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The results of an x-ray-scattering study of the (3x1)-to-disordered phase transformation of the
Si(113) surface are reported. A continuous commensurate-solid to incommensurate-Iiuid transfor-
mation at T, = 950 + 40 K is observed. At the transformation, the reconstructed layer becomes
uniaxially incommensurate along the cubic (110) direction (z direction). It remains commensurate
along the (332) direction (y direction). Critical scattering shows power-law behavior over nearly
two decades of reduced temperature [t = (T —T,)/T, ] with exponents P = 0.66 6 0.05 for the
incommensurability (e), v = 0.65 6 0.07 for the inverse correlation length in the incommensurate
direction ( a, ), v„= 1.06 6 0.07 for the inverse correlation length in the commensurate direction

(a„), and p = 1.56 + 0.13 for the susceptibility (y). Below T, the variation of the square of the
order parameter, proportional to the peak intensity at the commensurate position (Io), varies with
an exponent 2P = 0.22 6 0.04. It is noteworthy that the correlation lengths in the disordered phase
scale anisotropically, that is, v g v„, and that the collected exponents do not conform to those of
any previously known universality class. In addition to the critical exponents of the transformation,
two universal constants have been measured. The ratio of the incommensurability and the inverse
correlation length along the incommensurate direction in the disordered phase is found to be inde-
pendent of temperature, i.e., P = v„consistent with predictions for a two-dimensional chirul melting
universality class, and to have the value ms = 1.6 6 0.2. Also, the combination R, = ye a„/IsV„,
where V is the two-dimensional resolution volume, is independent of the reduced temperature,
consistent with the derived hyperscaling relationship v + v„= p + 2P. R, may be interpreted as
the ratio of the integrated intensity of the central part of the critical scattering above T, (ye a„)
to the integrated intensity of the order parameter scattering below T, (I&V). According to the
hypothesis of two-scale-factor universality, R, is a universal constant, which we find takes the value
R, = 0.07+0.03.

I. INTRODUCTION

According to the concept of universality, the criti-
cal behavior near a continuous phase transformation de-

pends only on the most general aspects of the system in
question, such as the symmetry of the phases involved
and the dimensionality of space. Thus, the phase trans-
formations of many disparate materials fall into univer-
sality classes, within each of which the critical exponents
and certain universal constants are independent of mi-
croscopic details and delineate the universality class. It
is generally believed that two-dimensional (2D) phase
transformations may be understood in terms of a lim-
ited number of well-known universality classes. There-
fore, the appearance of a new 2D universality class is of
special interest, particularly when the critical behavior
corresponds to a simple and generic statistical mechan-
ical model, and also is unusual in its own right. The
experimental characterization of such a universality class
is the topic of the present paper.

Transformations between the different phases of a uni-
axial overlayer on a substrate allow 2D critical behavior
to be studied experimentally. Thus, the commensurate-
solid-to-commensurate-Huid transformation of a p-fold
commensurate structure [(pxl) structure] is predicted
to be in the universality class of the 2D p—state Potts
model, ' the continuous transformation from a 2D in-
commensurate (IC) solid to a disordered fiuid phase is
predicted to be in the Kosterlitz-Thouless (KT) univer-

sality class, 4 and the commensurate-solid (C-solid) to IC-
solid transformation is predicted to lie in the Pokrovsky-
Talapov (PT) universality class. For the transformation
&om a C solid to an IC Quid, the order of the commensu-
rability (p) is key in determining the expected behavior.
It is generally agreed that the continuous disordering of
a (2xl) structure (p = 2) is inevitably in the univer-

sality class of the 2D two-state Potts model, which is
equivalent to the 2D Ising model. For p ) 3, exclud-
ing first-order phase transformations, there is agreement
that an IC-solid phase separates the C-solid and IC-fiuid
phases, so that disordering proceeds via successive PT
and KT transformations. A realization of C-solid disor-
dering via two transformations, 6rst to an IC-solid and
then to a Quid phase, is provided by bromine layers inter-
calated into graphite, which form a sevenfold commensu-
rate structure at lower temperatures. e 8

In contrast, a transformation that is not at present un-

derstood theoretically, and offers the possibility of realiz-
ing a new universality class, is the disordering of a (3x 1)
C solid (p = 3). ' Figure 1 illustrates generic phase
diagrams that have been proposed for the disordering of
a (3xl) overlayer. At the special point on the disor-
dering line where light and heavy domain walls (discom-
mensurations) have equal free energies (P), this trans-
formation is in the three-state Potts universality class.
Away from P, three competing candidate scenarios have
emerged from different treatments of the three-state chi-
ral Potts model, ' which on the basis of universality
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FIG. 1. Proposed phase diagrams of the disordering of a
(3x 1) overlayer, as described in the text.

is expected to reproduce the critical behavior of a (3x 1)
overlayer. In contrast to Potts models, for chiral Potts
models a domain wall at which the phase of the order pa-
rameter changes in a clockwise sense (light domain wall)
has a different free energy than a domain wall at which
the order parameter changes in a counterclockwise sense
(heavy domain wall).

The first possibility, proposed by Haldane, Bak, and
Bohr and by Schulz, is that a direct C-solid to IC-
fluid transformation cannot occur for any nonzero chi-
rality, defined as the difference in free energy between
light and heavy discomrnensurations. Instead, as shown
in Fig. 1(a), disordering is a two step process, involving a
PT transformation to an IC-solid phase and, at a higher
temperature, a KT transformation to a fluid phase.

The second possibility, sketched in Fig. 1(b) and fa-
vored by den Nijs and co-workers and Howes, is
that at small chirality there is a direct C-solid-to-IC-
fluid transformation in the three-state Potts universality
class. This proposal is apparently in contradiction with
den Nijs's own determination that the chiral crossover
exponent is positive, indicating that chirality is relevant
at P. It follows that a priori one expects new criti-
cal behavior at nonzero chirality. However, den Nijs ar-
gues that chirality is a redundant operator, and does not
change the critical behavior. Only when the chirality
differs significantly from its value at P is the three-state
Potts C-solid-to-IC-fluid transformation replaced by suc-
cessive PT and KT transformations. The multicritical
point in the phase diagram where C-solid, IC-solid, and
IC-fluid phases meet is called a Lifshitz point (I).

Finally, Huse and Fisher have proposed that, between
P and I in Fig. 1(b), the C-solid-to-IC-fluid trans-
formation belongs to a new ehiral melting universality
class. ' The signature of chiral melting is that the
product of the incommensurability and the correlation
length approaches a constant near the critical temper-
ature (T,), that is P = v, where P and v are the criti-
cal exponents for the incommensurability and the inverse
correlation length, respectively. In contrast, den Nijs
expects P = 2v, as found in the exactly solved "hard
hexagon" model, which is in the three-state Potts uni-
versality class. The product of the incommensurability
and the correlation length would in this case go to zero
upon approaching T,. Not surprisingly, since its existence
remains a matter of debate, there are no generally ac-
cepted values of the critical exponents for chiral melting.

