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Electronic specific heat due to virtual excitation of the crystal-field singlet ground state is studied by
including higher-order processes, following the Doniach-Engelsberg-Brinkman theory. As the e6'ective

electron-electron interaction mediated by the excitation of the crystal-field states turns repulsive near the
Fermi surface, correspondence with the Hubbard model is investigated. The specific heat is separated
into a fermionlike term and a bosonlike term. The former has a T-linear contribution which corresponds
to that in the Hubbard model. The bosonlike term corrects the Schottky-type contribution of individual

crystal-field states by their collective modes. Numerical calculation is made in a simplified model for
real substances to see the relative size of the fermion and boson terms in a magnetic field.

I. INTRODUCTION

In the rare-earth metals of non-Kramers ions such as
Pr and their intermetallic compounds, a singlet ground
state for the localized f electrons is brought about by the
crystal field. Many of these substances have energy split-
tings on the order of several tens of K and remain
paramagnetic even in the presence of exchange interac-
tion. '

Although the singlet ground state is thermally inactive
at low temperatures, its virtual excitation described by
the Van Vleck susceptibility yields effective interactions
among nuclear spins and conduction electrons through
the hyperfine interaction and the s fexchange i-nterac-
tion. For example, a process in which a nuclear spin ex-
cites the singlet ground state and the Zeeman field re-
turns it back yields the enhanced Zeeman energy for the
nuclear spin. Similarly, hyperfine-enhanced interaction
between nuclear spins arises through a process in which
the excitation of the singlet ground state due to a nuclear
spin is transferred to neighboring sites by an electron-
hole pair excitation of conduction electrons. The
enhanced nuclear magnetism is one of the main problems
in ultralow-temperature physics.

On the other hand, a process in which a conduction
electron excites the crystal-field state and puts it back to
the ground state yields the self-energy of the conduction
electron. White and Fulde, and Fulde and Jensen cal-
culated the excess specific heat due to this self-energy and
gave the explanation for the strong magnetic field depen-
dence of the specific heat found in Pr metal by Forgan.
The mass enhancement in the Pr metal is also found in
the cyclotron mass by means of the de Haas —van Alphen
effect by Wulff et al. To analyze the result these authors
estimated the mass enhancement by using the random-
phase-approximation (RPA) susceptibility to include the
higher-order processes.

When an electron excites the crystal-field state and

another electron puts it back, the process turns to the in-
direct interaction between these two electrons. This in-
direct electron-electron interaction and effects resulting
from it have been studied by us. It has been shown
there that the indirect interaction I,ff is proportional to
the co-dependent Van Vleck susceptibility multiplied by
the square of s fexchang-e integral. It is short range
repulsion for electrons near the Fermi surface, but turns
attractive for the energy larger than crystal-field splitting.
The similarity of the interaction for the electrons near the
Fermi surface to that in the Hubbard model turns to a
clue for the study of susceptibility, nuclear relaxation
rate, specific heat, etc. The RPA susceptibility has been
also used to include the higher-order processes of excita-
tion of the crystal field state.

The specific heat in the Hubbard model has been stud-
ied by Doniach and Engelsberg, ' Brinkman and
Engelsberg, " and Brenig, Mikeska, and Riedel. ' They
derived the mass enhancement, which shows logarithmic
singularity at the ferromagnetic instability and the T lnT
term as the next leading term. It is interesting to see in
what extent correspondence holds in specific heat be-
tween the metallic Van Vleck paramagnets and the Hub-
bard model as a result of their similarity. To clarify this
point is the first purpose of the present paper. We follow
the Doniach-Engelsberg-Brinkman theory. The specific
heat is separated into a fermionic term and a bosonic
term. It will be shown that the T-linear term agrees with
the result of the Hubbard model by replacing the repul-
sion I with I,ff. The next dominant term is proportional
to T . The T lnT term corresponding to the Doniach-
Engelsberg theory is much smaller than the T term by
the factor of crystal-field splitting divided by the Fermi
energy. With increasing temperature the co dependence
of I,ff turns more important and the correspondence with
the Hubbard model is lost. In Ref. 9, we have reported
parts of this result without giving the derivation.

The second purpose of this paper is to show directly
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from the s f-exchange model that the contribution of the
bosonic term leads to the specific heat of the collective
excitation modes of the crystal-field states. Energy levels
of the isolated crystal levels turn to the band, and the en-

ergy gap reduces. The onset temperature of the Schottky
specific heat deduces to cover the fermionic contribution.
To see the relative size of the fermion contribution with
respect to the bosonic one, we make numerical calcula-
tion for a simplified model for real substances in a mag-
netic field. The strong field dependence is characteristic
of the present system.

