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Conduction-band plasmons in cluster-type compounds:
Application to fullerides and quantum-dot arrays
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We analyze collective excitations of carriers in three- and two-dimensional crystals made up of
cluster-type units (fullerenes, quantum dots, etc.). This class of compounds is unique in that the elec-
trons are essentially confined to the individual clusters, while the latter are both large in size and close
packed. We derive a general expression for the dispersion law of conduction-band plasmons, and apply
it to alkali-metal-doped fullerides and quantum-dot arrays. We find that the dispersion relation is
modified from the case of a homogeneous electron gas: it becomes measurably steeper and acquires a
downward slope. This change is due to the appearance of a term which is determined by the density dis-
tribution of electrons within a unit cluster. Related electron-energy-lass spectroscopic data on the doped
fullerides are discussed.

I. INTRODUCTION

Recent progress in carbon-cluster and quantum-dot
preparation techniques' has led to the appearance of a
new class of building blocks for materials. Two- and
three-dimensional arrays of quantum dots and carbon ful-
ler enes, respectively, make up periodic structures
representing crystals with unusual and flexible charac-
teristics. For example, by doping fullerene crystals one
can obtain new types of conductors, superconductors,
and insulators (see, e.g., the reviews in Refs. l and 3).

By tuning the confinement potentials it is likewise pos-
sible to couple neighboring quantum dots by weak electri-
cal channels, creating a conducting two-dimensional (2D)
array. Doped fullerene monolayers could serve as
another class of conducting 2D cluster lattices.

Such compounds are unique in that even when they
possess a conduction band, the electrons are primarily
confined to the individual cluster or dot. This means that
the characteristics of the individual structural unit will be
reflected in the properties of the conductor. The elec-
tronic states of an isolated unit are quantized into
discrete levels, giving rise to a well-defined series of ener-

gy bands in the crystal. At the same time, in structures
built up of fullerenes or quantum dots the constituents
are both quite large and close-packed, i.e., they fill up
most of the primitive lattice cell. This important feature
distinguishes them from conventional conductors.

In other words, compounds of this type exhibit two de-
grees of electron delocalization. First, within each unit
cell the electrons are distributed throughout, and strong-
ly bound to, the entire cluster, dot, etc. Second, if the
electrons are able to tunnel weakly between cells, the
crystal becomes a conductor. As a result, the spectra of
such conductors can display a variety of unorthodox
features.

We will refer to this developing class of materials as
"cluster-type" compounds. In addition to fullerenes and
quantum dots, building blocks for such conducting crys-
tals may include, e.g., large aromatic molecules or
ligand-stabilized metal clusters.

This paper is devoted to an analysis of collective elec-
tronic excitations (plasmons) in cluster-type conducting
crystals. In ordinary metals, bulk plasma oscillations of
the electron gas have a weak positive dispersion:
plasmon energy increases slowly with the wave vector. '

In the present case, however, because of the high degree
of electron confinement to the interior of large unit cells,
the character of conduction-band plasmons can be al-
tered significantly.

For example, in the doped C60 materials the dispersion
can acquire a negative slope and become rather steep.
This conclusion is related to recent experimental observa-
tions, as will be discussed below. We will show that this
behavior is governed by the distribution of electrons on
the fullerene cage. Similarly, we show that the disper-
sion of collective excitations in a 2D conducting array of
quantum dots can be made noticeably different from that
of the usual 2D electron gas.

The plan of the paper is as follows. Section II contains
an analysis of the linear response of conduction electrons
in three-dimensional cluster-type crystals. In Sec. III we
derive the plasmon dispersion relation for the doped ful-
lerides. In Sec. IV a similar analysis is out1ined for a
two-dimensional array of semiconductor quantum dots.
Section V contains the summary.

II. CONDUCTION-BAND PLASMONS
IN CLUSTER-TYPE CRYSTALS

A. Equation for the self-consistent field

Our analysis of conduction-band plasmons is based on
the linear response equation in the random-phase approx-
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imation (RPA). As is well known, the RPA has proven
successful in describing collective electron oscillations in
bulk metals and semiconductors (see, e.g. , Refs. 6, 7, and
11), and in two-dimensional and layered systems (e.g. ,
Ref. 12), as well as in isolated carbon and metal clusters
(e.g. , Refs. 13 and 14). Here we will use it to treat
cluster-based bulk materials.