In contrast, the universality classes involved in the first
two scenarios are well understood and the corresponding
critical exponents are known exactly.

To distinguish among these different theoretical pos-
sibilites, one may turn to numerical studies. There
seems to be a consensus based on Monte Carlo,
finite-size transfer-matrix scaling, and Monte Carlo
renormalization-group calculations that there is a Lif-
shitz point at nonzero chirality. However, no definitive
conclusions can be drawn concerning the critical behavior
of the C-solid-to-IC-fluid transformation or its universal-

ity class. Thus, it is clear that experimental studies of the
disordering of threefold commensurate overlayers that de-
termine the critical exponents accurately are needed.

In the present paper, we report the results of a high-
resolution, synchrotron x-ray-scattering study of the
(3x 1)-commensurate-to-disordered transformation of the
Si(113) surface. 2~ 2 For Si(113), the reconstructed sur-
face plays the role of the overlayer, while subsequent
layers constitute the substrate. Unfortunately, it is not
possible to vary the chirality independently. Instead, it
must be inferred from experiment where the disordering
of Si(113) lies in the phase diagrams discussed above.
Our study of Si(113) was motivated by the low-energy-
electron-difFraction (LEED) experiment of Yang et al. ,

2s

who suggest that the Si(113) (3xl)-to-disordered trans-
formation provides an example of chiral melting. Us-

ing the superior resolution available in synchrotron x-
ray-scattering experiments, a more complete and accu-
rate characterization of the critical behavior has been
obtained. In particular, the behavior of the correlations
along the commensurate direction, which could not be
resolved in the LEED experiment, has been measured.
Also, the critical exponents are shown to satisfy hyper-
scaling.

Our detailed results may be summarized as follows.
We find that Si(113) undergoes a continuous transfor-
mation at T, = 950 6 40 K, accompanied by critical
scaling over nearly two decades of reduced temperature
[t = (T —T,)/T, j with exponents v = 0.65 + 0.07
for the inverse correlation length along the incommen-
surate direction (r. ), v„= 1.06 + 0.07 for the in-

verse correlation length along the commensurate direc-
tion (r.„), P = 0.66 + 0.05 for the incommensurability

(e), p = 1.56 + 0.13 for the susceptibility (y), all above
T„and 2P = 0.22+0.04 for the intensity of the commen-
surate peak (Io) below T, . Remarkably, the correlation
length exponent along the incommensurate direction dif-

fers from that along the commensurate direction: there
is anisotropic scaling. Such behavior is very unusual and
has not been anticipated by previous experimental work
on Si(113) or in the majority of theoretical and numeri-
cal discussions of (3x1) disordering. The observation of
anisotropic scaling is essential in showing that the critical
behavior lies outside of the three-state Potts universality
class, or any other previously known universality class.

In addition to the critical exponents of the transfor-
mation, two purportedly universal constants have been
determined. The ratio of the incommensurability and
the inverse correlation length in the disordered phase is
independent of temperature, consistent with predictions
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for the proposed chiral melting universality class, and
has the value mo ——1.6 + 0.2. Also, the combination
R, = pic m„/IoV„, where V is the two-dimensional res-
olution volume, is independent of the reduced tempera-
ture, consistent with the derived hyperscaling relation-
ship v + v„= p + 2P. According to the hypothesis of
two-scale-factor universality, R, is a universal constant,
which we find takes the value R, = 0.07 + 0.03.

Many other surfaces exhibit (3x 1) structures,
including, for example, Ge(113), Cs/Au(110), s

0/Cu(210), s2 H/Fe(110), ss and Cs/Cu(110). s4 Univer-
sality implies that our results may have wide application
in understanding the critical behavior of such systems.

The format of this paper is as follows. Section II details
our experimental methods. The results and their analysis
in the context of current theoretical ideas are presented
in Sec. III. In Sec. IV, we conclude. A summary of our
results has appeared previously.

II. EXPERIMENTAL METHODS

We studied n-type (phosphorous doped) silicon wafers
oriented to within 0.3' of the (113) direction (0.3' mis-
cut), with resistivities in the range of 10—100 Acm. Each
30x10x0.5 mm sample was held to electrically isolated
molybdenum plates by flexible molybdenum clips. A di-
rect current through the sample provided resistive heat-
ing, and also served as a convenient measure of the tem-
perature. The temperature of the wafer was measured
independently using an optical pyrometer and also by de-
termining the lattice constant using x-ray diffraction at
bulk reflections. Standard tables then give the temper-
ature of the sample for the measured lattice constant.
These two methods agreed in absolute scale to 30 K, and
tracked to within 5 K over the range of temperatures
studied: 800 K to 1100 K. By fitting the measured tem-
perature versus the sample current to a polynomial, an
interpolation formula for converting the current to tem-
perature was derived. The precision of the relative tem-
perature measurement and control was 0.1 K, while the
absolute accuracy of the temperature scale is estimated
to be 40 K near the disordering temperature. The heat-
ing arrangement was found to be quite stable and repro-
ducible, but it should be noted that there was a temper-
ature gradient along the sample due to conductive heat
loss at the electrical contacts. The resultant temperature
variation across the illuminated area was estimated to be

1.5 K.
Our ultrahigh-vacuum apparatus, with standard

surface diagnostics and integrated five-circle x-ray
diffractometer, has a base pressure of less than 7x10
Torr with the sample at room temperature, and main-
tained a pressure of less than 6x10 Torr through-
out the measurements. In fact, for the later measure-
ments, the pressure remained below 2x10 ' Torr. Sam-
ples were cleaned by rapid heating to 1520 K, anneal-
ing at 1520 K for one minute, followed by rapid cooling
to 1200 K and subsequent slow cooling to the temper-
atures of interest. At the outset of each experiment,
the new sample was held at 1100 K for several hours;
then the cleaning procedure described above was car-
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FIG. 2. (a) Top view of an unreconstructed Si(113) sur-
face. The centered, unreconstructed unit cell is outlined, and
the rectangular coordinate system used to describe the sur-
face is indicated. Silicon atoms in the surface layer are shown
as solid circles. Atoms in lower layers are shown as open cir-
cles. Solid lines represent bonds between neighboring atoms,
while dangling bonds are shown as triangles. (b) Top view of
the Si(113) (3x1) reconstruction. The large box outlines the
centered, reconstructed unit cell.

ried out two or three times. Subsequently, the clean-
ing procedure was repeated approximately once every 48
hours. During initial sample cleaning, the pressure re-
mained below lx10 Torr. In subsequent cleaning cy-
cles, the pressure remained below 2x10 Torr. Similar
procedures have been found to yield well ordered Si(001),
Si(111), and stepped Si surfaces in scanning tunneling
microscopy studies, and were also employed in Refs.
28 and 39 for studies of the Si(113) surface. Our re-
sults for the peak intensities, widths, and positions fol-

lowing different cleaning cycles and at different times are
in all cases reproducible. In addition, Auger electron
spectroscopy, performed using a single-pass cylindrical
mirror analyzer, indicated no measurable surface contam-
ination. As determined by measurements of the specular
and near-specular x-ray scattering, the surface morphol-

ogy following the cleaning procedure consisted of large,
flat Si(113) facets several thousands of A.ngstroms in size,
in spite of the macroscopic miscut.