In Sec. II, after describing the effective Hamiltonian
obtained in the previous papers, ' we apply the formal-
ism of Brinkman and Engelsberg" on the electronic
specific heat to the present problem. In Sec. III, on the
basis of this, we calculate the specific heat of the fermion-
ic term in a series expansion of T. A comparison with the
result of Doniach and Engelsberg is made. Next we
study the contribution of the bosonic term. In the last
section a summary and discussion are made briefly.

II. HAMILTONIAN

We start our study by writing the Hamiltonian of the
system consisting of the conduction electrons and the
non-Kramers ions in the crystal field,

II=y E~eg.e~. +y. E„li,n ) &i, nI —gjpgH y J;
i, n

J, f i(k —k') R,.

kk' i a, a'
(2.1)

where ck is the annihilation operator of the conduction
electron with wave vector k and spin 0., Ek is its one-
electron energy,

~
i, n ) represents the nth crystalline field

state at the site i with the energy E„. Especially we
represent the singlet ground state and its energy by ~i, g )
and Es. The last two terms of (2.1) are the Zeeman ener-

gy of the non-Kramers ions and the s-f exchange interac-
tion. J, f denotes the s fexch-ange coupling constant J, f
multiplied by (gJ —1). Note that J, f is equal to 2I,
where I is defined as the s fexch-ange constant in Refs. 3,
4, and 6. S is the total number of the non-Kramers ions,
cr are the Pauli matrices for the conduction electron and
J, is the total angular momentum of non-Kramers ion at
the ith site.

As the excitation energy of the crystal field state,
E Eg E g is usual ly of the order of several tens of K,
the non-Kramers ions are in the singlet ground state in
low temperatures. The effect on the conduction electrons
appears through their virtual excitation by the s fex--
change interaction. The effective interaction for the con-
duction electrons is obtained ' by the canonical transfor-
mation as

eff 2~ ~ ~ a&a2a3a4~ ~kl+q ~k& I k~+qa kla k&
—qa k&a4

k&k2q al-a4

J2
(co)= — ' g (a, (cr„[a,)yf"&'(co) (a, (cr,(a4),

pv= xyz

where y&
'""is the Van Vleck susceptibility in a unit of (gJp, ~ ) at T =0 given by

~g~+
E.,+I-

(2.2)

(2.3)

(2.4)

If I, ~(co) is replaced by I, ~(0), V,s turns to the
short range repulsive interaction,

V',&=I+n n +—g(n +n& ),I
(2.5)

with

J2

4
+(0)PP(0 ) (2.6)

p=xyz

Then the result obtained in the Hubbard model' ' can
be used at once. However, the co dependence of I, ~(co)
is due to that of the Van Vleck susceptibility and reflects
the crystal-field splitting. Therefore, although one may
use I(0) at energy or temperature much lower than the
crystal-field splitting to discuss the mass-enhancement or
T-linear specific heat, it is necessary to consider this co

dependence for further study beyond this region. It is

rather interesting to clarify how the specific heat of the
present system differs from that of the Hubbard model
with increasing temperature. Accordingly we extend our
study following the formalism for the Hubbard model by
Engelsberg and Brinkman. "

III. SPECIFIC HEAT BY RPA

Our purpose in this section is to give an expression of
the electronic specific heat for the Hamiltonian (2.1).

The excess thermodynamic potential EQ due to the sf-
exchange interaction is given by the following standard
formula expressed by the coupling-constant integration,

bQ= lim —g g e " I G(k, ice„)X(k,ice„),.——o g k 0

(3.1)
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XTrXf(k —k', ico„—co' ),
(3.2)

where Xf
——(Xf') ()((,, v=x, y, z) is the dynamic suscepti-

bility tensor for the f electrons in units of (g&)Ms),
de6ned as

Xf(q,iv)=pe "f dre '"(J;(~) J~) .
J

(3.3)

where G(k, ice„) denotes the temperature Green's func-

tion for the conduction electron with the wave vector k.
In paramagnetic phase, G(ki, a) „) is independent of spin.
X is its self-energy, which may be expressed as

J2
X(ki, co „)= —g g g G(k', i')' )

k p= x)/2

concrete understanding, we adopt a simpli6ed model in
which J= 1 and the crystalline states are described by

H„=g 6(I )2 . (3.4)

(3.5)

This is proportional to 1/6 because of the square of the
Van Vleck susceptibility at the different sites. On the
other hand, the susceptibility for the same site is calculat-
ed as

For the conduction band with the constant density of
states per spin N(0) and the band width 2D, the suscepti-
bility for different sites (i Wj ) is calculated as

2

(, )
J.f f(&)e)—f(&),) () -) )R„

Xf;,'(co=0) =2 g e

Diagrammatically (3.2) is represented as Fig. 1(a).
We calculate Xf by the bubble approximation (RPA)

shown in Fig. 1(b). In the site representation, the right-
hand side of Fig. 1(b) shows that Xf consists of the Van
Vleck susceptibility Xf(0)" (co) at various sites and the
unperturbed conduction susceptibility y,' ' connecting
these different sites. Thus yf expresses the propagation
of magnetic excitation from site to site.