The self-consistent-field equation which describes the
total electric potential within the sample,
V(r, cu)exp(i tot ), in the absence of external fields reads

V, s)q+Gi'
uo(q)=

X g uo (q) QF&&.(tu) A ~ (
—

q
—G)

Gl AA,
'

X 3 (q+G, )6k k+q .

(5)

Here F&~~ is the energy factor of the RPA polarization
operator:

1
sV(r, co)= f f

i i

II(ri, r2, to)V(rq, tu)d rid r2, (1)
r —

r&
and

E i, E i—, +cu+i5
(6)

where c is the background dielectric constant, and
II(r„r2, co) is the RPA polarization operator:

XX&(r2)gi (r2} .

Here E& and g& are single-electron level energies and
wave functions, respectively, and fi 's are the occupation
numbers; atomic units are used throughout.

Equation (1) has nontrivial solutions for certain values

of frequency co. These eigenvalues correspond to self-

sustaining plasma oscillations of the electron system.
Since we are considering cases when electrons are pri-

marily confined to individual cells, the tight-binding ap-
proximation is a natural starting point for the description
of electronic states in such crystals. Consequently, we

write the Bloch functions as superpositions of electronic
orbitals P of an isolated cluster:

yi(r)=pi, (r)=N '~ ge 'P (r —T;) .
T

(3)

The summation is over all the lattice translation vec-
tors T;, and the total number of cells N serves as the nor-

malization constant. We use the term "cluster" for brevi-

ty when referring to the crystal building blocks.
The Coulomb potential can be expanded in a

three-dimensional Fourier series:
~
r —r i ~

=4+&, 'g (1/p~)exp[ip (r —r, )], where V, is the crys-
tal volume. Since plasmons represent a wave running
through the periodic lattice, we seek the self-consistent
potential V(r, co) in the following Bloch-like form:

V(r) =e'~' g uo(q)e'
G

Here q is the crystal momentum of the plasmon, and G's
are the reciprocal-lattice vectors. The dependence of V
and U on m is implied, but no longer explicitly indicated.

These expansions are now substituted into Eq. (1) to-
gether with the wave functions (3). If we neglect overlap
integrals involving pairs of wave functions centered on
different lattice sites, i.e., P (r —T, ) and P (r —T ), i',
the result is

A (q):—f d r P*(r)e'i'P (r) .

We have made of identity
N 'grtexp(ik T) =5k 0

A comment is in order regarding the neglect of matrix
elements involving electronic wave functions centered on
neighboring clusters. In the tight-binding picture, the
effect of overlap of such wave functions is twofold. First,
it broadens the energy levels of individual clusters and
gives rise to a real, albeit narrow, conduction band.
When we are considering electronic transitions within the
conduction band, this broadening makes the key contri-
bution [-(b@) ', where b, 8 is the conduction band-
width] to the polarization operator (6) and thereby to
Eqs. (1) and (5). Second, the overlap contributes addi-
tional terms to the electronic matrix elements. In our
treatment we fully take into account the dispersion of the
conduction band which represents the leading-order
effect. The remaining second factor, i.e., additional ma-
trix elements, would contribute small further corrections
(cf. Ref. 15).

Equation (5) is a general one and can be employed, for
example, to analyze collective modes involving all elec-
trons present in the unit cell; in the limit of large inter-
molecular separation these would correspond to the reso-
nances of an isolated cluster. Our aim here is to consider
the behavior of conduction-band plasmons, that is, col-
lective motion of the tunneling carriers. As opposed to
the aforementioned case, these modes are present only
when clusters are joined in a crystal, because they arise
due to the existence of the conduction band.

theuse

B. Resonance frequencies of conduction electrons

Let the cluster orbital giving rise to the conduction
band be denoted by ao. In a cluster-type conductor, the
width of the conduction band is much smaller than the
interband separation. Let us consider the case when the
frequency of the conduction band plasmon, coo, is also
much smaller than the energy of the lowest-frequency in-
terband transition. As will be discussed below, such is
the case, for example, in the doped fullerides. Conse-
quently, when solving equation (5) for mo we can neglect
all interband transitions and retain only the terms with
a =o," =oo.

