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A Green’s-function technique is presented that describes the electronic properties of surfaces and in-
terfaces in the framework of multiple-scattering theory as based on localized structure constants. Re-
sults of self-consistent calculations are presented for the Cu (111), (110), and (100) surfaces. The obtained
surface densities of states and work functions are in good agreement with previous calculations.

I. INTRODUCTION

During the past years a great deal of interest has been
devoted to the electronic structure of surfaces and inter-
faces, because of their interesting physical properties,
which in turn gave rise to different classes of technologi-
cally important systems and devices. Theoretical self-
consistent ab initio Green’s-function methods have been
developed both within the linear muffin-tin orbital
(LMTO) and the multiple-scattering theories. The
LMTO methods have been successfully applied to sur-
faces of several systems.! 8 These calculations are based
on the so-called tight-binding (TB) LMTO scheme, origi-
nally developed by Andersen and Jepsen.’ The main
feature of this approach is the tridiagonal shape of the
Hamiltonian due to the use of the short range structure
constants. At the same time multiple-scattering related
methods have been developed, using the removal invari-
ance principle!®!! or the layer-doubling technique.'>!
Calculations based on these methods concentrated mainly
on planar defects in metals and alloys. >~

In the present paper we describe a localized Korringa-
Kohn-Rostoker (KKR) scheme for the calculation of
electronic properties of surfaces and interfaces. It is an
attempt to unify the pleasant features found in the TB-
LMTO method, namely, the short-range structure con-
stants, with the more exact multiple scattering theory. In
principle this approach allows us to treat the electronic
properties of surfaces and interfaces within multiple-
scattering theory without any further approximations.

II. THE SCREENED KKR EQUATIONS

The scattering path operator 7(E) in real space
multiple-scattering theory is given by (see, e.g., Chap. 6
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of Ref. 17 and references therein)

mE)=[t(E)'-G(E)]!, (0
where in terms of a supermatrix notation
T(E)={1""(E)}, "™(E)={1{{(E)}, ()
t(E)={t"(E)S,,}, t"E)={t/(E)}, (3)
G(E)={G"™E)}, G"E)={G[[-(E)} . 4)

Here n and m denote lattice sites, L =(/,m) and
L'=(l'ym') are (nonrelativistic) angular momentum
quantum numbers, and E is the energy. The structure
constants G/ (E) are defined by the expansion

—iVEh{(E;1—R,)= 3 j(E;r—R,, )G} (E)
<

([r=R,[>|r—R,,|),
JE;n=j(VENY,(T),
hi (E;n)=h (VERNY,(T),

where R, and R,, are the position vectors of the sites n
and m, j, and h;" spherical Bessel functions and the
spherical Hankel functions of first order, respectively,
and Y; denote spherical harmonics. The regular single-
site scattering solutions R/ (E ;r) belonging to the poten-
tial centered at R, are normalized at the muffin-tin ra-
dius by means of the following linear combination of the
functions j, and h; :

RI(E;r)=j, (E;r—R,)
—iVE 3 hi(E;r—R)t}., (E) , (6)
=
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where ¢/, .(E) denotes the single-site scattering (t) matrix
appearing in (3). The Green’s function is then given by

S(r+R,,r'+R,;E)
=Tr{R"(E;r)t"(E)~ '™ E)t™(E)”'R™E;r')!
—8,md "E;OtE) ' RME;) ™

where Tr denotes the trace of a matrix. In (7) R "(E;r)
and J"(E;r) denote diagonal matrices of elements
R7(E;r) and J[(E;r), respectively. J(E;r) are single-
site scattering solutions irregular at the origin that join
smoothly to j; (E;r—R, ) beyond the muffin-tin radius.
Our aim is now to transform G(E) to have the spacial-
ly shortest possible range. For this reason, according to
Andersen and J epsen,9 let us introduce the functions

JME;t)=j (E;r)—iVE &(E)h; (E;r) , (8)

where the functions &,;(E) are (energy dependent) screen-
ing parameters. The whole idea of screening is based on
an expansion analogous to (5) in terms of the functions
J» which in turn implies the following transformation of
the structure constants:

GYE)=G(E)[I—&(E)G(E)] ™},
G4 E)=G(E)+G(E)a(E)G*E) 9)
[@&(E)={&(E)S,,}, QE)={&(E)8.}],

where G “(E) is referred to as a screened representation of
G (E). The details of the derivation of this transformation
can be found in Ref. 18. In Appendix A the method is
discussed that we used to find the parameters &;(E)
defining the most localized representation G “(E).