Here the case in which y', ' connects the same site is ex-
cluded. ' The reason for this can be seen by the second-
order perturbation calculation for gf. In order to make

x 1+
C&

—Ck+ 5

J fN(0) N-(0) 2b,

b,N N D
ln

'2
f(e„)I1 —f(e„)]

Xf(& ei=0 =
+(eg~ eg+ 6 )(E),~

—s), —5)

(3.6)

(a)

This is the susceptibility sho~ing the Kondo anomaly. 14

That is, at the same site the square of the Van Vleck sus-
ceptibility is replaced by the much weaker 1ogarithmic
term, so that apart from the Ruderman-Kittel-Kasuya-
Yosida (RKKY) oscillatory factor in (3.5)

X(2) (0)
AN(0) 2h

ln «1 . (3.7)

+ + a ~ ~ ~ Thus the calculation from the same site is neglected.
With this restriction, yf in RPA is given by

w(p)
-RPA

(q, i v)=,,
(3.8)

1 (J, I /N )Xf '(iv)X( '—(q, i v)

Here, X', '(q, iv) is the Fourier transformation of the con-
duction electron susceptibility subtracted the same site
contribution,

X',"(q iv) =X',"(q, iv) —X,
where

(3.9a)

FICz. 1. Diagrams representing the following quantities: (a)
the conduction electron self-energy, (b) the RPA f-electron sus-

ceptibility, (c) the lowest-order ladder term for the f-electron
susceptibility, (d) the RPA thermodynamic potential. The light
line represents G' '(k, iso), the bubble formed by it depicts the
subtracted conduction electron susceptibility y,' '(q, i v), the
heavy line for G (k,i ~), the dashed line for yf '""(q,i v), and the
wavy line for X~/'(q, i v }

, ) 1 f(e),+s)—f(e), )
X', )(q, iv)= —g

k iV —Ek+ +Ek

X=
N g X,'"(q iv)»

q

(3.9b)

(3.9c)

and q is restricted to the first Brillouin zone (BZ).
It is different to calculate the ladder term as shown in

Fig. 1(c), since in the present problem the dotted line,
which represents the unperturbed Van Vleck susceptibili-
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ty for the f electrons depends on co, in contrast to the
case of the Hubbard model, where the dotted line
represents the co independent interaction I. However, it
has been shown in Ref. 8 that the contribution of the
lowest-order ladder term of Fig. 1(c) for g~/i'(q, iv) is

negligibly small at q =0 and co=0. Therefore, in Fig. 1(a)
we replace the wavy line by the bubble type diagram.

Here one should note that the (}M,}M) component of
(q, iv) is expressed by yf '(iv) with saine p. This is

due to the bubble approximation. The simple replace-
ment of I with (2.6) does not hold in (3.8). This reaches
to all the calculation of this paper. Furthermore, in (3.1}
and (3.2) we approximate the conduction electron
Green's function by its unperturbed Green's function.
Thus, as represented in Fig. 1(d), the RPA excess thermo-
dynamic potential hQ is constituted as a set of bubbles
expressing y,' '(q, iv) and dotted lines expressing

yf '"i'(i v) It. is given by

n

(3.10)

When a magnetic field is applied, we must use the diagonalized yf ', as yf
' is not diagonal. For y', '(q, i v) neglecting its

field dependence may be allowed. After performing the A. integration and the summation over v„, AA is expressed as

AQ=g f ImlnI1 (J,—f /N)yfI '»(co+i')y', (q, co+i')]p(%co)dco, (3.11)

where p(fico) is the Planck distribution function, p(fico) = I /[exp(Pfico) —I ]. Equation (3.11) can be obtained by replac-
ing the interaction I with (J, f /2N) yf '"" in the corresponding equation in Ref. 11.