Figure 2 shows views looking down on the Si(113) sur-
face. As illustrated in Fig. 2(a), the unreconstructed
surface may be envisaged as alternating (111) and (001)
microterraces, containing (111)-like atoms each with a
single dangling bond and (001)-like atoms each with two
dangling bonds, respectively. We use a rectangular co-
ordinate system to describe the surface. Referred to the
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cubic structure of bulk silicon, the surface unit cell vec-
tors defining the x and y axes are a = (1, 1, 0)c/2 and
b = (3, 3, 2)c/2, respectively (c = 5.43 A at 300 K).
With this coordinate system, the unreconstructed Si(113)
surface is a centered rectangular structure with 2D lat-
tice constants equal to a = 3.84 A and b = 12.74 A,
as shown in Fig. 2(a). The reconstruction is centered
in a cell with the x-axis periodicity tripled. The box in
Fig. 2(b) outlines one such cell. A model for the (3x1)
reconstruction, consistent with measurements of the x-
ray structure factor, which are reported elsewhere, is
depicted in Fig. 2(b). One may imagine that this surface
is formed from the unreconstructed surface by removing
every third (001)-like atom in the (110) direction, dimer-
izing the remaining two (001)-like atoms, and finally re-
bonding the (111)-like atom, neighboring the vacancy, to
the layer below.

The reciprocal lattice vectors a* and b* lie along the
[110] and [332] directions in the cubic system, respec-
tively, and have magnitudes of a* = 1.64 A and
b' = 0.49 A . Figure 3 shows the two-dimensional
diffraction pattern schematically. Solid squares indicate
scattering due to the bulk. Circles represent scattering
due to the reconstructed surface at temperatures below
T„where the reconstruction is found at commensurate,
third-order positions along the x axis. Above T„ the
reconstruction becomes incommensurate in the manner
indicated by the arrows.

Grazing-incidence x-ray measurements of the surface
order and correlations were made at the National Syn-
chrotron Light Source (NSLS). Preparatory experiments

were performed at the MIT/IBM X20A bending magnet
beamline, while two separate experiments were carried
out at the NSLS X25 wiggler beamline. The first X25
experiment provided an extensive data set, which con-
stitutes the principal basis for our analysis and discus-
sion. The second X25 experiment served to reproduce
and confirm our earlier results, under improved vacuum
conditions. For the latter experiment, the pressure was
less than 2x10 Torr during measurement.

In brief, beamline X20A focuses synchrotron radia-
tion from a bending magnet using a platinum-coated,
bent, cylindrical mirror. A double-crystal monochroma-
tor employing Ge(111) reflections selected photons with
an energy of 8.8 keV, corresponding to a wavelength of
1.40 A. Beamline X25 uses the intense radiation from a
27 pole wiggler, and can be variously configured. For
these experiments a double focusing Pt-coated mirror
and a Si(111) double-crystal monochromator were used.
In the first experiment at X25, photons with an energy
of 8.8 keV were also used. The use of X25 led to an
improvement in signal by approximately a factor of ten
compared to X20A. Measurements were made at a mo-
mentum transfer normal to the surface equal to 0.02 A

giving angles of incidence and exit of o. = 0.2 .
At X20A and in the first experiment at X25, mea-

surements of the scattering as a function of temper-
ature were made with low- and high-resolution spec-
trometer configurations. The high-resolution configura-
tion employed a Ge(111) analyzer to define the detec-
tor acceptance. A contour plot of the intensity mea-
sured at X25 in the C phase at the (5/3, 1) reconstruc-
tion peak is shown in Fig. 4(a). At half height the
contour is an ellipsoid with major and minor axes (full
width) of 0.0010 A x 0.0006 A. i in the scatter-
ing plane. The high-resolution configuration at X20A
also used a Ge(111) analyzer, and was similar to that
shown for X25. In the low-resolution configuration, the
in-plane angular acceptance of the detector was defined

by slits to be 0.3' full width at half maximum (FWHM)

0
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FIG. 3. The diffraction pattern for the Si(113) (3 x 1) recon-
struction. Solid squares indicate scattering due to the bulk,
and circles represent scattering from the reconstructed sur-
face. Shaded circles correspond to locations that were inves-
tigated in detail, as described in the text. At temperatures be-
low T, the reconstruction peaks appear at third-order, com-
mensurate positions. Above T„ they shift in the directions in-
dicated by the arrows. Also shown is the scattering geometry
employed with the linear detector in the second experiment
at X25.
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FIG. 4. Contour plots of the intensity of the com-
mensurate (5/3, 1) reconstruction peak at X25. (a)
High-resolution configuration employing a Ge(111) analyzer.
The half-height contour is an ellipsoid with major and minor
axes 0.0010 A. ' x 0.0006 A '. (b) Low-resolution config-
uration using slits to de6ne the exit wave vector acceptance.
The half-height contour is an ellipsoid with major and minor
axes 0.016 A x 0.001 A
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at X25, so that the half —height contour had dimensions
0.016 g x 0.001 A i. Figure 4(b) shows the cor-

responding contours of the intensity measured at the
(5/3, 1) peak. It should be noted that for this configu-
ration the direction of the major axis of the resolution
ellipsoid varies significantly with position in reciprocal
space. This is because the direction of the major axis
is always perpendicular to the direction of the scattered
wave vector kf. At X20A the low —resolution configura-
tion gave roughly the same resolution as at X25.

In the second experiment at X25, in addition to a low-
resolution configuration using a conventional point de-
tector, a position-sensitive linear detector was also em-
ployed. As will become clear, the form of the critical
scattering in Si(113) is highly anisotropic, with the in-
tensity concentrated along lines parallel to the z direc-
tion of the surface reciprocal space, motivating the use
of a linear detector. Specifically, by suitably choosing
the sample geometry and the x-ray energy, it is possible
to arrange that the wave vector of the scattered x ray
is along the y direction of the surface reciprocal space.
It follows that the range of scattering angles accepted by
the linear detector corresponds to a line segment in recip-
rocal space parallel to the z axis. In this way, an entire
scattering proBe may be collected at one diffractometer
setting. The geometry is illustrated in Fig. 3 for the
particular case of the (5/3, 3) peak, which was the peak
studied in the second experiment at X25 ~ For this exper-
iment, it was necessary to choose the x-ray energy to be
6.42 keV. The acceptance out of the scattering plane was
defined by slits to be 1.0' in all cases.

