D =det|e;;|, whose roots determine the dispersion
of collective excitations in a two-component system. The
long wavelength collective excitation modes for such sys-
tems can be written as

[1—Gy(] [[1+Vw ],

—Gy )rszkf2U;2]

(I“Gll)rslvlekfl+(l

P=[(1—G | (1—Gp)—(1—G,,)%exp(—24¢d)] ,
where r;=m;e?/#k; is the plasma parameter for the
ith layer and v is the Fermi velocity.

When evaluating S,j, there are contributions due to

both particle-hole continuum and plasma excitation,
Im[e;; '1=(e/,DR—€eRD")/|D|>+weR8(DF) ,

where the superscript R (I) denotes the real (imaginary)
part. The static structural factor can be written as
Sij =S,F}h+S,F}I. The coupled Egs. (7)-(10) were solved by
iteration. The results for the static structural factors for
some sample parameters are shown in Fig. 1. There are
several interesting features in S;;(g). At low g, both par-
ticle hole and plasma excitation contribute to S;;. The
contribution due to the plasma excitation is only nonzero
when o, >qu,+g*/2m (for n;>n,). In a single-
component system, usually one observes a smooth disap-

—Gy )"szvfzzkfz

>

I
pearance S, Pl(q) However, for a two-component system,

S;i(q) exhlblt a sharp cutoff. This behavior can be under-
stood as follows. (i) The particle-hole continuum bound-
ary for each layer remains unchanged when the two-
layers coupled together, but the plasma frequency is
enhanced by a factor around V2 (for n, ~n,). Therefore
S}J’-l is also enhanced. But this enhanced contribution
should still be cut at the unchanged continuum boundary.
(i) Furthermore, the plasma contribution is weighted by
the matrix elements 65 which has a zero (i.e., has a sign
change) around the frequency corresponding to the
single-layer plasma excitation. As a consequence of (i)
and (ii), the merge of plasma frequency with the continu-
um results in a sharp drop in §;;. It is also interesting to
note that the interlayer component S, does not have a
definite sign. At small g, S§S is positive but SF) is nega-
tive. There is only a small regime immediately after the
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FIG. 1. Plots of the static structural factor for a double-well
structure as a function of z=q/2k; for m;=m, and
ks;d =1.0. (a) r;;=1.0, n, /n,=1.1, the solid lines are for S,
and S,, the broken line is for S,, and the dotted line is for S,;.
(b) r,=2.0, n;/n,=1.0, the upper curve is for S;;, and the
lower curve is for S,.

disappearance of S5 where S, is positive. At large g,
S, is negative and approaches zero asymptotically.

In Fig. 2, we present the result of local-field correction
G;;. All components are linear in g at small g. The in-
tralayer components approach 1 at large g and the
lower-density layer has a larger G. The interlayer com-
ponent (G,, =G,;) has a much smaller value due to the
spatial separation. Since the layer separation is fixed, G,
will not approach 1 asymptotically. When the density is
reduced, the G increases as expected but the change be-
comes less noticeable if g is scaled in k;. Finally, we dis-
cuss the effect of correlation on the plasma excitation in a
double-well structure. It is known that there can be two
plasmon modes in the two-layer two-component system.
The high-frequency mode is ~V'q at low ¢ and is free of
Landau damping. The effect of correlation on this mode
is to bend it downward with a factor [1 —G;(q)] at finite
q. The lower-frequency mode (w_ ~¢q) can only be un-
damped as the layer separation exceeds a critical value.'*
If one neglects the short-range correlation effect, the crit-
ical separation is given by

7v}1m2 + 4v}1 +2vf22

1
dc=§

FsaVsa Fs1Vsy

FIG. 2. Plots of the local-field correction for a double-well
structure as a function of z=gq/2k; for m;=m, and
kpnd=1.0. (a) r=1.0, n;£n,=1.1, where the broken line is
for G,,, the solid line is for G,;, and the dotted line is for G,,.
(b) r,;=2.0, n,/n,=1.0, where the solid line is for G, and the
dotted line is for G,.

We now consider the correlation effect on this mode.
The leading-order terms in all G; are linear in g, ie.,
G;;(q)= A;;q. The factor P in w_ can be approximated
as 2[d + A,,— (A, + A,,)/2]q. Therefore, the critical
separation changes to d =d +(A4,,+A45)/2— A4,,.
Though the value of 4’s depends on the sample parame-
ter, A; is always greater that 4. For k;d=l,
Ad ~k; !, which is about 10~ ® cm for typical sample pa-
rameters. While it is difficult to detect directly the
short-range correlation effect, measurement of this large
change in the critical separation should be experimentally
feasible.

In conclusion, we have investigated the short-range
correlation effect in a double-layer structure. The static
structural factors and the local-field corrections have
been calculated. Some features (e.g., low-g behavior of
S;; and @ _) may be investigated under a suitable experi-
mental situation.
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