The excess entropy b,S can be obtained by differentiating (3.11) with T. However, the T derivative of y&' can be
neglected for temperatures much lower than the crystal-Geld splitting. As a result of this, it holds that

AS = — AQ,
a

aT
2

f dco p(fico)Imln 1 — gf '""(co+iri)y', '(q, co+i')
qp

(J, f /N)yf '»(co+iri)(c3/dT)y', (q, co+i ri)+g dcop(A'co)
27r ao 1 (J, f /N—)yj' '""(co+i')y,' '(q, co+i')

(3.12)

Noting (3.9b), we derive the T derivative of the Fermi distribution function f(fico) from the second term of (3.12). After
some calculation, we can obtain

b,S= —g f dco Imln 1—ap(f~)
277 oo 8T

J, f
y j~

'""(co+iri)y', I(q, co+i ri)

2

+ Imp', (q, co+i ri)Reef »(q, co+i ri) —g f(si, )ReX (k, si, ),
kyar

(3.13)

where

2

ReX (k, ek)= — g f Imyf »(q, co+i ri) .gpA s f A d o) (3.14)
4N

q)M

Equation (3.13}with (3.14}corresponds completely to the result of Brinkman and Engelsberg, " their Eq. (2.28) with
(2.29). This parallelism comes from the following facts. First, we have limited ourselves in low temperatures so as to
regard the Van Vleck susceptibility pf as a T-independent constant. Secondly, we have collected only bubble terms. As
a result of these, J, &g~/i'(co)/2N plays the same role as the interaction strength I in the Hubbard model. The difference
of entropy between the Hubbard model and the present system appears through yf(co), which is studied in the follow-

ing sections. Brinkman and Engelsberg" called the first term in (3.13), which is proportional to the T-derivative of the
Planck distribution function p(%co), a bosonlike term and denoted it as LSD. Similarly the second term proportional to
the T derivative of the Fermi distribution function was called as a fermionlike term and denoted as hSF. Fulde and Jen-
sen have only considered the contribution of ASF. We study AS~ and AS~ separately in the following subsections.

A. Fermionlike contribution

Separating real and imaginary parts of ASF, we obtain
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J, IN(0) D B D —RPA ppbSF= — ' f dec f(c)f dc'g —f p(fico)lmf&'»(co+iri)
P

—[1—f(c')]RejI ""(c—c'} (3.15)

with

2kF
»(ro+iri)= f dq qy" »(q, ro+iri) . (3.16)

In deriving (3.15), we have assumed a constant density of states for the conduction electrons. D and N(0) denote a half
of the conduction band width and its density of states per spin, respectively. As the principal part integral appearing in
(3.15) only gives a value of the order of 1/D, we can neglect this term. From (3.15) the excess specific heat ACF coming
from ASF is expressed as

ACF=T (bSF)

=T 'I y d d . —' f —f( Ry (
—')

2N
P

D —-D T Bc T Bc'

c, Bf(c) c B c Bf(c)
Bc T Bc T Bc

[1—f(c')]Ref& """(c—c') (3.17)

Integrating (3.17) over c partially, we obtain

b, CF = g dc f dc'(c —c') " ", Re@" ""(c—c') .
J, IN(0) D D Bf(c) Bf(c )

(3.18)
4TN „D D — — Bc Bc'

First we calculate (3.18} in the low-temperature expansion. In the free-electron model, y', '(q, co), which is through
(3.8) and (3.16) the constituent of gI in (3.18), is expressed by N(0)L(q, co)/2, where N(0) is, in this case, the density
of states per spin at Ez and L(q, co) is the effective Lindhard function subtracted g from the Lindhard function. Be-
cause of the c, derivative of the Fermi distribution function in (3.18), a contribution from the region of q and cu satisfying
fico &(EF, q «kz, and co (&uF q is doininant to the specific heat. In this region L(q, cu) is expressed as

L(q, co) =5 — +—i +q co . ace

3 q
(3.19)

where 5=1—2g/N(0), q=q/2kF, and co=co/(2kFuF). We have neglected here the temperature dependence of
L (q, co). Substituting (3.19) in (3.8) and expanding it, we obtain

+(0)»(p )
ReyI A»(q, co) = f

1 —a"(0)(5—
q /3)

a"(0)yj"'»(0 )

[1—a"(0)(5—
q '/3)]' q

'

where

(ir/4) [ai'(0) ]'~I' »(p) ~ & —,'(B'/B'~)yI,"»(0)
~ ~ ~

[ 1 a"(0)(5 q /3—) j q
—
{1 a"(0)(5 q /3)—]— (3.20)

a"(co)= [J,I /2N ]N(0)yI '»(co), (3.21)

which is a correspondent of IN(0) in the Hubbard model.
In (3.15), the last term corning from the co derivative of a"(co) gives a new aspect of the present system in contrast

with the Hubbard model. This represents the effect of time dependence of the effective interaction. As for the second
and third terms, they are both proportional to (co/q) However, the .second term can be neglected compared with the
third term by the factor [1—a"(0)(5—

q /3)] ', as we are interested in the case of large amount of this enhancement
factor.

