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Variatioual study of dissipative two-state systems
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Two variational states, the displaced state and the displaced-squeezed state, are compared for a two-

state system with super-Ohmic dissipation, and their dependence on the form of the coupling strength

gI-coI (coI is the phonon frequency) is analyzed. %'e find that, in the strong-coupling region, the

displaced-squeezed state is more stable and the ground-state properties depend not only on the spectral

density but also on the index A,. Moreover, we find that the stable area of the displaced-squeezed state

increases as A, decreases.

J(to)-gg& 5(to —col)-to',
I

(2)

with s=2k+n —1, independent of the explicit form of
the coupling constant gi. Here n is the exponent of the
phonon density of states D(to) =co" '/coo. Recently this
concept of universality was questioned by Chen and Yu.
Their work indicated that the static properties of an
ohmic dissipative (s = I ) two-state system at zero temper-
ature depends not only on the spectral density but also on
the explicit form of the coupling constant. The main pur-
pose of this paper is to extend this study to super-Ohmic
dissipative cases s =2 and 3 by a variational approach,
and we want to find out at what conditions the universal
description breaks down for super-Ohmic dissipation.

The basic assumption of the path-integral approach is
that the bath degrees of freedom can be integrated out as
Gaussian integrals with displaced centers. It is implicit-
ly assumed that the only effect of the two-state system on
the bath is to displace the centers of the phonons. How-
ever, it is understood physically that the coupling of the
bath to a two-state system may give rise to two different
effects: displacement and deformation of the phonon
states. The displaced-state approach only considers the
former, and omits the latter. Recently, a displaced-

The spin-boson Hamiltonian

H = hoer„—+gtoibt bi+o, hagi(bi +bi)
I

has been used to study the dissipative effect of a bath in
the quantum tunneling or two-state system. ' In the
Hamiltonian (I), o.„and a, are Pauli matrices, and bo is

the bare tunneling parameter, while the bath is described
by a set of harmonic oscillators (phonons) with frequen-
cies co& and coupling constants g, =go(cot /coo) (where coo

is the upper cutoS.
It has been shown, on the basis of path-integral tech-

niques, ' that complete information about the dissipative
effect of the bath is contained in the spectral density

squeezed state has been proposed for the variational
ground state of phonons coupled with a two-state sys-
tem. Both the displacement and deformation effects are
taken into account in the displaced-squeezed state. In the
following, the stability of the displaced and the
displaced-squeezed states, and their dependence on the
indexes and A. will be studied for super-Ohmic dissipa-
tion.

The variational displaced state has the form

~P, ) =exp a,+C, (b—,
t b, ) ~P„„—),

where the C&'s are variational parameters, ~P„„) stands
for both the vacuum state of phonons and the ground
state of the two-state system (o., ~ P„„)= ~P„,) ). The en-

ergy of state
~ P &

) is

E~ = —b, , +g(to&C& —2g&)C&+ggt /col, (4)

C&
=gt /(to, + 2b,

Inserting (6) into (4) and (5), we have

X +4am)
E (

= kvK) totsP X dX
0 (x+2aa. , ) S

(6)

(7)

S~, =exp —2g x'/(x +2aI~, )2dx
0

with a=ho/coo, and P=(go/coo) . From (7) and (8) one
can see that, in the displaced-state approach, the
ground-state properties of a dissipative two-state system
depend only on the index s of the spectral density J(co).

where 5&=50~, is the renormalized tunneling parameter
with the phonon overlapping integral

n, =exp —2+C,'
t

The condition BE, /BCI =0 gives
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The variational displaced-squeezed state is ' ' where 62=50K2 and

) =exp —o', g(g, /co, (b, b—, )

I

XexP gl't(bib' bl bl ) l0...)
I

~2==exp —g(2gI /A@I )e
I

Minimizing E2 leads to

where the yI's are variational parameters. The energy of
state ~Pz) is calculated as yi =

—,'ln(1+88 2g, /co)) . (12)

E2= —b,2+gcolsinh (2yi),
I

(10) Using (12), (10) and (11)become

600
E = —Eye + xs —2k+1[(1+S~Pir x2l —3)1/2+(1+S~P& x2A —3)—1/2 2]dx

0

s —Za.
z
=exp —2P x' (1+SaPa2x )

' dx (14)

Results (13) and (14) of the displaced-squeezed state in-
dicate that, contrary to the displaced state, the ground-
state properties of a dissipative two-state system depend
not only on the index s of the spectral density J(co) but
also on the index A, of the coupling strength g, (~).