The summation over A, —= [a,k] and A.'= [a', k'] in the
self-consistent-field Eq. (5} then reduces to one over the
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Here 8), E——), are the band energies of the conduc-

tion electrons, the functions f), are the electron gas occu-
pation factors (f), is 0 if k & k~, and 1 if k )k~, k~ is the
Fermi wave vector), and the factor of 2 accounts for the
spin multiplicity. This integral is precisely the retarded
polarization propagator IID (q, coa) encountered in the
theory of the electron gas. It is equal to

kFq
II() (q, cv()) =n, 1+— +' m*co 5 m*co0 0

where n, is the volume density of the conduction elec-
trons, and m * is their effective mass.

Thus in the case of low conduction-band plasmon fre-
quencies Eq. (5) becomes

vG(q)= A (
—

q
—G)110(q,cv0)

E q+G

Xg vG (q)A (q+G, ) .
GI

(10)

Notice that the function v can be sought in the form
vG(q) = A (

—
q —G) ~q+G~ F(q). Substituting this

into Eq. (10), we finally obtain an eigenvalue equation for
the resonance frequency cop.

II()(q, cva) g A (q+G)~ =1 . (11)

It can be seen from this equation that the frequency of
the plasma oscillation is periodic in the reciprocal lattice:
cv()(q+ G) =(v()(q). The problem of calculating the
dispersion of the resonance frequency reduces to that of
evaluating the matrix element A and performing the
summation over the reciprocal-lattice vectors G. From
definition (7), we see that

A (q+G)= f d r~(t) (r)~ e'q+

jd 3 JV ( )
i(q+G).rr e (12}

JV is the density distribution of the conduction electrons
0

on an individual cluster; integration is performed over a
single cluster. Equations (11) and (12) constitute the
main result of this section.

We see that the dispersion of the carrier plasmon in
cluster-type materials is determined by the distribution of
the conduction electrons in the unit cell. The fact that
this distribution occupies a large volume of the unit ce11,
while at the same time the tight-binding description
remains valid, is responsible for the peculiar character of

crystal momentum k of the conduction electrons only.
The dependence on k remains only in energy factor (6),
and we can write (k can be treated as a continuous vari-
able)

d'k f), f—),+q

the collective modes. In Sec. III we apply the formalism
to doped fulleride crystals.

III. NEGATIVE DISPERSION
OF CARRIER PLASMONS IN FULLERIDES

A C6p molecule contains 180 carbon 0. electrons and 60
m electrons. In C60-based solids, these electrons remain
tightly bound to their parent clusters, and occupy very
narrow completely filled energy bands. A pure fullerene
solid is an insulator. In doped fullerides of composition
A C6p where A is an alkali metal, the alkali atoms
donate their valence electrons to the clusters. There, the
extra n electrons populate the lowest unoccupied t,„
molecular orbital (LUMO). When n =3, this orbital is
exactly half-filled. It is found' that A3C60 are conduc-
tors, i.e., that the t, „electronic orbital gives rise to a nar-
row conduction band of =0.6-eV width. '

Fullerene-based materials display a number of collec-
tive electronic states. These include high-frequency m.

( cv =6 eV) and m. +0 (cv =27 eV) plasmons involving all
the m and 0. cluster electrons, ' as well as a low-
frequency plasmon which appears at cop=0. 5 eV and is
due solely to the conduction band. The latter collective
state has been seen in both electron-energy-loss (EELS)
(Refs. 8 and 17) and optical' measurements. The energy
of the lowest-frequency interband transition in K3C60 and
Rb3C60 fullerides is =1.5 eV, ' ' which is considerably
higher than cop. Thus the formalism developed in Sec. II
is directly applicable here, and we can use Eqs. (11) and
(12) to derive the dispersion law of the valence electron
plasrnon.