Inserting the remaining terms in (3.20) into (3.18), we obtain

hCF = g dc dc'(c c')—N(0)», , 2Bf(c) Bf(c,')
[ia( cc )+a2(c c )+a3(c c )+2T —D —D BC BE
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"( ) 2 y
~d a"(0)

1 —a"(0)(5—
q '/3)

I I 1 I I I I I
I

I I I I I I I

(b)

(vr /8)[a"(0)]' co
a", co =2 dqq

&o I 1 —a"(0)(5—
q /3) ] q

(3.23)

—,'(c) /c}s )a"(0)co
a3(co)=2I dq q

I 1 —a"(0)(5—
q /3)] 0. 02

where qo is the lower limit to assign the region for the
imaginary part in (3.19). As the series expansion of
L (q, co) in (3.19) does not hold in co ~ q, we can take qo as
co. On the other hand, as the integrands for a&, a3 are
regular at q =0, we can replace qo with 0. By changing
the variable q to x =q, (3.23) is integrated as

0. 1

k, T/6

7T
2

a"(co)=—
2 4

"( )

1 —5a"(0)

3

a", (co) = 3 ln 1+—1 a"(0)
3 1 —5a"(0)

(3.24)

FIG. 2. Specific heat of the fermionic term for the model
(3.4) as a function of temperature for several values of ao. The
solid lines represent CF/Nkz and (a), (b), and (c) correspond to
the cases at Dao=0. 95, 0.9, and 0.85, respectively.

—,'(a'/a")a~(0)~'
a", (co) =

[1—5a"(0)][1+( —,
' —5)a"(0)]

Substituting (3.22) into (3.24), we obtain

3 1 a"(0)
hCF =—g ln 1+— yoT

1 —5a"(0)

3m T T a (0)
80 TF 4TF „1—5a~(0)

yoT ln

3

36m T
2

+ 0 ~ ~ (3.25)

with

go= ', m k~N(0)—,

1 —5a"(0)
—,'(a'/a~')a"(0)

1/2 (3.26)

=3 1 a"(0)—1=—g ln 1+—
2 1 —5a"(0)

(3.27)

The above result (3.25) was reported in a previous paper
without giving derivation.

The first term in (3.25) is the T-linear specific heat with
mass enhancement

third term, which is proportional to T, manifests this co

dependence, as can be seen from (3.26). Since
[c) a"(0)/c}co ]/fi =a"(0)/(E&o) and 5a"(0)=1 in the
present system, 6" amounts to a fraction of the crystal-
field splitting. The T term normalized by 6" is therefore
predominant than the T lnT term to correct the T-linear
term. All the terms in (3.25) depend on the enhancement
factor [1—5a"(0)] '. Thus the higher-order terms in
(3.25) may become important depending on the value of
a"(0) and T.

Up to here we have studied the low-temperature ex-
pansion of CF. To examine the contributions of the
higher-order terms, we calculate numerically CF for the
model introduced in (3.4). It holds that
a"(0)=a (0)=—ao, a'(0)=0. In the Appendix we de-

scribe the calculation of the susceptibility for (3.4) in the
presence of applied field. Calculating (3.18) and (A4) at
h =0 numerically, we obtained C~/Nks. The results for
b N(0) =0.005 are shown in Fig. 2 by solid lines. Follow-
ing feature can be seen in this figure. When 5ao is nearly
unity, corresponding to the Doniach-Engelsberg theory
the linear coeScient of CF is highly enhanced. By the
higher-order effect of I(co), with increase of temperature
CF deviates upward from the T-linear behavior and after
passing the maximum Cz goes down. As 6eo approaches
unity, the peak of CF shifts to the low-temperature side.

The second term is the correction to the T-linear term.
These T and T lnT terms correspond to those in the
Hubbard model' when the co dependence of the Van
Vleck susceptibility is neglected. On the other hand, the

B. Bosonlike contribution

Next we study a contribution of the bosonlike term
defined in (3.13), which can be written as

2
aq(r~) J, f4S =g dco 'arctang"(q, co) — Rey ""(q,co+iran)Imp' '(q, co+i') (3.28)
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where

(J, f /N)y& '»(cu)Imp', '(q, co+i ri)
g"(q, ~)=

1 —(J, f /N )y& ~»(co)Rey,' '(q, co+i ii)

(3.29)