The stability of the displaced state and the displaced-
squeezed state depend on the parameters s, A, , a, and /3.

For S =3, we have

1
2

l +
3 1+2aK)

~2(A, =1)=

1+Q 1 + SaPv2

Q 1 +SaPx2

8ap /t2

96a p Ii

QSaP~,
1+Q 1+SaPa2

X exp —P+1+Sa/3Ir~

X exp( —/3+1+ SaPa2), (20)

Ki=
2aK '24a p

1+2aK)
—12aP&2+1+ SaPvz (21)

Xexp ~
— [1—6a~, —6(2am, ) ]

1 +2aK)
(16) K2(A, =—) =exp

Q 1+SaPa2
(22)

C00
Ez(A, = —,')= —EOKz(1 —

—,'1na2)+ Ql+SaPxz —1

The condition E, =E2 determines a critical curve

a, (p), which divides the a,p parameter space into two
parts: E, & E2 for a )a, (p), and E, )E2 for a & a, (p).
For the limit a « 1,(15)—(22) become

(17) E, = —dye&( 1 —4aPa, ), (23)

COp

E2(A, = 1)= —b o~z(1 ——', lna2)+ +1+SaPxz —1

(18)

E~(A.=—', )

600 1= —b,yc2+ Q 1 + SaPI~~+ —2
8 Q 1 +SaP~~

Ir, =exp [—P( 1 —Sa~, )],
Ez(A, = —,

'
) = —Lycee(1+ap a2),

E~(k= 1)= —boa~(1 4aP a2), —

E~(A, =—,
'

) = —Ayc2(1 —2uP ~~),

az(A. = —,
'

) = exp[
—P[1+4a/3x &in(2aPe '

) ]],
v~(A, =1)=exp[ —P(1 —Sa/3~&)],

~2( A. =—', ) =exp[ —
/3( 1 —4a/3~2) ] .

(24)

(25)

(26)

{28)

(29)

{19) The condition E, =E2 gives
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0 (A, = —,
'

)

P, = 1 (A, = 1)
2 (A, =—', ),

(31)

leading to E
~

& Ez for P &P„and E& & E2 for P & P, . For
ohmic dissipation (S=1), the previous study gave '

E, &Ez for A, & 1 and 0&P& —,', and E, &E2 for A, &1 and
0&P& —'(3—2A, ).
For 5 =2, we obtain

E = —hz 1 ——'lnz—PI 2 I 1+2A'K
I

(32)

1a.
, =exp. —2P 2—

1+2aal
1+2']cI—4avIln

2QK)
(33)

COp

Ez(k= —,') = —b,olc2(1 —
—,'1na2)+ ( +1+Sal3a2 —1), (34)

COp

E2(A, =1)=—boz2(1 —
—,'lna2)+ (Ql+SapK2 1), (35)

COp 1
E2(A, = —,

'
) = —hyc2+ Q 1+SaPaz+ —22 Q 4 g 1 +Saf3a2

gz(k = ,' )
=e—xp[—2P(+1+SaPa2 +SaPa—2) J,

(36)

(37)

1+Q 1+SaPaz
K2(A, =1)=exp —2P Ql+SaPa2 —SafIa2ln

+SaPe~
(38)

2
z2(A, = —,')=exp

Q 1 +SaPa.2

(39)

The numerical results of the critical curve a, (P) are
shown in Fig. 1(a) for S =3, and in Fig. 1(b) for S =2.
On the left side of the critical curve, we have E, (E2 and
the displaced state is more stable; while on the right side
of it, we have E& & E2 and the displaced-squeezed state is
more stable. From Figs. 1(a) and 1(b), one can see that
the stable area of the displaced-squeezed state increases

as the index A, decreases. This result can be explained
qualitatively in that the coupling strength
gI(co)-(ro&lcoo) increases as A, is reduced, and thus the
deformation of the phonon state due to coupling with a
two-state system becomes more important. From this
picture, we may refer to the stable area of the displaced-
squeezed sate as a strong-coupling region, and to that of
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FIG. 1. The critical curve of El =E2 for A, =—', 1, and —.(a) S =3, (b) S=2. The displaced state is more stable on the left side of
the curve, and the displaced-squeezed state is more stable on the right side.
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the displaced state as a weak-coupling region.
In conclusion, the present variational study shows that,

for a two-state system with super-Ohmic dissipation, in a
weak-coupling region there is a universal behavior in the
ground-state properties. The universality breaks down in
the strong-coupling region, as the ground-state properties

depend not only on the spectral density but also on the
explicit form of the coupling strength.
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