By reexpressing (6) with respect to the functions jf,
one gets

RIE;:r)=jf(E;r—R,)
—iVE 3 hi'(E;r—R tEHE),  (10)
X
defining the corresponding single-site scattering matrices
in the new representation as
t(E)=t(E)—a(E) , (11)

and, consequently, similarly to (3) the supermatrix of
t“(E). In analogy to (1), the scattering path operator can
J

d —ikx;-(C, ,—C, ) fw/d
_G_""Pq(k”;E)=§e 1 “pll ™ Call f_.,r/ddkle
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—ik (C, |~

now be defined in the screened representation as
TE)=[tYE) '-G%E)]"'. (12)

By using (1), (9), (11), and (12) a site-diagonal transforma-
tion between 7(E) and 7%(E) can be established, namely,

I"m(E)=L"(E)La’"(E)_lza’nm(E)La'm(E)_le(E)
—8,mtE)Xt*"E)"'&E) . (13)

It is straightforward to show from (8) and (13) that the
Green’s function is invariant with respect to the screen-
ing transformation, i.e.,

S(r+R,,r'+R,;E)
=Tr{R"(E;r)t®"(E) " 'r*"(E)t®™(E)'R™E;r')'
—8,,J"(E;r)t*(E) 'R"E;r)} . (14)

nm=

It should be noted that now the irregular solutions
JE™ME;r) match jF(E;r—R,) at the muffin-tin radius,
while according to (10) the regular scattering solutions
R[(E;r) remain representation invariant.

III. APPLICATION TO SYSTEMS
WITH TWO-DIMENSIONAL
TRANSLATIONAL INVARIANCE

The advantage of a screened representation becomes
obvious when applied to surfaces and interfaces of crys-
tals, i.e., to two-dimensional translation invariant sys-
tems. In the following, vectors parallel or perpendicular
to the plane of the surface (interface) are labeled by sub-
scripts || or 1, respectively. Each atomic position vector
R, can then be expressed in terms of a vector C, and a
two-dimensional lattice vector R:

Rn:Cp+RH , (15)

where, by neglecting lattice relaxation effects, C, is a
multiple of a generating vector C, which connects two
neighboring atomic layers. In this case, the two-
dimensional lattice Fourier transform of the screened

structure constants, which is generally defined by

Gk E)= ige"“""‘"g“(C,,+R..,cq;E> , 16
I

can be calculated as®

WGk +kZE) (17)

where d denotes the layer spacing. Here we made use of the fact that scaling transformation (9) applies to all projec-

tions of the screened structure constants,

G*kE)=G(kE)I—&E)G(kE)]™",

(18)

where G(k, E) is the “usual” three-dimensional lattice Fourier transform of the unscreened structure constants.
The short range behavior of the screened structure constants suggests that the following assumption can be made:

G@P(kE)=0 if [p—q|>N ,

(19)

where N is a suitably chosen parameter. Now it is natural to introduce the concept of principal layers.!* A principal
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layer includes N subsequent physical (or “atomic”) layers and will be denoted by capital letters, e.g., P and Q. The su-
permatrix of the structure constants can then be partitioned with respect to principal layers

Gk E)={G*PUk;E)} ,
where

ga’PQ(k";E)z {Qa’pq(k”;E)} y

p=(P—1)N,(P—1)N+1, ...

(20)

,PN—1 ¢g=(Q—1N,(Q—1N+1,...,QN—1.

21

Obviously, a principal layers couples to the next principal layer only, i.e., the supermatrix of structure constants (20) is

tridiagonal with respect to principal layer indices

GoPok;E)=

The two-dimensional lattice Fourier transform of the
scattering path operator in the screened representation is
therefore given by

™k E)=[1%E)"' =Gk E)]™", (23)
where

tYE)={t*F(E)8py}, 1*

(k; E)= {2k ; E)),

P(E)={1*P(E)8,,) ,
PUE)=(£*P(E)} .