III. RESULTS AND DISCUSSION

Below T, = 950+ 40 K, the Si(113) surface exhibits
a threefold commensurate reconstruction along (1, 1, 0).
Figure 5 shows intensity profiles along the z and y direc-
tions through the (5/3, 1) reconstruction peak at a tem-
perature 5 K below the transformation. These data were
obtained using the high-resolution configuration at X25,
and are typical for temperatures below T . The FWHM
for the z and y directions are 0.0006a' = 0.001 A.

and 0.0012b* = 0.0006 A i, respectively. The horizontal
ranges of both panels in Fig. 5 correspond to 0.013 A
These widths indicate that the (3x1) reconstruction is
well ordered over an area of dimensions at least 6000 A.

x 10,000 A. along the z and y directions, respectively. 4z

Initial studies of the disordering of the Si(113) (3x1)
reconstruction were performed at the X20A bending
magnet beamline. Figure 6 shows scattering intensities
along the z direction through the (-1/3, 7) and (1/3, 7) re-
construction peaks obtained with a low-resolution config-
uration for 4 K below T, (open squares) and 6 K above T,
(filled squares). At the lower temperature, the peaks are
at the commensurate positions. At the higher tempera-
ture, however, the peaks in the scattering shift from the
third-order positions, broaden and weaken dramatically.
There is no shift in peak position in the y direction. Mea-
surements at integer-order positions and of the specular
and near-specular scattering show no significant changes
near T„ indicating that surface steps play no role in the

7000

p 5000-

g 3000-

(a)

1000—

—0.004 —0.002 0 0.002 0.004

q„(units of a*)
7000

(b)

p 5000-

3000

1000-
KC(K&~c

-0.010 -0.005 0 0.005 0.010

q (units of b )
Y

FIG. 5. Scans through the (5/3, 1) reconstruction peak
along the (a) z and (b) y directions for T, —5 K obtained
at X25 with a high —resolution configuration. The FWHM are

(a) 0.0006a" = 0.001 A, and (b) 0.00125' = 0.0006 A

The horizontal scales of both panels cover 0.013 A . Inten-
sity is in arbitrary units.

observed behavior.
The reconstructed layer has become incommensurate

in the z direction only. It follows that in the IC phase
the surface is populated by domain walls running on av-
erage along the y direction. The FWHM of the IC peak is

0.02 A. i, corresponding to correlated regions of only
100 A. in the z direction at this temperature. The peak

shifts shown in Fig. 6 are representative of the alternating
pattern of shifts indicated in Fig. 3 by the arrows beneath
the reconstruction peak positions. A simple model of the
system which incorporates a single type of domain wall
or discommensuration shows that this shift will be pro-
duced if the registry of the overlayer increases in phase
by +27r/3 upon crossing the domain wall ("light" domain
walls). One may speculate that the row of extra lat-
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FIG. 6. Scans along the x direction through the (—1/3, 7)
and (1/3, 7) reconstruction peaks obtained at X20 with a
low-resolution configuration. At T, —4 K (open squares),
the peaks are commensurate and well ordered. At T, + 6 K,
the peaks have shifted from the commensurate position and
become weaker.
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icant increase in the IC—phase peak width is observed.
This is illustrated in Fig. 9, which shows a direct com-
parison of the line shapes in the IC phases of Si(113) and
bromine-intercalcated graphite at similar incommensura-
bilies. It is apparent, however, that the peak widths are
very diH'erent for the two cases. Figure 9 demonstrates
that IC-solid and IC-Quid phases may be distinguished
readily in high-resolution, x-ray-scattering experiments.

To quantify the critical behavior, we fit our measured
profiles at each temperature above T, to a 2D Lorentzian
form for the scattering function,

~(q) =
1 + (q &)2/z2 +. q2/z2

(3.1)

where q = (q, q„) = Q —(5/3, 1) is the difFerence be-
tween the measured wave vector Q and the commensu-
rate position. This was convolved with an approximation
to the resolution of the instrument. The form used for the
resolution in reciprocal space was a Lorentzian squared
with an adjustable major axis direction

1 2 2 —2
R(q) = —(I+M, q, + M „q q„+M„„q„) . (3.2)

R(q)dq = 1. (3.3)

The parameters of the resolutions were determined by fits
to the measured scattering in the commensurate phase
for the two configurations shown in Fig. 4. On this basis,
Eq. (3.2) gives an adequate description of the resolution.
Furthermore, Eq. (3.2) allows one integral of the two-
dimensional convolution with Eq. (3.1) to be performed
analytically, thereby significantly reducing the time re-
quired for data analysis. It is important to note that for
reduced temperatures greater than about 3 x 10 ~ for the
high-resolution data and 3 x 10 2 for the low-resolution
data, the extent of the resolution function is much less
than that of the IC-phase scattering function. For larger

0.8
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~ 0.8-4J
~ 0.6-

0.4-
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0 trtrtttrrtrrtatr ~ taarttttttt~ , ~tat ~ aaarttaarararttrraatrrtttr:
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q„(units of o )

FIG. 9. Comparison of the incommensurate line shapes for
an IC-Suid p = 3 phase, Si(113),and an IC-solid p = 7 phase,
bromine-intercalated graphite.

In Eq. (3.2) the resolution volume V, is found by requir-
ing that

reduced temperatures the resolution contributes at most
10'%%up of width of the experimental profiles.

In addition to the resolution-convolved scattering func-

tion, a weakly varying background was added to the
model. The form of the background was fixed for all
temperatures by the scattering far from the peak. Em-
pirically, the equation

Ipg
——B c+m q +m„q„+ 2 + q 1 3 2 (3.4)

gave a good description of the observed background. The
parameters c, m, m„, a, and m were determined at the
highest temperature measured using the low-resolution
configuration, 1025 K, for which the most extensive data
far &om the peak of the scattering were available. Subse-
quent fits varied only the overall background amplitude
B, along with the susceptibility y, the inverse correlation
lengths r. and K&, and the incommensurability e.

Profiles corresponding to the best-fit parameters are
displayed in Figs. 7 and 8 as the solid lines. The mean y
squared for all fits in the IC phase was 1.5, with a max-
imum of 3. Evidently, the 2D Lorentzian gives an excel-
lent description of the data. We note that above T„ the
scattering function for the two-dimensional Ising model
has been shown to be very well described by such a form
for wave vectors within 10m of the peak. 45 We have
also tried several alternative model line shapes, includ-

ing line shapes for which the q term or the q~ term in
the denominator of Eq. (3.1) was replaced by a q

s term
or a q„ term, respectively, and a line shape for which
a q term was added to the denominator of Eq. (3.1).
However, as judged by the mean y squared of fits, these
other line shapes provided an inferior description of the
experimental profiles.