What valence electron density JV is appropriate to
0

employ in Eq. (12) in the case of a fulleride solid? A
physically reasonable picture is that of the donated elec-
trons distributed approximately uniformly over the sur-
face of the fullerene cage. Although the t,„LUMO
states of an isolated cluster are not fully spherically sym-
metric but have angular momentum L =5 character, ' '

when three electrons are donated to this orbital they can
be expected to distribute themselves in a symmetric
manner. Further effective averaging will occur in the ful-
leride solid due both to crystal-field effects and to the
orientational disorder ' of the constituent clusters.
Thus it is justified to take JV (r)=(4mR ) '5(r —R),

0
where R is the fullerene radius. [In fact, the n-electron
cloud of the carbon fullerenes has a finite thickness of
=1.5 A. ' This can be included in our calculation by us-
ing a spherical shell of finite thickness for JV (r) in Eq.

0
(12); the effect is to replace the cage radius R by an
effective radius R =1.03R.] With this expression for the
valence electron density, the matrix element (12) becomes

A (q+G}= (13)
~q+G~R

This expression can now be substituted into the eigen-
value equation (11). We are interested in the dispersion
behavior of long-wavelength plasmons (those with q « G,
where q is in the first Brillouin zone), and therefore need
to keep only the leading-order term in q (-q ). Conse-
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quently, when evalua. ing the sum over reciprocal-lattice
vectors in equatior 'll), we can neglect q in all terms
with GWO. The "uin over these terms becomes propor-
tional to S—:g„,~osin (GR )/(GR ), and can be calculat-
ed based on the known fulleride crystal structure.

The compound K&C6O has fcc structure with the lattice
constant a =14.25 A (for Rb&C6O, a =14.44 A), and the
radius of the C6O cluster is R =3.55 A. ' The lengths of
reciprocal-lattice vectors up to G=12&3m./a are avail-
able in tabulated form, and their contributions can be
summed explicitly. The remainder can be estimated by
replacing summation over G by integration. Since the
factor sin x/x decays very rapidly, the sum S converges
quickly. For the K&C6o crystal it is found to be equal to
S=0.13.

Combining this with the contribution of the G =0 term
equal to sin (qR )/(qR ), we find that to leading order in

q the eigenvalue equation (11)now becomes

IIo(q, coo) 2 [1—0.20(qR ) + ]=1 . (14)

Using expression (9) for the polarization operator, we

can solve for the collective resonance frequency coo. We
find the following dispersion relation:

a)o=co [1—0. 10(qR) + 9, (qkr„)—+ ] . (15)

coo=co [1—y(qR) + ], (16)

where @=0.1. Within the Brillouin zone then, the plas-
ma frequency can decrease by as much as —10—20 %.24

This dispersion law can be probed by electron-energy-loss
spectroscopy.

As mentioned above, a Drude-Lorentz analysis of opti-
cal reflectivity spectra of K&C6O (Ref. 18) has yielded a
conduction electron resonance frequency co =0.5 eV.
This agrees with EELS data ' for low momentum
transfer which show a well-defined loss peak at this ener-

gy.
The aforementioned EELS measurements for a film

sample of nominal composition K~ ~C6o (with 15% C7o',

energy resolution 0.14 eV) suggest a small decrease in the

Here the screened plasma frequency is
co = (4n n, /em '

)', and the Thomas-Fermi screening
length parameter is A, r„=(6m.n, /A~)

' (6F is the Fer-
mi energy of the conduction electrons).

If the size of the cluster were small, the second term in

brackets would be negligible, and we would recover the
familiar plasmon dispersion relation of the electron gas.
However, as we emphasized earlier, the present case is

unique in that the electrons are arranged on the surface
of a large molecule. As a result, the second term dom-
inates, and the dispersion relation changes sign and be-
comes much steeper. In other words, the plasmon group
velocity becomes negative.