In the following, the inverse of this scattering path opera-
tor is denoted by M,

For a surface or an interface the parent lattice consists of
three regions, where physical properties differ from each
other, namely, a left semi-infinite system (L), a right
semi-infinite system (R), and an intermediate interface re-
gion (I). These regions are defined by the following num-
bering scheme for principal layers:

L: —wo<P=Z0,
I: 1=P<n, (25)
R: n+1SP<ow .

This formal partitioning of the parent infinite system im-
plies that one can also partition the matrix M as follows:

My, M,; O
M, M, M |. (26)
0 My, Mgy

M=

The explicit forms of the blocks of M are listed in Appen-
dix B. Of course, the number of layers included in the in-
terface region is somewhat arbitrary. In practical calcu-
lations it has to be checked therefore whether convergen-
cy is achieved in terms of the number of physical layers

(751 (k; E) "' 1P=[t*P(E) "' =GPk ;E)18pp — G "' (k;E)8p g -y — G 'k ;E

*®(k; E)8pp + GO (k3 EN8p g1 +G* Uk EN8p g 41 - (22)

in the interface region.

We are left now with the task to invert an infinite
block-tridiagonal matrix. It should be recalled that this
block-tridiagonal shape is a direct consequence of the
short range structure constants. In order to calculate the
quantity 77 ,(k;;E), namely, the interface-interface block
of the scattering path operator of the whole system, the
following inversion has to be performed:

E)=[M;;—M; (M, )M,
—M; (Mg g )_IMR,I]_I . 27

T?,I(k“;

Focusing for a moment only on those terms in the above
equation which contain products of infinite matrices and
by taking into account the explicit forms of the blocks in-
volved (see Appendix B), it is easy to see that only the
blocks

[(MLL) 1]00’ Ar )—1]n+1,n+1 (28)

contribute to these products, namely,

=[(Mg g

(M, (M )7 'M [ 1P9=M"A M8, .8, , (29)

(M r(Mpg g )“IMR,I]PQZMmARA:llOSP,nsQ,n . (30)

The quantities A; and Ay are related to the surface
Green’s function in a tight-binding formalism.!%%!
They are in fact the surface scattering path operators cor-
responding to the lower right and upper left diagonal
blocks of the respective semi-infinite matrix. These
scattering path operators can be calculated as described
in Ref. 2, namely, from the conditions

A =(M"—M"A, M), (31)
Ag=(MR—M""Ag M) . (32)

In terms of these two quantities, the scattering path
operator in the interface region is then given by

)SP,Q+1

—G* Uk E)AL (ks E)G*O (k3 EN8p, 18,1 — G*O (ks EVAG (K ENG Ok s ENBp 80, - (33)
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All the scattering paths in the infinite system which start
and end in the interface region are now properly taken
into account. Finally, the site representation of the
screened scattering path operator can be obtained in the
interface region by the following Brillouin zone integral:

anmy gy — 1 —iky (R —R})
T (E)—Qfdk”e TR,

a,pq(kH;E) ’

(34)
R,=C,+R; R, =C,+R},

where Q is the volume of the two-dimensional Brillouin
zone.

Layer dependent physical quantities such as densities
of states, charge densities, or the moments of charge den-
sities can easily be calculated using (7) and (13):

2

ny(E)=—="Im [ dr§(r+C,,1+Cy;E) , (35)
2

pp(r)=="Im [ dz9(r+C,,1+Cp;2) , (36)

Q=711 [drrlp, (Y (®). (37

In (36) @ denotes an integration contour in the upper half
of the complex energy plane, which starts at a real energy
point well below the valence band and ends at the Fermi
energy.

In order to obtain charge self-consistency, the new lay-
er dependent muffin-tin potentials consisting of the elec-
trostatic and of the exchange-correlation potential are of
the following form (see, e.g., Chap. 10 in Ref. 17):

2Z,

8w prr Sp
+ — dr' 2 "+8 dr'r'p . (r')
r rforrpp(r) 7Tfr r'r'p,

V,(r=—

+ V) —dmp,S; = VE+ V™[, (] = V*(po] ,
(38)

where Z, and S, refer to the atomic number and the
muffin-tin radius associated with sites in the layer p, re-
spectively. In particular for surface calculations, because
of the asymmetry of the system, it is necessary to intro-
duce an inhomogeneous interstitial charge density distri-
bution p,, varying from layer to layer, whereas p, denotes
the interstitial charge density for the bulk. The solution
of Poisson’s equation for a system inhomogeneous with
respect to one direction is given in Appendix C, together
with explicit formulas of the Madelung potentials V;‘dad
for surfaces. It is worthwhile to note that the bulk inter-
stitial level of the electrostatic potential ¥EC€ and that of
the exchange-correlation potential V*°[p,] have to be
considered as constant shifts to the potential throughout
all space. In Appendix C the constant vacuum potential
level V. is also given, from which the work function can
be calculated as follows:

W=VVaC—EF ) (39)

where E is the Fermi level.
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IV. APPLICATION TO THE SURFACE
OF COPPER METAL

For the purpose of test calculations we chose the three
principal surfaces of fcc copper. The latter parameter
was 6.831 a.u., with a corresponding muffin-tin radius of
2.451 a.u. The core states were treated within the frozen
core approximation. In all calculations we used the
Gunnarsson-Lundquist exchange-correlation potential
and the energy integration was performed by means of
Gaussian quadrature with 12 points on a semicircle. The
two-dimensional Brillouin zone integral (34) was evalu-
ated according to Ref. 20. To ensure rather fast conver-
gency during the self-consistent iterations we mixed po-
tentials by using a combination of simple mixing and a
three-iteration Anderson mixing.2"??

First, we carried out a self-consistent bulk calculation
for fcc copper. The technique described in Sec. III ap-
plies trivially also for bulk calculations by implying that
all layer dependent quantities are the same in each layer.
Since, in principal, a bulk calculation should not depend
on the choice of the surface direction, it had to be exam-
ined carefully whether convergency can be obtained to
satisfy this requirement in terms of the cutoff parameter
N, see (19), and in terms of the number of special k points
in the irreducible segment of the corresponding two-
dimensional (2D) Brillouin zone (BZ). The Fermi energy
was converged in each case to be stable up to 1077 Ry.
We found that N=5 ensures a relative accuracy of 10~ *
for Eg. By increasing the number of k points up to 45 for
the (100) and (111) directions and up to 49 for the (110)
direction we found a relative convergency of 5X 10~ * for
E.. With these parameters for the BZ integration, the
calculated Fermi energies for the three different direc-
tions differed from each other well below 1 mRy and
amounted to Ex=0.619 Ry relative to the muffin-tin zero
potential level.

When performing surface calculations we used two
principal layers, i.e., ten physical layers for the “inter-
face” region. The ideal vacuum layers were represented
by empty spheres characterized by the constant potential
V,ac as determined by (C20). In order to mimic the decay
of the charge density and the 1/r,-like image potential in
the vacuum, we included some empty sphere layers into
the interface region too. At this point we found an in-
herent difficulty in describing the vacuum in a muffin-tin
geometry. Multiple-scattering theory as mentioned in
connection to (38) does not permit to have layer depen-
dent constant potential levels in the interstitial region.
Describing, therefore, the flat positive empty sphere po-
tentials in terms of muffin-tin potentials leads to an un-
physical picture. Clearly, in order to avoid this
discrepancy one should consider space-filling ‘“‘empty
cell” potentials in this region. In the present calculations
we approximated these empty cell potentials by spherical
potentials extended to the Wigner-Seitz radius, i.e., by us-
ing the well known atomic sphere approximation (ASA).

Starting from the bulk potentials for the copper layers,
we generally needed about 100 iteration steps to obtain
highly converged layer resolved potentials. Since the 2D
structure constants had to be calculated only once, one
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iteration for 12 energy points and 45 k points took typi-
cally 7 min on an IBM RS6000/550 computer. The layer
resolved charges and also the vacuum potential level were
converged to a relative error of 1075, According to the
required charge neutrality for the system (see Appendix
C), the net charge in the interface region was reduced to
about 10™* electrons during the self-consistent iterations.
The densities of states (DOS’s) were then calculated along
a line parallel to the real axis, for 100 energy points with
an imaginary part of 5 mRy. The calculated bulk and
surface DOS’s are presented in Fig. 1. In agreement with
other calculations® the Cu layers below the third layer
with respect to the surface are in fact bulklike. In partic-
ular for the (111) and (100) surfaces, the Cu atom in the
top layer lost some charge, which accumulated mainly in
the first empty sphere layer, while in empty sphere layers
further apart only a very small fraction of this charge was
found. For the more open (110) surface, however, also
the Cu layer below the top Cu layer and the second emp-
ty sphere layer were involved in charge transfer effects.
Irrespective of the surface direction the inclusion of more
than two vacuum layers into the interface region had
negligible effects on the calculated local DOS’s.