Strong co dependence of g"(q, co) (p=x, y, z) comes from
g&'»(co) expressed in (2.4), which is singular at the
crystal-field splitting energies Rco=E„E:—E„' —'" (n in-

dicates excited states), approximately several tens of K.
In (3.29) we have had to neglect the imaginary part of
yf '»(co+i') appearing in (3.13) as its singularity due to
the 5 function appears both in the numerator and the
denominator of (3.29), and they cancel each other. When
we move co from the lower energy, g& '»(co) increases and
the denominator in (3.29) turns negative after taking
zero. This zero point is denoted as E„"g(q) corresponding
to E„' '" the singular point of g' '»(co). Each E„"(q } isng

slightly smaller than E„",because J, f =0.1-0.01 eV
and Rey', '(q, co+ i ri) /N -0(1/E~ ). It is clear from
(3.29) that arctang"(q, co) is equal to ir/2 at Rco=E„" and
increases up to m when co approaches E„'g'". After pass-
ing E„'g'" the denominator of (3.29} turns positive and the
numerator turns negative. Hence, arctang"(q, co) sudden-

ly changes from m. to negative value. If we notice that
Rey', '(q,k+iri)/N-0(1/E~) and Imp', '(q, co +i ri) /N

-N(0)co/u~q -0(E„'s'"/Ez) for co of the order E„' '", and

J, f /Ez ((1, it turns out that the most change of (3.29)
occurs in the neighborhood of narrow region [E& (q),
E„' '"]. On the other hand, outside this narrow region, it
turns out from the above-mentioned facts for

'(q, co+, iii) and J, f that g"(q, co) takes a small value,
so that arctang"(q, co) is well approximated there with

g "(q,co). After all, these observations allow us as the
lowest approximation to write

arctang "(q,co) =g"(q,co)

+n. g [8(Ace E„"(q) ) 8(fi—co E„'g'")—), —

(3.30)

where 8(irido) is the step function.
We consider here the second term in the parenthesis of

(3.28). If we notice in the expression of Reef (q, co+i ri)
derived from (3.8) that the part consisting of
Imp', '(q, co+i') is negligibly small compared with the
remaining parts by the same reason as mentioned above,
the second term of (3.28) can be approximated by—g"(q, co). Then (3.28) with (3.30) is reduced to

This result tells a simple interpretation for the boson-
like contribution and clarifies the meaning of the approxi-
mation made above. Since E& (q) is defined as the zero
point of the denominator of (3.29), it is the pole of

»(q, co+i') in (3.8) when its imaginary part is
neglected. Therefore, the first term in the parenthesis of
(3.32} is the specific heat of the magnetic excitation and
the present approximation is to neglect the effect of its
life time. The spectrum of this magnetic excitation is
caused by the transfer of the excitation of the singlet
ground state by the conduction electron polarization (the
RKKY mechanism). There exists a gap for each mode p
otherwise the system cannot remain in the paramagnetic
state. The second term in (3.32) cancels out the contribu-
tion of the noninteracting Van Vleck ions, which is in-
cluded in the unperturbed term.

The magnetic excitation energy is given by the pole of
(q, co) in (3.8). For the free electron band y,' '(q, co)

is expressed by the effective Lindhard function L (q, co).
Using a"(co } defined in (3.21), we rewrite the denominator
of (3.8) as

1 a"(co)L(—q, co) =0 . (3.33)

We notice that the co dependence of L(q, ru) can be
neglected compared with that of a"(co) in (3.33), since in
the former co is normalized by EF, whereas in the latter ~
is normalized by the crystal-field splitting energy. In this
procedure the imaginary part of L ( q, co ) expressed in
(3.19), namely, the lifetime effect, is also neglected.

For the model defined in (3.4) we calculate numerically
the dispersion relation of the magnetic excitations. From
(A3) the results are shown in Fig. 3 for several values of
5ao, when h =0. As the excited states for (3.4) are dou-

blet, the excitation modes E"(q) and E (q) are degen-
erate. The excitation mode E'(q) does not exist, because
yf'(co) =0. The straight line in Fig. 3 denotes the
crystal-field excitation energy of a noninteracting Van
Vleck ion. The magnetic excitations are propagated by
the RKKY mechanism and the discrete energy levels of
the crystal-field states turn into a band. When 5ao ap-
proaches unity, a gap of the magnetic excitation turns
small as is shown in Fig. 3.

As the second terin in (3.32) and the unperturbed
specific heat of the crystal-field states are negligible in low
temperatures, the bosonlike contribution is written as

aC, =g g p[E~, (q)]E~,(q) —p(E~,'~~)E~,"~a

qp n

(3.32)

Cs =g J™xdqq E"(q) p(E"(q))
o arbSii =g f de p(fin)g [8(%co E„"g(q))—a

277 0 BT

(3.34)

—8(%co—E„' '"}].