Below T„ the scattering consists, in principle, of two
components. There is the intensity due to the long-range-
ordered reconstruction, and also critical scattering from
Quctuations in the ordered state. However, in this exper-
iment we were unable to identify any critical scattering
below T,. We believe it not to be surprising that the criti-
cal scattering below T, was unobservable, for two reasons.
First, the intensity of the critical scattering is typically
weaker below T, than above T,. For the two-dimensional

Ising model this factor is 37. Second, because the res-
olution function is imperfectly known, the strong scat-
tering from the long-range order, which extends away
&om the nominal commensurate peak position and may
overlap the less intense critical scattering, cannot be dis-
tinguished from any weak critical scattering.

The commensurate scattering due to the long-range-
ordered reconstruction is expected to be a resolution-
limited peak with an amplitude proportional to the
square of the commensurate order parameter. Thus, to
measure the variation with temperature of the order pa-
rameter in the C phase, the commensurate peak ampli-
tude (Io) was found by fits to a Lorentzian-squared func-
tion [Eq. (3.2) without the volume normalization V„],
added to the background [Eq. (3.4)]. Examples of the
fits are shown as the solid lines in Fig. 5. The order pa-
rameter was measured for both the high-resolution and
low-resolution configurations. The background for the
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FIG. 10. The susceptibility y (a) and width K (b)
sus the width K„. Note the logarithmic scales, indicating
power-law behavior for these quantities. Squares are from
low-resolution scans, circles from high-resolution data ob-
tained at X25.

low-resolution configuration was 20 times that for the
high-resolution data. This simply reflects the change in
the two-dimensional resolution volume, as seen in Fig. 4.
The peak intensity at a given temperature for the low-
resolution data, however, was a factor of 3 higher than
for the high-resolution configuration, which we believe is
a result of the slight tilt of the rod of scattering with
respect to the scattering plane because of the nonzero
incidence angle.

An idea essential to our understanding of continuous
phase transformations is that in the critical region all
quantities of interest vary as a power of the correlation
length. As an example, Fig. 10 shows the susceptibil-
ity y and width K versus K„. The only adjustment to
the fitted values is a multiplication of the intensities ob-
tained in the high-resolution configuration by a factor of
60, consistent with the observations in the C phase dis-
cussed above. The overlap for the fit parameters is good
where both high- and low-resolution configurations were
used, demonstrating that our deconvolution procedures
give consistent results. The scaling behavior evident in
Fig. 10 indicates that the observed critical behavior may
be characterized by a single set of critical exponents. In
particular, there is no evidence of any crossover behavior.
Accordingly, in our analysis we have used a single power
law to describe the behavior of each quantity of interest
as a function of the reduced temperature. An advantage
of presenting the data as in Fig. 10 is that the exponent
is independent of the choice of T, or of any change in the
temperature scales between difFerent experiments.

Figure 11 shows our results for the incommensura-
bility (e), the inverse correlation lengths (K and v„),
and the susceptibility (y) versus reduced temperature
[(T —T,)/T, j, obtained in the first experiment at X25.
Also shown is the intensity in the C phase (Io), which
is proportional to the square of the order parameter.
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FIG. 11. (a) Incommensurability (e), inverse correlation
lengths (r, r„), (b) susceptibility (y), and square of the order
parameter (Io) versus reduced temperature t = (T —T,)/T, .

Circles correspond to the high-resolution and squares to the
low-resolution configuration at X25.

The temperature for a given data set was determined
using the interpolation formula for converting the sam-
ple heating current to a temperature. Intensities for the
high-resolution data have been scaled by the factor of 60
as discussed above, and have also been shifted down in
temperature by 1 K to match the low-resolution results,
for which the nominal transformation temperature was

T, = 959.3 K. The high-resolution data set was obtained
immediately following the low-resolution set, and each
took 48 hours to complete. Both data sets consist of a
warming cycle upward through the transition and a sub-
sequent cooling cycle. Within each cycle no hysteresis
was observable, so the results for warming and cooling
are not distinguished in Fig. 11. The apparent shift in
T between the high- and low-resolution data sets may
reflect a true shift upward in the transformation tem-
perature over time, or it may correspond to a drift in
the current-temperature relationship. Another possibil-
ity is that the configuration with the analyzer sampled
a slightly difFerent region of the surface, with a difFerent

apparent T .
Each of the quantities plotted in Fig. 11 shows power-

law behavior over nearly two decades of reduced temper-
ature with exponents P = 0.66+ 0.05 for the incommen-
surability, v = 0.65 + 0.07 for the inverse correlation
length in the z direction, v„= 1.06+0.07 for the inverse
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FIG. 12. Scans along the x direction through the peak of
the scattering function close to the transformation tempera-
ture (T, = 959.3 K) obtained at X25 in the high-resolution
configuration. Open circles correspond to warming and
filled circles to cooling. Lines are fits to the Lorentzian
form described in the text, which for the temperature range
T —0.75 K ( T ( T, + 0.75 K do not adequately describe
the data.

correlation length in the y direction, p = 1.56+ 0.13 for
the susceptibility, and 2P = 0.22 6 0.04 for the square of
the order parameter. As shown in Fig. 12, for a limited
temperature range of 1.5 K around T, the measured
line shape cannot be described by a single symmetric
peak. We attribute the peak asymmetry to a tempera-
ture variation across the illuminated sample area. For
the same reason, the data used in determining the crit-
ical exponents were restricted to reduced temperatures
greater than 10 . The errors in our determination of
the exponents derive primarily from our uncertainty in
T,. Specifically, by fixing T, at the extremes of the possi-
ble range of transformation temperatures, and then vary-
ing the amplitude and exponent of the power law, the ex-
treme values for the various exponents were found. Table
I shows a summary of the amplitudes and exponents so
obtained for the power-law fits displayed in Fig. 11. We
believe that these exponents are sufficiently accurate that
meaningful comparison between experiment and quanti-
tative theory should now be possible.

It is noteworthy that the exponents for the power laws
versus reduced temperature are consistent with the ex-
ponent ratios found from fits such as those displayed
in Fig. 10. For example, fits to the susceptibility y
and x-direction width v versus the y-direction width
r„give the exponent ratios p/v„= 1.46 + 0.08 and
v /v„= 0.60 6 0.04. These are consistent with the ra-
tios of our best determination of the exponents from the
reduced temperature power laws, where p/v„= 1.47 and
v /v&

——0.61. The agreement for other exponent ratios
is similar.

Table II compares the values of the incommensurabil-

TABLE I. Amplitudes and exponents of power-law fits.