As mentioned before, the interfacial empty sphere lay-
ers serve to mimic the image potential in the vacuum.
Therefore, the calculated work functions are expected to
be more sensitive than the local DOS to the number of
these layers. This is demonstrated in Table I, where the
results corresponding to two, three, and four interfacial
vacuum layers are presented for each other. In this table,
the row labeled MT refers to the potential model de-
scribed previously, namely, muffin-tin Cu potentials and
ASA empty sphere potentials. In order to compare our

LDOS (arb. units)

bulk
0.0 0.2 0.4 0.6
ENERGY (Ry)

FIG. 1. Calculated layer resolved local densities of states for
the (111) (thick solid line), (100) (thin solid line), and (110) (dot-
ted line) surfaces of copper. The top three copper layers are la-
beled by 11, 12, and 13, respectively. The vertical lines denote
the Fermi level.

TABLE 1. Calculated work functions (eV) for various Cu
surfaces and their convergency with respect to the number of
vacuum layers in the interface region. The labels MT and ASA
refer to the cases when the Cu potentials were treated within the
muffin-tin scheme or within the ASA, respectively. For com-
parison in the last row we recall the corresponding LMTO-ASA
results.

No. of
vacuum
Surface layers MT ASA LMTO-ASA?
111 2 5.55 5.43 5.30
3 5.56 5.44
4 5.56 5.44
110 2 3.56 4.53 4.48
3 4.10 4.98
4 4.20 5.04
100 2 4.98 5.26 5.26
3 5.03 5.31
4 5.03 5.31

#Reference 8.

results with those obtained by using TB-LMTO ASA, we
also performed a set of calculations where not only the
vacuum empty cell potentials but also the copper poten-
tials were treated within the ASA. Quite obviously, in
this case the contribution to the Madelung potential de-
pending on the interstitial charge densities (C19) vanishes
and therefore possible errors due to the somewhat arbi-
trarily chosen steplike layer dependent interstitial charge
densities are excluded from the calculation of the work
function. (See also the discussion in the most recent pa-
per by Crampin.?}) The corresponding results are listed
in Table I, namely, in the row labeled ASA, together with
the results of TB-LMTO ASA calculations of Ref. 8.
Keeping in mind the difference between our ASA calcula-
tions and that of Ref. 8, the agreement is excellent.

V. SUMMARY

In summary we can conclude, that the localized KKR
scheme presented in this paper is able to calculate the
electronic properties of surfaces and interfaces quite ac-
curately. It should be noted, however, that the strict
muffin-tin potential model has some shortcomings—in
particular for surfaces—which can be resolved in a
space-filling full potential scattering formalism. Here the
necessary development is forthcoming.

Quite clearly, the main advantage of the present
method is its flexibility with respect to an extension to rel-
ativistic, !’ relativistic spin-polarized,?* and anisotropical
potential scattering, which formally implies “only” a
redefinition of the single-site t matrix in (6) and of course
solving a different Poisson equation (see, e.g., Ref. 25). In
particular, the last two applications will provide new as-
pects in dealing with semi-infinite systems, since in many
cases, such as, for example, magnetic interlayer coupling
or magnetic coating, it is absolutely necessary to have a
clear description for the orientation of the internal mag-
netic field.



2726

ACKNOWLEDGMENTS

The authors are grateful for many stimulating discus-
sions with J. Kudrnovsky, V. Drchal, B. L. Gyorffy, and
C. Sommers. This paper was supported by the Austrian
Ministry of Science (Grants Nos. GZ 45.123/4-
II/A/4/90 and GZ 49.731/2-24/91) and partially also by
the Hungarian National Scientific Research Foundation
(Grants Nos. OTKA 2950 and OTKA T7283).