Indeed, for the alkali-metal-doped fullerides with three
conduction electrons per unit cell and BF=0.2 —0.3

eV, ' ' we have k+„=0.4 A, while R =3.5 A. This
means that the new negative-dispersion term dominates
the plasmon dispersion relation by an order of magni-
tude, and we can write

position of the loss peak as the electron momentum loss
hq increases from Aq=0. 2 to 0.6 A . The analysis we
have described here provides a basis for such unusual
behavior. For a quantitative comparison with the theory,
there is a need for high-resolution EELS data on crystal-
line samples of optimal stoichiometry (e.g., KiC6o) and
controlled crystal orientation. In this way, the predicted
negative dispersion of conduction-band plasmons can be
mapped out. Furthermore, as described above [Eq. (12)],
the magnitude of the dispersion coefficient can be related
directly to the distribution of valence electrons on the
surface of the fullerene units.

IV. CARRIER PLASMONS IN 2D ARRAYS

In this section we consider the conduction-band
plasmon spectrum of a 2D cluster-type array, e.g. , one
made up of semiconductor quantum dots with weak elec-
tron tunneling between them.

Quantum dots have disklike shapes, with radii of a few
hundred nanometers and small thicknesses (several tens

0
of A). They can contain from a few to dozens of mobile
electrons, which are strongly squeezed in the z direction
(disk axis), but delocalized over the area of the dot (in the
x-y plane). The electrons are thus confined to the lowest
quantum state in the z direction, and occupy a series of
discrete levels in the plane of the dot. Let us assume that
the wave functions of the higher-lying electronic levels in

neighboring dots overlap slightly, so that there appears a
narrow 2D conduction band. Following the approach
developed in preceding sections, we can derive a disper-
sion relation for the collective plasma resonances of this
conduction band.

We again need to find the eigenfrequencies of the
linear-response equation (1), but in the present case
periodicity is present only in the x and y directions. The
tight-binding electronic wave functions thus have the fol-

lowing form:

gq(r)=N ' ge 'P (p —5;)g(z) . (17)

The vector p is a 2D coordinate in the x-y plane, 7 s

are the 2D lattice translation vectors, and g(z) is the
wave function of the lowest quantum state in the z direc-
tion. By writing the 3D Fourier expansion for the
Coulomb interaction (see Sec. II) and integrating over the
z component of the wave vector, we obtain the following
series:

~r —r, ~

'=2~A, ' g (I/p)exp[i'. (p —p, ) —g~z —z, ~ ],
where/i is a 2D wave vector, and A, is the area of the

array.
We substitute these factors into the linear-response

equation, and notice that it can be simplified by multiply-

ing both sides by ~ g(z ) ~
and integrating over z. As a re-

sult, we arrive at the same equation we dealt with in Secs.
II and III, with the following differences: (1) instead of
V(r) the equation involves the modified function
V(p)—:J V(p, z)~g(z)~; and (2) instead of the 3D
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Coulomb fourier factor 4m /p we have the factor
2vrI(/t )/p, where

I(/)= f f ~g(z)~'~g(z, )~ e 'dzdz, . (18)

( p~)g ~A ( +Q)~ =1
I-+&I

(19)

and

(y+ 9}=f d p JV~ (p)e'++ '~ . (20)

The RPA polarization propagator in 2D is given
b 28, 29

H ( ~ )= [(1—a )
' —1] (21)

Further analysis then proceeds identically to that in
the preceding sections. We expand V(p) in a 2D series
analogous to Eq. (4), once again neglect the small contri-
bution of the overlap integral to the matrix elements of
V(p), and concentrate on the case when the plasma reso-
nance frequency of the conduction electrons is much
lower than interband spacing. (As we shall see below, the
plasmon dispersion relation has the form coo~y', so
that the last assumption is a very good one for small mo-
menta y.) The analogs of Eqs. (11)and (12) in the present
quasi-2D case are

if the radius of the dot were small (%~0},we would re-
cover the plasmon dispersion law for a 2D electron
gas. ' ' The fact that we are dealing with an array based
on large clusters brings about an additional term which
contributes a noticeable downward slope.