Ky

x
Io

Amplitude

0.20 6 0.03 A

0.12 + 0.02 A

0.32+0.05 A
'

0.015 + 0.006
1250 + 250

Exponent

0.66 + 0.05
0.65 + 0.07
1.06 + 0.07
1.56 + 0.13
0.22 + 0.04

ity (e) and the two widths (r and r„) determined for
the lowest and highest temperatures used in fitting the
exponents. Also shown are the associated length scales in
real space. The correlation lengths (( and („) are sim-

ply the inverse of the widths, and an upper limit for the
mean spacing between discommensurations (t) is given

by t = 27r/3e. 4s In the IC phase, the ratio of the correla-
tion length along the z direction and the discommensu-
ration separation is always ( /t = 1. At the highest tem-
perature studied, 1025 K, the mean separation between
discommensurations is estimated to be 22 A. , while the
correlation lengths are 16 A along z and 56 A. along y. It
is remarkable that at this temperature both the spacing
of discommensurations and the correlation length along
the x direction are less than two (3x1) unit cell lengths.
The correlation length in the y direction indicates that
order is lost within five unit cell lengths in that direction.
The high brightness of X25 enables x-ray-scattering mea-
surements of such a disordered surface structure.

The results presented in Figs. 10 and 11 make it clear
that the exponent for the correlation length along x dif-
fers from that for the correlation length along y. Such
anisotropic scaling is very unusual. For example, for
the two-dimensional Ising model the correlations scale
with the same exponent, even if the interactions are
themselves highly anisotropic. One instance in which
anisotropic scaling does occur is the uniaxial C-solid-to-
IC-solid transformation, where exact results give v

P = 1/2 and v„= 1. For comparison, a power law with
exponent 1/2 (dashed line) is shown at the top of Fig. 11.
It is evident that this exponent is excluded by our mea-
surements of both the incommensurability (e) and the
inverse correlation length (K ). The only other phase
transformation at which anisotropic scaling has been doc-
umented experimentally is the transition from a nematic
to smectic liquid crystal in three dimensions.

Another possibility to be considered is that the ex-
ponents should be those of the three-state Potts model,
for which v = v„= 5/6, p = 13/9 and P = 1/9. ~' '

Comparison of our measurements of the peak widths and
incommensurability to a power law with exponent 5/6,
shown as a dashed line in Fig. 11, demonstrate that the
Si(113)disordering transformation cannot be in that uni-
versality class.

It is noteworthy that the measured values of the ex-
ponents are consistent with hyperscaling. Specifically,
a scaling hypothesis for the correlation function near
T, gives rise to the (anisotropic) hyperscaling relation
v + v& ——2 —o., where o. is the exponent describing
the divergence of the specific heat. In addition, a scal-
ing form of the critical free energy leads to the relation
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TABLE II. Lengths and wave vectors for the extreme temperatures used in determining the
exponents in the IC phase.

T
Reduced temperature t
Incommensurability r
x width K

y width ~„
Mean wall spacing I,

z correlation length (
y correlation length („

960.3 K
0.001
0.0035a*

0.0026a'
o.ooo55b'
96a
60a
280b

0.0057 A

0.0043 A

0.00027 A
37O A

23O A

3600 A

1025 K
0.069
0.057a*

0.038a*

0.036b'
5.8a
4a
4.4b

OOO3 A
'

0.062 A

0.018 A.

22 A
16 A
561

among thermodynamic exponents o. + 2P+ p = 2. Thus,
one expects v + v„—p = 2P, which is satisfied by the
measured values. The exponent values also suggest that
the specific heat exponent cr = 2 —p —2P = 0.22 + 0.17
may be smaller than the value for the three-state Potts
transformation, where cr = 1/3, although the three-state
Potts value is by no means excluded. The possibility of a
value for cr smaller than 1/3 was suggested by Huse and
Fisher in the context of chiral melting.

A more direct test of hyperscaling, independent of the
fitted values of the critical exponents, can be made by
plotting the dimensionless ratio

R, = yK K„/IpV„, (3.5)

0.12

0 10 . R = 0.07%0.03

where V„ is the two-dimensional resolution volume and
the other quantities are those shown in Fig. 11. R, may
be interpreted as the ratio of the integrated intensity of
the central part of the critical scattering above T, to inte-
grated intensity of the order parameter scattering below
T,. Figure 13 shows the combination R, for the subset of
our data where the reduced temperature for the determi-
nation of the commensurate peak intensity Io below T,
matched to within 5%%up the reduced temperature for a set
of y, e, and K„above T, . It is gratifying that R, is in-
deed independent of the reduced temperature, indicating
that hyperscaling is satisfied.

In fact, according to the concept of two-scale-factor
universality first introduced by Staufl'er, Ferer, and
Wortis, the value of R, is a constant for each universal-

ity class. Two-scale-factor universality relates the critical
amplitudes near a continuous phase transformation by
assuming that the magnitude of the singular part of the
free energy within a correlated volume in units of kIBT, is
the same for systems within the same universality class.
This result has also been shown to follow from application
of the renormalization group. In the context of scatter-
ing experiments, Bruce has demonstrated that Eq. (3.5)
embodies the idea of two-scale-factor universality. As
seen in Fig. 13, R, takes the value 0.07+ 0.03 for the
tranformation under study. For comparison, the dashed
line in Fig. 13 shows the exact value of R, for the 2D Ising
model (0.051). A neutron scattering study of RbqCoF4
measured a value of 0.043 6 0.002 for that realization of
the 2D Ising model.

Another universal number, specific to the proposed chi-
ral melting transformation, is the product of the in-
commensurability and the correlation length along the x
direction, (dp = e/r. . To test the hypothesis that the
incommensurability and the inverse correlation length
scale with the same exponent, one may plot their ra-
tio as a function of the reduced temperature, as shown
in Fig. 14. We find that the ratio is independent of re-
duced temperature, as expected for chiral melting, and
takes the value uo ——1.6+ 0.2, consistent with the ratio
of our best fit amplitudes &om Table I. For the one-
dimensional three-state chiral Potts model, where an ex-
act solution is possible, the ratio has been determined to
be up ——cot(m'/3) 0.58, which is shown in Fig. 14 as
the dashed line. ~ The larger value of mo found here sug-
gests that in two dimensions correlations are increased

2.5- 1.6+0.2
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55@ .. X*15.

0.02-
~ ~ I

0.001 O.o02 0.0o5 0.01 o.o2 0.05 0.1
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FIG. 13. Plot of R, = Xtc m„/IpV versus reduced tem-
perature t = (T —T )/T, R, is a universal num. ber for each
universality class. The theoretical value of R, for the 2D Ising
model (0.051) is shown as the dashed line. The solid line cor-
responds to our best fit value of R, = 0.07+ 0.03 for chiral
melting.
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FIG. 14. Product of the incommensurability and the cor-
relation length along the x direction (e/gc ) versus reduced
temperature. The dashed line is the exact result in one
dimension (0.58). The solid line is our best fit value of
wo = e/K = 1.6 + 0.2.
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relative to the one-dimensional case. For krypton on
graphite, which may be in a different universality class
than Si(113) because of its triangular rather than uni-
axial symmetry, ~ the results of Moncton and co-
workers ' 5 nevertheless indicate that in the hexagonal
case e/m also tends to a constant of order one as the re-
duced temperature goes to zero. The range of reduced
temperature over which e/e is constant is, however,
much larger for Si(113).