APPENDIX A: DETERMINATION
OF THE MOST LOCALIZED REPRESENTATION
OF THE STRUCTURE CONSTANTS

In this appendix we solve Eq. (9) in a particular way
and show how the most localized representation can be
found. In order to obtain the screening functions corre-
sponding to this representation independently of the lat-
tice constant, let us decouple a trivial factor from G(E):

G(E)=s(E) 'S(E)s(E)" !,

_ V2w (Ew?)!'? (AD
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matrix in Ref. 18. Now (9) can be rewritten in the form
SHE)=S(E)+S(E)a(E)S*(E) , (A2)

which is often referred to as the Dyson equation of
screening. @(E) in (9) is connected to a(E) by the rela-
tion

_ 2w(Ew?))(E)
[(21 =17

Note that in terms of e=FEw?2, Eq. (A2) and especially
a(E) is independent of the scale of length w. The prob-
lem now arises when we wish to find the screening func-
tion a(E) that produces the structure constants with the
shortest possible spacial range. We not only need an
effective method to solve the Dyson equation, but also a
measure of the localization. Such a theory can be estab-
lished within the so-called two-center approximation. It
is based on the fact that the conventional structure con-
stants in real space can be decoupled into a purely angu-
lar and a radial dependent part:>°

&,(E) (A3)

i
St B = T P min( 1,1
where w is the some scale of length, e.g., the average SpL(RSE)= 2_: Zp (R (RSE) (A4)
Wigner-Seitz radius. It should be noted that S(E) is re- #=0
lated to the energy dependent LMTO structure constant where
J
—2jelHr+ D2 Y ! . ., P U ryrr t e
I (R E)= I — 2l — D I+nDI+10D(—1) ;(21 +1)i —p o 0|loo0 0 hp (VeR /w)
(AS)
and
PN — I R A B I / A . ~
Zp ) (R)=(2—=8,0)(—1) ; Vag(2A—1) | _ oll=m' m m'—m Y3, m(R) (A6)
f
By supposing the same form for the screened structure _ < PN
constants r, (al) ng %IIA(MI (A9)

min(/',[)

SEURE)= S ZImRIE,(RE) (A7)
u=0

it has been shown by Kollar and Ujfalussy?’ that the
Dyson equation can be written in terms of the exact (A4)
and the approximate (A7) two-center integrals:

1S E)=I,(n,E)+ 3 3 Z, aln,n )% (n'",E),

n'#0 A
(A8)

where we introduced a unified subscript A=(LL',u), and
n,n' denote the different atomic shells.?” Note that (A8)
is a matrix equation in atomic shells only, and because of
that, it is much smaller in size. For any (fixed) energy, it
is also possible to define a function I" based on Eq. (A8)
which has a minimum, if the most localized representa-
tion is found:

Clearly, the minimum of Fno has to be found for every

energy point of interest. Pairs of {a,},E define then the
representation where the structure constants have the
shortest possible spacial range.

It yet has to be shown that the two-center approxima-
tion (A7) is good enough for the search of the minimum
of T. This can be easily accomplished by comparing the
matrices S calculated by (A7) and (A8) (using the two-
center approximation), with the exact solution of the
Dyson equation. By solving Eq. (A2) in k space, as in
(18), and by a Brillouin zone integration, the exact S
matrices in the site representation can be calculated. By
comparing these two cases, one can see that the screening
functions obtained in the two-center approximation
indeed localized the structure constants. The effect of
screening is illustrated in Fig. 2 where the screened and
unscreened two-center integrals are shown. It is neces-
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07 01
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03 03
02 0.2
0.1 01
0.0 0.0

15 20 25 30 35 40 45 50 55 15 20 2.5 3.0 3.5 40 45 50 55

d/w d/w

FIG. 2. Relative change of the (a) unscreened and (b)
screened two-center integrals I, [see Eqgs. (A5) and (A8)] for
1 <2 in a fcc lattice with respect to the radius of atomic shells d,
scaled to the Wigner-Seitz radius w, at Ew?=2.

sary to mention that in the present energy dependent case
the screening is not as good as it is in the TB-LMTO
method. Therefore the range of the structure constants
cannot be restricted to first nearest neighbors only.
APPENDIX B: BLOCKS OF MATRIX M

The explicit expressions of the blocks of the matrix M
(26) with respect to the principal layer indices [see also
(25)] are given as