(3.31}

From (3.31) we can easily derive the expression for the
specific heat from the bosonlike term

where a cutoff q „is introduced in place of the first BZ
sum and Vis the volume of the system.

Finally we calculate the effect of magnetic field for the
electronic specific heat in the crystal-field model (34).
For a magnetic field applied along the z axis the doublet
excited states are hneally split by Zeeman effect. For a
magnetic field applied along the x axis, the energy split-
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0. 5

(CF+C~)/Nk~ at DN(0)=0. 005. We have put

q,„=2kF introduced in (3.34). When the field is applied
along the z axis, one can see from the line (H,

~

) that with
increasing field the slope of the T-linear specific heat in-
creases. This is because 6ao approaches unity with de-

creasing energy splitting between ~0) and ~1). On the
other hand, when the field is applied in the xy plane, Cz
behaves oppositely to the above case. It is shown by the
line (H~) by the dashed line. In these cases the width of
the hill of CF spreads with increasing field, since the dou-
blet excited states are split with the magnetic field. C~ is

negligibly small at low temperatures. With increasing
temperature, Cz becomes dominant and tends to cover
the deviation of CF from the T-linear behavior.

IV. SUMMARY AND DISCUSSION

0. 5

FIG. 3. Dispersion relation of magnetic excitons for the
model (3.4). The dispersion curve is common for the polariza-
tion modes E„/6 and E~/6 defined in (3.33j. The upper
straight line shows the crystal-field energy splitting.

ting between the symmetric state ~s ) =(~1)+
~

—1) )/&2
and the ground state ~0) ~sreads. The antisymmetric
state ~a ) =( ~1) —

~

—1) )/&2 does not vary. In this mod-
el the direction of the applied field produces the different
effects.

Figure 4 is for the field applied along the z and x axes.
Dashed lines indicate CF/Nks and solid lines indicate

0. 08

0. 06

0. 04

0. 02

0. 1

FIG. 4. Electronic specific heat of the model (3.4) as a func-

tion of temperature for magnetic fields H~~ and H~ applied along
the z and x axis, respectively. Field strength is h/6=0. 2 in

both cases. The dashed line represents CF and the solid line

represents the sum of CF and C&.

In this paper we have studied the effect of the
electron-electron interaction mediated by the virtual exci-
tation of the singlet ground state on the electronic
specific heat. It has been shown in the previous work
that this effective interaction is repulsive for the electrons
near the Fermi surface but turns attractive above the
crystal-field splitting. If the effective interaction were
repulsive, irrespective of co, the specific heat would be
given by the Doniach-Engelsberg-Brinkman theory' '" in

any temperatures. Our study began by inquiring to what
extent the specific heat resembles that of the Hubbard
model and differs from it.

The specific heat has been derived from T-derivative of
the thermodynamic potential. Following Brinkman and
Engelsberg" we have separated the specific heat into the
fermionlike contribution and the bosonlike contribution.
The former stems from the particle-hole pair excitation
of conduction electrons. The T-linear part corresponds
exactly to that in the Hubbard model. Enhancement of
the effective mass is given by the expression in the Hub-
bard model with the effective repulsive interaction at the
Fermi surface. However, the T lnT term characteristic
to the Doniach-Engelsberg theory is covered by T term.
Although this contribution has weaker T dependence
than T lnT term, T is here normalized by the crystal-
field splitting in place of EF. The T term is a sign of the
finite level splitting or the co dependence of the effective
interaction. At high temperatures correspondence with
the Hubbard model no longer holds.

As for the bosonlike contribution, we have derived the
specific heat of the collective excitation modes directly
from the s fexchange inter-action, which corrects the
Schottky specific heat of individual Van Vleck ions.
When we have calculated this magnetic excitation, we

have neglected its imaginary part. This is because the
damping due to electron-hole pair excitation is negligible
in the degenerate electron gas. As far as the system
remains paramagnetic, this magnetic excitation spectrum
has a finite gap. It begins to work at temperatures com-
parable to the gap.