An important check on our results for the critical ex-
ponents and universal constants follows from a compar-
ison with the results obtained at X20A and in the sec-
ond experiment at X25 and with the results of others.
Figure 15 shows scans for several temperatures along
the 2: direction near the (4/3, 6) reconstruction peak ob-
tained at X20A with a high-resolution diffractometer
configuration. The behavior of the scattering on pass-
ing through the transformation is very similar to that
seen in Fig. 7 for the scattering near (5/3, 1) obtained
at X25. In particular, the Lorentzian form of the scat-
tering function again provides an excellent description of
the data, as shown by the solid lines in Fig. 15. One
difference is that for the X20A data our best estimate
is that T, = 930.6 K, instead of T, = 959.3 K for the
first X25 experiment. In the second experiment at X25,
we found T, = 962.5 K. In view of the variation in
the observed T, and the uncertainty in determining the
bulk lattice constant, we estimate that the absolute value
of the transformation temperature is T, = 950+ 40 K.
Other investigations of the disordering of the Si(113) re-
construction give transition temperatures in this range.
Olshanetsky and Mashanov place T, at 1020 K, and

Xing et al. at 870 K. In the detailed study by Yang
et aL,2s two different experimental runs, carried out in
different chambers, yielded transformation temperatures
of 844 K and 900 K. Noting the difEculty of absolute
temperature measurements of the surface, our transfor-
mation temperature is in agreement with these previous
experiments.

Figure 16 is a compilation of the incommensurability as
a function of the reduced temperature from our various x-
ray experiments. The data &om X25 using low-resolution

(open squares) and high-resolution (open circles) configu-
rations obtained at the (5/3, 1) reconstruction peak agree
in detail with those &om X20A using a high-resolution
configuration at the {4/3,6) position {open triangles) and
with data from the second X25 run using point detector
and linear detector configurations at the (5/3, 3) position
(open stars). All of the x-ray data agree with the best fit
power-law form with an exponent P = 0.66 6 0.05, which

is shown as a solid line in Fig. 16. Also shown in Fig. 16
are data from the LEED investigation of Yang et aL

(solid circles). It is apparent that the x-ray data are of
higher quality, and accordingly yield more precise values

for P, as well as for the other critical exponents, than the
LEED data.

In Ref. 28, the ratio of the peak shift to its width along
the x direction is approximately temperature indepen-
dent but takes the value 0.8, in apparent confiict with

our result that no ——1.6 6 0.2. However, for a scattering
function which (as we have shown) is well described by
a 2D Lorentzian, the relatively broad resolution along q&

employed in Ref. 28 effectively integrates the scattering
function over q„. The resultant measured intensity ver-
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FIG. 15. Scans along the z direction through the peak of
the scattering function near (4/3, 6) for various temperatures
obtained at X20A with a high-resolution difFractometer con-
figuration. In this experiment, we measure T, = 930.6 K.
Lines are 6ts to the Lorentzian form described in the text.
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FIG. 16. A comparison of the incommensurability as a
function of reduced temperature for several x-ray configura-
tions. Also shown are the previous LEED results (solid cir-

cles) of Yang et aL (Ref. 28). X-ray data obtained with low

resolution (open squares) and high resolution (open circles)
at the (5/3, 1) reconstruction peak in the first experiment at
X25 agree arith the high-resolution results obtained at X20
studying the (4/3, 6) peak (open triangles), and with the re-
sults of the second experiment at X25 using the linear detector
(open stars). The solid line corresponds to an exponent for
the incommensurabilty of P = 0.66, as described in the text.
To calculate the reduced temperature corresponding to the
LEED data the quoted value of T = 844 K was used.
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sus q has a half width at half maximum that is increased
relative to that of the original Lorentzian scattering func-
tion by a factor of v 3. In other words, the widths given
in Ref. 28 should be divided by i/3 before comparison
to our values of K . Likewise, the ratio of the measured
peak shift to the measured width should be multiplied
by ~3, yielding a value of iUo 1.4, consistent with our
value.

In light of our anomalous results for the critical ex-
ponents, it is worthwhile to consider whether surface
contamination by a foreign, adsorbed species, albeit at
immeasurably small concentrations, might be responsi-
ble for the observed critical behavior at the (3 x 1)-to-
disordered transformation of the Si(113) surface. How-

ever, certain aspects of our results refute this idea, at
least within the context of our current understanding of
how random impurities affect critical behavior. First,
we note that small concentrations of mobile impurities
are not expected to change the universality class of the
transformation. Second, we consider immobile adsorbed
species that locally favor a particular commensurate sub-
lattice. Such impurities constitute a random field For.
2D Potts models, the effect of a random field is to sup-
press the disordering temperature to absolute zero. Since
we observe a nonzero transformation temperature and
a well ordered commensurate phase below 960 K, there
can be no random-field impurities on length scales rele-
vant to the present experiment. Third, there may exist
immobile impurities that do not distinguish among the
commensurate sublattices, but nevertheless attract or re-
pel the domain walls. Impurities of this sort give rise to
random-bond disorder. The critical behavior of systems
for which the specific heat exponent (n) is negative re-
mains unaffected by random-bond disorder. In systems
for which the specific heat exponent is positive in the ab-
sence of random-bond disorder, such as the three-state
Potts model, the critical behavior is changed to that of
the corresponding random-bond universality class. How-

ever, for all cases of which we are aware in which the
random-bond critical exponents are known, the specific
heat exponent is negative. For instance, the specific heat
exponent of the random-bond three-state Potts model is
negative. In contrast, on the basis of hyperscaling, we
infer a positive specific heat exponent for the (3 x 1)-to-
disordered transformation of Si(113). We therefore be-
lieve that a random-bond universality class may also be
ruled out.

What are the implications of our results for the pro-
posed phase diagrams of the three-state chiral Potts
model'? First, we consider the phase diagram of Hal-
dane, Bak, and Bohr and Schulz. According to these
authors, except at the Potts point (P), an IC-solid phase
intervenes between the C-solid and the IC-fluid phases,
so that there are two successive transformations. How-
ever, the temperature range of the IC-solid phase de-
creases to zero as P is approached. The Si(113) surface
is not at the Potts point, since we observe a tranforma-
tion to an IC phase indicating the preferential formation
of discommensurations with a phase shift of +27r/3 in
the commensurate order parameter. We may also rule
out an IC-solid phase more than 1 K wide intervening

between the observed C-solid and IC-fIuid phases. It fol-
lows that if the phase diagram proposed by Haldane, Bak,
and Bohr and by Schulz is to be correct, then Si(113)
must nevertheless be close to P, so that the magnitude
of the chirality is small. However, it is known that at P
the chiral crossover exponent (P = 1/6) is small. There-
fore, for small chirality one expects to observe three-state
Potts critical scattering over a large temperature range
above T„ followed by a crossover to KT critical behav-
ior very near T, . In fact, we observe anisotropic scaling
throughout the temperature range studied, which seems
inconsistent with the anticipated behavior. Moreover, as
the temperature is increased within the C-solid phase,
according to Haldane, Bak, and Bohr and to Schulz, the
system approaches a PT transformation, near which the
order parameter is expected to be only weakly tempera-
ture dependent. Thus, the observed power-law behavior
of the order parameter versus reduced temperature below

T, also seems incompatable with the scenario of Haldane,
Bak, and Bohr, and of Schulz. These arguments lead us
to believe that the phase diagram proposed by Haldane,
Bak, and Bohr and by Schulz is inappropriate for Si(113).