(M, )PQzﬁLSPQ +A=4018P,Q -1 +A=4105P,Q +1
(M, )PQ=A=4P5PQ +M%8p o 1+ M %Bp 01,
(Mp g )PQ=MR5PQ+A=4015P,Q—1+A=4[05P,Q+1 )
(ML,I)PQ=A=’1018P,05Q,x ) (B1)
(M g )PQZMOISP,nSQ,n +1>
(M )PQ=1‘=’1108P,18Q,0 )
(MR,I)szﬁlosp,n +180.n »
where

£L=LG’L(E)_1_ga’OO(k";E) ,

MP=t*PE)"'—=G*®(k;E) (1<P<n),
MR:éa,R(E)—I_ga,OO(k”;E) , (B2)
M%'=—-G""(k;E)

glo: _ga,lO(k“;E) .

APPENDIX C: SOLUTION OF POISSON’S EQUATION
FOR LAYERED SYSTEMS

The solution of Poisson’s equation for a layered ar-
rangement of point charges embedded into a jellium of
constant charge density has been presented by MacLaren
et al.'? Quite clearly, their theory works for planar de-
fects in bulk materials, but for surfaces or interfaces of
different materials the restriction to a constant interstitial
charge density seems to be unphysical. This problem is
excluded within the atomic sphere approximation as used
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for surfaces in the context of the LMTO method>® and
very recently also within the layer KKR technique.?*%8
In addition, the dipole term to the electrostatic potential
has been also included in these calculations, which is in
particular important for a calculation of realistic work
functions.>"%2%28 In this appendix, by imposing the
boundary conditions properly, we present an approxi-
mate solution to the 2D Ewald problem for the case when
the interstitial charge density varies steplike from layer to
layer. In the case of surfaces explicit expressions for the
monopole and dipole Madelung constants as well as for
the vacuum potential level are given.

In general for the case of a complex 2D system, gen-
erated by the nonprimitive 2D translational vectors a,,
the 3D inequivalent lattice positions are given by
rm,=Cp+ay, where the Cp refers to the interlayer vec-
tors in (15). When solving Poisson’s equation for point
charges embedded into jellium, Ewald’s technique has to
be used (for the 3D case see Refs. 29 and 30) resulting in
the following Ewald potential:

VErn =3 g, =8, L P Ty 5Ty )
pY

+8’1"py,1‘p°(r”_rp%|l)]+VL(H) . (C1

Here g, are effective charges, which are defined within a
muffin-tin geometry as

Ty =0y —Zpy~ %f_’psjy ’ (C2)
where Ql?g is the number of electrons within a sphere la-
beled by p and v, Z,, is the corresponding atomic num-
ber, p, denotes the interstitial charge density in layer p,
and S,, is the radius of the sphere. In (C1) the functions
deﬁcribing the 2D electrostatic monopole field are given
by

47 CXP(“|’1HG|||)

olry;r))=— cos(|r,Gyl) , (C3)
71 Q o !G“' (!
2 Iy =Ryl
@olry)=3 erfc
"R IRyl 20
8oV 4 erfc(a|Gyl)
—2XT A s 7 T os(In Gy

Q Q G#0 IGII|

(C4)

where G refers to the reciprocal lattice vectors of the
two-dimensional lattice, ) is the volume of the two-
dimensional Brillouin zone, ¢ is the Ewald parameter,
and V(r,) is the G;=0 component of the potential.

As was pointed out in Ref. 12, V() can be calculated

easily from a one-dimensional Poisson equation
SV grpir) (C5)
_— — 7T r ,

dr? PL\T

where p,(r, ) denotes the G;=0 component of the charge
distribution, which can be written as
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g
pilr))= %Sr
Py

+5(r,) . (C6)

L’rpy,i

In (C6) p(r ) stands for the charge density distribution of
the jellium, for which we assume a steplike behavior

plr )=py[1—=0O(r, —D,)]

m
+ 2 ﬁp[®(rl—Dp‘1)_®(rl_Dp)]
p=1
tPm+1®r, =D,y ), (€7
where the positions of the steps D, are most naturally
chosen as
c,  t+C
_ “pl p+1,1
=T (C8)

and the step function is defined by
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0 if x <0

OX)=11 ifx>o0.