We have calculated numerically the specific heat for
the simplified model to see the relative size of the fer-
mionlike and bosonlike contributions in the presence of
the magnetic field. Field dependence of the specific heat
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plays a role to select the present mechanism out of oth-
ers. In our model, the crystal-field states behave in
different ways depending on the field direction. For a
field parallel to the z axis the energy splitting of the
crystal-field states decreases with increasing field. Then
the strength of effective electron-electron interaction in-
creases and so does the slope y of the T-linear term.
However, with increasing y departure from the T-linear
behavior shifts to the lower temperature side. For a field
in the xy plane the energy splitting spreads with field so
that the T-linear behavior holds up to high temperatures.
However, the numerical calculation shows that the bo-
sonlike contribution covers the fermionlike contribution
in higher temperatures. Because of this the deviation
from the T-linear behavior does not appear explicitly.

The Pr metal has a double-hexagonal closed packed
structure. Pr ions at the hexagonal site are more effective
than those at the cubic sites to the specific heat with ex-
cited states of smaller energy splitting. ' The lower
states of the hexagonal site are ~0) and ~+I). In this
sense our model roughly simplifies it and gives qualitative
understanding for it. Then z axis and xy plane, respec-
tively, correspond to c axis and to basal plane in our
model. In the case of the field applied in the basal plane,
behavior such as Fig. 4 is seen in the experimental results
by Forgan, and is consistent with the theoretical results
by White-Fulde and Fulde-Jensen. For the field applied
along the e axis, we therefore expect a field dependence
similar to Fig. 4. However, at low temperatures and in a
magnetic field, a contribution of nuclear spins for specific
heat turns dominant. Then in the lower temperature re-
gion the T-linear specific heat of CF is covered again.

Takayanagi et al. ' found experimentally in PrCu6 that
the T-linear specific heat is twice as large as that of
LaCu6. To clarify whether this is due to the present
mechanism, it is hoped to measure its field dependence.

To study the effect of the electron-electron interaction
mediated by the virtual excitation of the singlet ground
state, microscopic probes might be useful. It is known
that the nuclear relaxation rate T

&

' is enhanced by the
repulsive electron-electron interaction. ' In parallel with

this theory we have pointed out the possibility of the
enhancement of T, '

by the present mechanism. ' It
seems interesting to investigate other quantities
influenced by the present mechanism, including the
hyperfine-enhanced nuclear magnetism.

APPENDIX

We calculate here the f electron susceptibility defined
in (3.8) and the dispersion relation of magnetic excitons
for the model given by (3.4) with J= 1. We consider two
different cases depending on the applied field direction.

(i) When a magnetic field is applied along the z axis, the
Hamiltonian (3.4) is rewritten as

H„„=gh(J,')2++ hJ;, (Al)

where h= gpsH—. From (2.4) and (Al), yf'(co) is im-
mediately obtained as

,(0)xx (0)xy, (0)xy
Xf Lf Lf

+(o)( )
—+(0)yx +(0)yy +(0)yz

„,(0)zx (0)zy, (0)zz
Lf Xf Lf

X2 () 0
0 0 0

(A2a)

2 2 2 26+ —co 6 —co

N + N

g2 ~2 g2 2
(A2b)

where b,z=b, ih. Operating the unitary transform
which diagonalizes (A2a) on (3.8) and making its trace,
we obtain

X(0)Tref (q, co) =
a02 1 1 1

2+1 a+(q 0) E+—(q) co E+(q)+co—E (q) co—1E (q)+co
(A3a)

where

E+(q) =+h +5+1—aoL(q, 0) . (A3b) ~(o)( )—

2h 1

b, +4h (b, +4h ) —co

0

0 0

xz"(~)

(ii) When a magnetic field is applied along the x axis,
the Zeeman term J,'h is replaced with J,."h in (Al). From
(2.4), yf is obtained as where

(A4a)
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b, —h +Q
M, +(q)=

I E,+(q) I
' —

I E,-(q ) I
'

2A co a

g2 2 V g2 2
S g 67

(((+ 6 +4h'
S a 2

(A4b)

where b,, is the energy difference between ~a ) and a
ground state. 6, is the energy interval between another
excited state, which turns into ~s ) at h =0:

B((q)
X B,(q)E,+(q)

E,+(q)

M, (q)=
Qb, aors,

—L(q, O)

3, =b,, I l —aoL(q, 0)I,

(A7)

2

2N
N(0)Tref (q, (o)

M (q)

q=s+, a

where

+, (A5)E (q) co E—„(q)+co

Ih baoL(q, O)I
A ~

= b., ——aors, L(q, 0)+
S

B,(q) =aors, ,',
aohh

B2(q)=ao b' + L(q 0)
2b,

(A8)

E,+(q) = [ A2(q)+Q( A2(q) )
—A, (q) j'~

4 1/2
+oh

E, (q)= 5, — L(q, O)
Q2

(A6) In this case, three excitation modes appear in contrast to
(A3b), because yf('" is nonzero in a field perpendicular to
the z axis.
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