The existence of a direct C-solid-to-IC-fluid transfor-
mation not in the three-state Potts universality class al-
lows for two alternative interpretations within the con-
text of current theory. The first possibility, suggested
by the experimental result that P = v„ is that the
C-solid-to-IC-fluid transformation of Si(113) lies in the
chiral melting universality class proposed by Huse and
Fisher, and that its critical exponents have now been de-

termined. This interpretation finds support in the finite-
size-scaling calculations of Vescan, Rittenberg, and von
Gehlen, who studied a highly anisotropic chiral three-
state Potts model. Their study reveals a C-solid-to-IC-
fluid transformation exhibiting anisotropic scaling with
exponents v, v„, and P very similar to those observed
for Si(113). However, no Lifshitz point and no IC-solid
phase emerge from their calculations, irrespective of the
chir ality.

The second possibility is that the observed critical be-
havior at the disordering of the Si(113) (3x1) reconstruc-
tion is associated with the Lifshitz point. In this regard,
it is interesting that our results for v and v& are close
to the values suggested by Howes for the Lifshitz point
based on series expansions of an anisotropic three-state
chiral Potts model. Specifically, using thirteenth-order
series expansions at the chirality, which he identifies as
corresponding to the Lifshitz point, Howes finds that the
exponents for the specific heat (n), the order parame-
ter (P), and the susceptibility (p) take the values of the
three-state Potts model, for which n = 1/3, P = 1/9, and

p = 13/9. Using a ninth-order expansion, he also finds
that the correlation length in the y direction scales with
an exponent v„= 1 at the proposed Lifshitz point. As-

suming the hyperscaling relation 2 —o. = v~+ v„, these re-

sults imply that in the x direction the correlation length
exponent v takes the value 2/3. Moreover, the argu-
ments of Huse and Fisher, which led them to propose a
chiral melting universality class, seem also to apply at
the Lifshitz point, leading us to expect that P = v there
as well. However, in a Landau-Ginsburg description, the
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Lifshitz point corresponds to the vanishing of the q
term in the denominator of the scattering function and,
therefore, to a non-Lorenztian line shape. In contrast, we

find that the scattering function is Lorentzian. Any the-
ory that seeks to locate the disordering transformation of
Si(113) at a Lifshitz point should resolve this apparent
discrepancy.

Finally, we note that an unphysical, self-dual version
of the three-state chiral Potts model is exactly solved
at a special point with exponents n = 1/3, v = 2/3,
and v„= 1. However, the relevance of these latter
calculations to transformations in two-dimensional layers
is unclear. In any case, our experiment provides definitive
evidence of a chiral melting universality class with critical
exponents that are unambigously distinct from those of
the three-state Potts model. It remains to be established
whether such behavior is unique to the Lifshitz point or
whether it holds along the line in the phase diagram from
P to L.

IV. SUMMARY AND CONCLUSIONS

In this paper, the results of an x-ray-scattering study
of the disordering transformation of the Si(113) (3xl)
reconstruction surface have been presented. At 950 6
40 K there is a continuous transformation from a
commensurate-solid phase to an incommensurate-fluid
phase. Critical scattering shows single-power-law be-
havior over nearly two decades of reduced temperature
(t = (T —T,)/T, ) with exponents P = 0.66 + 0.05 for the
incommensurability (e), v = 0.65 6 0.07 for the inverse
correlation length in the incommensurate direction ( r ),
v„= 1.06 + 0.07 for the inverse correlation length in the
commensurate direction (r.„),and p = 1.56+0.13 for the
susceptibility (y). Below T, the variation of the square
of the order parameter, proportional to the peak inten-
sity at the commensurate position (Io), varies with an
exponent 2P = 0.22 6 0.04. It is remarkable that the cor-
relation lengths in the disordered phase scale anisotrop-
ically (v g v„). The observed critical behavior is in-
consistent with that of any previously known universal-
ity class, but consistent with the prediction for chiral
melting that P = v . In addition to the critical ex-
ponents of the transformation, two universal constants
have been measured. The ratio of the incommensurabil-
ity and the inverse correlation length in the disordered
phase is found to be independent of temperature, and to
have the value too ——e/r. = 1.6 +0.2. Also, the combina-
tion R, = yr r„/IoV„, where V„ is the two-dimensional
resolution volume, is independent of the reduced tem-
perature, consistent with the hyperscaling relationship
v + v„= p+ 2P. According to the hypothesis of two-
scale-factor universality, R, is a universal constant, which
we find takes the value R, = 0.07 + 0.03. We hope that

these observations will help in guiding new theoretical
investigations into the nature of this unusual, and still
controversial, transformation.

The results presented here lead one to speculate on
further experiments. First, the existence of a new chiral
melting universality class should be reflected in the shape
of the scattering function. Since this functional form is
universal according to the scaling hypothesis, it would

be interesting to pursue scattering experiments near T
with improved temperature uniformity to examine any
deviations from the simple Lorentzian form assumed in
our analysis. Theoretical guidance on the form of the
scattering function at T, would also be helpful. Sec-
ond, if another (3 x 1)-to-disordered transformation can
be found, which yields the same quality of data as in the
present experiment, an investigation of its critical behav-
ior could possibly provide an example of universality. In
fact, recent LEED experiments indicate that the Ge(113)
(3 x 1) surface has a transformation similar to the Si(113)
(3x1) surface. s It is unlikely that Ge(113) has the same
chirality as Si(113), so that the observation of the same
critical exponents and universal constants in that system
would be strong evidence that they are indeed appropri-
ate along a line in the temperature-chirality phase di-

agram. Alternatively, deviations may indicate that the
Si(113) transformation is at a special point.

Finally, this experiment demonstrates that syn-
chrotron x-ray studies of surface phases and 2D phase
transformations have progressed to the point that they
can now yield data of sufhcient precision to identify
and characterize convincingly new (as well as previ-
ously known) universality classes. Indeed, the data pre-
sented in this paper for a single-crystal silicon surface
are of comparable or superior quality to synchrotron x-
ray-scattering studies of heavy rare gases adsorbed on
high-surface-area graphite substrates ' ' and quasi-
two-dimensional intercalation compounds, and to neu-

tron scattering studies of phase transformations in lay-
ered quasi-two-dimensional magnetic systems, which
previously have set the standard for measurements of 2D
critical behavior.
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