In (C7) we assumed that for the layers to the left-hand
side (p =0) and to the right-hand side (p 2 m +1) of the
interface region, the interstitial charge density has con-
stant values, p, and p,, ; |, respectively. Quite clearly, for
the case of a surface p,, , ;=0 has to be taken. It should
be noted that (C7) is exact only when the boundaries be-
tween layers are planes. In general, when these boun-
daries are corrugated, p(r) necessarily has G #0 com-
ponents and in addition, its G;=0 component cannot be
exactly described by step functions like in (C7). There-
fore, the present scheme can be regarded merely as a
physically transparent approach to the solution of the 2D
problem. Using (C6) and (C7) Eq. (C5) can be solved ex-
plicitly:

4 q,
Vi(rl)=—%2 o Ir = oyl = 4ol rf = (r, = Do *@(r, =Dy )]
by
—47 3 p,l(r,—D,_)*®(r,—D,_,)—(r,—D,)*®(r,—D,)]
p=1
—475,, +(r,—D,, . 1)*®(r,—D,, . )+ Ar +8B, (C9)

where the two integration constants A and B have to be
determined from the boundary conditions on the left- and
right-hand side of the interface.'> On the left (bulk)
boundary this implies

Vilro,,)=Va, 1), (C10)

where the position Topg L is the closest lattice point in the

left-hand side medium to the interface region and, ac-
cording to Ref. 12,

2T = 2
V?(ayo’l):—ﬁ % dos g(a},o’l—aﬁ,l)z

—2|ayo,1—(13,1|+% , (C11)
with d being the layer spacing.

On the right-hand side we have to distinguish between
an interface and a surface case: for an interface we have
a boundary condition analogous to (C10), while for the
surface case the potential on the vacuum side has to tend
asymptotically to a constant value V.. Therefore, for
the ideal semi-infinite vacuum we require

(C12)
J

Vl(rpy,l): VVaC:COnSt fOrp Zm +1 )

Tpy.17g8,1

f

Quite obviously, (C12) ensures charge neutrality for the
whole system. Since there is no charge in the ideal vacu-
um, V. is the only term which contributes to ¥ £(r) (C1)
in this region.

Following Slater and De Cicco,*® the spherical part of
the potential inside the spheres can be approximated fair-
ly well by

(C13)

where the so-called Madelung potentials can be calculat-
ed as

24,y

Mad — 1; E(.__ — Py
Vo= }11% Vir—r,,) |r—rpy1 (C14)
Including also the dipole field one gets
Mad — = 00 5 10 -
Voy' = 3 (@gsMpy,qp FdepMpy,q5) TV, 1P] (€15

9.8

where the component of the dipole moment perpendicu-
lar to the surface is defined as d,3=1"3Q 3. For a surface
the monopole and dipole Madelung constants are given
by

41

m
0 —(1— e _ _Am _ Y
Mpy s =(1—8 Py |~ Tas, 3 Tpy, 1 " Tan,) T8, o POl | g5, )~ Zl‘sqq'(hpy,l TasLl Ty, 1 T Tgs) s
o=

(C16)
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Mo aMpy aB _ (1_5

Wi(r,,,
PY.as or TeBL Loyl

0 Tab L T8, |3 Ty, LT

qMH-

T3 8, [1+(1—
q'=1

7, L7gs, l)Sgn(rPY l_rq’ﬁ,l)] ’

(C17)

where, without loss of generality, Toygl =0 was supposed and the dipole electrostatic field ¥(r;r,) was derived in Ref.

5:

—7sgn(rl) S, exp(—

PY(ry;r, )=
P Q G0

It should be noted that according to (C14) for the case of r,,,,

|rl||G”| )cos(|r”G"!) .

(C18)

=T,s,|> the divergent term 2/r has to be subtracted from

@o(ry). The contribution to the Madelung potential attributed to the steplike interstitial charge density (C7) is given by

m p—1
Vo lp1=Vila, )+87 3 ﬁq(Dq—Dq_,)rp7,1+4wpobg+4wq§lﬁqw;_

q=p
Finally, for the vacuum potential level one obtains

m

| 4
p=1 v

8 _ = _ - =
m:y?(aywlwﬁ S 3(@,,rp,,.td,, ) t4np D +4m zlpp(Dg—Dg_l).

—1)—4mp,(r,, =D, ) (C19)

(C20)
=

It is worthwhile to mention that the above formulas can be applied without any further modification for calculations

within the ASA, by simply taking the limit p, =0 for all p.
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