Equation (24) is valid when the (y%) term dominates
over other corrections present in Eq. (19). These include
linear terms -zpy and -(ape/m ')y contributed by the
function I(y) and by the polarization propagator
IIP(y, cop}, respectively (ap is the Bohr radius}. In realis-
tic cases both zp and ap(e/m~) are smaller than % by
well over an order of magnitude, which means that the
—yp(yA) term in Eq. (24} will become dominant for
y% ~ 0. l. Another correction linear in y comes from the
sum over QAO in Eq. (19). The precise value of this sum
depends on the geometry of the 2D lattice, but the sum
converges very quickly and for not too small values of
(yA) will not lead to substantial deviations from the
dispersion relation (24).

From the foregoing discussion it follows that the
dispersion law (24) should be detectable in conduction-
band plasmon spectra of 2D arrays, for example by EELS
methods. It is also evident that the ability to vary the

geometry and composition of quantum-dot crystals al-
lows for great flexibility in tuning the spectral behavior of
plasmons.

where a =cop/(yvF ), and v~ is the Fermi velocity.
The plasmon dispersion relation is seen to be deter-

mined by the radial distribution JV (p } of the conduction
0

electrons within an individual quantum dot, a situation
parallel to the earlier 3D case.

If we assume that this distribution is approximately
uniform, JV' =1/(n% ), where R is the dot radius, then

0

from Eq. (20)

2J, (I++ ~l~ }(y+9)=
/y+@%

The function I(p), Eq. (18), has been evaluated in Ref.
26 for the case of a thin disk; it is given by

(22)

I(/)= 2

QZp

/tzp

2 [4m. + (/tzp ) ]

(2m. ) (1—e ')
Pzp[4n +(/tzp) ]

(23)

where zo is the confinement thickness of the quantum
dot.

For small values of y, 2 (y}=1—(y%) /8. Due to

the large coefficient of the y term, it will typically dom-
inate other contributions to Eq. (19}. We then find the
following dispersion relation for carrier plasmons
in a conducting 2D quantum-dot array:
aip=ay'~ [2J,(yA)/(y%)], or

cop=ay' [1—yp(y%) + ], (24)

where yp= —,', a = (2m', }/(m *e), and ~, is the number of
tunneling electrons per unit area. Once again, we see that

V. SUMMARY

Collective excitations of conduction electrons in 3D
and 2D lattices based on cluster-type units (fullerenes,
quantum dots, etc.} display unusual dispersion charac-
teristics. This is due to the unique features of this class of
compounds: the electrons are essentially confined to, and
delocalized within, the individual clusters, while at the
same time the cluster units are large in size and packed
closely together.

Employing the linear response equation and the tight-
binding approach, we have obtained a general expression
for the conduction-band plasmon dispersion. The main
conclusions can be summarized as follows.

(1) The dispersion law of the carrier plasmon in
cluster-type materials is uniquely determined by the
electron-density distribution within a unit cluster. Con-
versely, a measurement of the plasrnon dispersion rela-
tion can be used to characterize the distribution of car-
riers within the unit cell. These effects represent a contri-
bution which is different in principle from those found in
conventional conductors.

(2) The plasmon dispersion relation acquires terms typ-
ically proportional to (qR), where q is the plasmon
momentum, and R is the dimension of the cluster. Since
R is large, these terms dominate the dispersion charac-
teristics.

(3) In realistic cases, the coefficient of the aforemen-
tioned terms is negative. This means that instead of the
weak positive dispersion characteristic of the 3D horno-
geneous electron gas, the conduction plasmons in
cluster-type compounds can display a strong negative
dispersion. In other words, the plasmon group velocity
increases in magnitude and changes sign.
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Similarly, in 2D compounds the negative-dispersion
term adds a measurable downward trend to the momen-
tum dependence of the collective resonance frequency.

(4) The formalism was applied to 3D alkali-metal-
doped C6O fulleride crystals and to 2D arrays of semicon-
ductor quantum dots. In the former case, it was pointed
out that the low-energy peak of the EELS loss function
should display a decrease in energy with increasing
momentum transfer.
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